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Introduction to ML

Neural Networks

Instructor: Pat Virtue




Outline

Last time: Neural Networks
—= Three-neuron network + optimization
—=2 Neural network structure (adding more neurons)
__—=YForward pass and Backpropagation (scalar version)

Today: Neural Networks

» (Calculus: multi-variate chain rule

= Backpropagation (vector version)

= QOptimization intuition (sliders)

= Neural Network Properties and Intuitiza



Forward Pass y=he(x)=g <W5 g (W4 g (Ws -g(wz - gw, -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus) \L

Wy W, W3 Wy Wg

With a new data point (x, y), we have our current weight values
but we don't have y (or any of the intermediate values z, and a,)

or the value of our object function I g
)=+ 2 J @

The forward pass propagates x (forward) through the network

. /z)
to give us these values /
% Y ) Y\



Backpropagation y = he(x) = g<w5 -g(w4-g(W3 -g(wz - g(wy -x))))>

Width 1 deep network (no bias) (dumb but will help with calculus)
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To do gradient descent we need the partial derivative of the objective with
respect to each parameter, w, <« w, —a dJ/dw,

The backward pass propagates the change in the objective with respect to
intermediate values (d//0dz, and d] /da,) back through the network to
produce each dJ /dw,



Generic Layer Implementation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Obijective: J(0)

Arbitrary layer: z,,« = f(zZin, 6)
Need:
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Tons of repeated partial derivatives
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Tons of repeated partial derivatives
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Calculus Time-out



Multivariate-chain rule



Multivariable Chain Rule

1\X) = 3x C)V _&Lé_—L A)’A—Q
gznggx O X dz dx  dg, dx

f(21,22) = 221 + 72,

y = f(g1(x), g2(x)) (Q 3> (7> (5>

2 'F ~re dfferences (’}wc\&

E"}y Z—ETX D ard €= 0.0l
X '@ (3047 (5 7 = 910
W—/ f (ID*Q 3(3 /00}r75/z>o =410

L F(040)~F(13)  HIpAI= 4 _ 4
(/a.)é) /O 0.0\ \/




Multivariable Chain Rule

1\X) = 3x C)V _&Lé_—L A)’A—Q
gznggx O X dz dx  dg, dx

f(21,22) = 221 + 72,

y = f(g1(x), g2(x)) (Q 3> (7> (5>
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df _ 9f 0g: _ Of 99>

Exercise: Multivariable Chain Rule — = +

dx dg, O0x dg, 0x
z1 = g1(x) = sin(x) 53 /9)( = (05 X
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Multivariable Chain Rule
z1 = g1(x) = sin(x) Bﬁf/ax = (05 X

Zy = ga(x) = x>

df _ of s
dx dg, Ox

_|_

df 09,

dg, 0x

éﬁz/éx = 3x>

y = f(21,23) = 2,7,




= f
Calculus Chain Rule S - —Y

Scalar:

y = f(2)

z=g(x)
dy dy dz

dx  dz dx

Multivariate: Multivariate:
y = f(2) y = f(2)
z=g(x)
dlyi ) dy; 0Z;
d<>_ J 8z ; 01—
]C\ (
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Backpropagation (vector version)



o] 9] 0z,

Network Optimization
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Generic Layer Implementation (updated)
Compute derivatives per layer, utilizing previous derivatives
Obijective: J(0)

Arbitrary layer: z,,« = f(zZin, 6)
Need:
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Generic Layer Implementation (vector output version)

Compute derivatives per layer, utilizing previous derivatives \Z

Objective: J(6) z,, z,,. € RK

Arbitrary layer: z,, = f(Zin, 6) - o ef[RM

Need

" o — Zin— > |Laver zgy = f(2in, 0) Zout
0Zin

_ 9] _ 9 < -«—
36 Zin of ‘

20

S —>
4._



Generic Layer Implementation (vector output version)

Compute derivatives per layer, utilizing previous derivatives

Obijective: J(0)
Arbitrary layer: z,,« = f(zZin, 6)
Need:
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Where do we need chain rule?
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Linear Layer Implementation

Compute derivatives per layer
Obijective: J(0)

Layer:z = f(a,W,b) =Wa+b
Scalar version (no formatting)
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: : a € RM z € RK
Linear Layer Implementation —f J
W e RE*M b e RX

Compute derivatives per layer

Objective: J(6) a —> |Layer a=f(a,W,b) > Z
Layer: Z = f(a, W,b)=Wa+Db d] o d/
< da «—
Scalar version (no formatting) da of  of 0z
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Linear Layer Implementation

Compute derivatives per layer
Objective: J(0) M Z a
Layer:z = f(a,W,b)=Wa+b g

—
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Compute derivatives per layer

Objective: J(8) a — |layer z=f(a,W,b) > Z
0
Layer:z = f(a,W,b) =Wa+b dJ o ad]
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Compute derivatives per layer

Objective: J(6) a — |layer z=f(a,W,b) > Z
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Linear Layer Implementation —f J
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Compute derivatives per layer

Objective: J(6) a — |layer z=f(a,W,b) > Z
0
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Optimization Intuition



Neural Networks

Many layers of neurons, millions of parameters Output
Signal
Input y
Signal _— DOG
. B CAT
. TREE
N CAR

| SKY




Neural Networks
Building on optimization for linear and logistic regression

= Selling my car

m () -0.10
b () 20000
30000 "
Error (RMSE)=6176.6
E 20000
@
=
A 10000
0 . . .
0 50000 100000 150000

Mileage (miles)



Neural Networks

Many layers of neurons, millions of parameters Output
Signal
Input y
DOG
CAT
TREE
CAR

SKY




Neural Networks
Many layers of neurons, millions of parameters Output

Input

DOG
CAT
TREE
CAR
SKY




Neural Networks
Many layers of neurons, millions of parameters Output

Input
Signal




Outline

Last time: Neural Networks
* Three-neuron network + optimization
= Neural network structure (adding more neurons)

* Forward pass and Backpropagation (scalar version)

Today: Neural Networks

» (Calculus: multi-variate chain rule

= Backpropagation (vector version)

= QOptimization intuition (sliders)

"= Neural Network Properties and Intuition



Neural Network Properties



Neural Networks Properties

Practical considerations

= Large number of neurons <

» Danger for overfitting //'/\ f\ér; NG
= Modeling assumptions vs data assumptions trade-off ~ Cus57¢

ﬁadient descent can easily get stuck local optima q\

What if there are no non-linear activations?

ne T

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.



Neural Networks Properties

E\Ion—linearity
Z Fitting complex functions
Fitting any! function (universal approximation theorem)

f Overfitting



Neural Network Properties

Non-linearity



Non-linearity

—

Neural network prediction function, y = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

E—

|

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer S

Example

What happens with you add to linear functions together?
= Addingtwo lines? h(x) = fi(x,wy, b)) + fL(x,w,,by) = W X "'b\ T \,JZX+ bZ

= Adding two planes? — (U( 1 (“/ZBX + /B' +b75



Objective Function is Not Convex

. .. : Closed-form
Objective function for... Convex? :
solution?

v

Linear regression \/
Logistic regression \/ '
7~ \

7\
(
Neural networks N



Optimization
Convex function
If f(x) is convex, then:

* flax+(1—a)z) <af(x)+ (1 — a)f/d/\\
vo<ac<l )
Convex optimization |

If second derivative is = 0
everywhere then function is \
convex

If f(x) is convex, then:

" Every local minimum is also a
global minimum ©




Non-linearity

Prediction function

Neural network prediction function, y = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

Objective function

Neural network prediction function, ¥ = h(x), is definitely not linear. The non-
linear activation functions provide this non-linearity

Just because it can fit any function will it?

" (Objective function is non-convex
—> it will get stuck in local minima

" Stochastic gradient decent take pseudorandom steps
— Helps pop out of local minima

= |s getting stuck at a local minima necessarily a bad thing?? <—



Neural Network Properties

Fitting complex functions (with 1-D input)



Network to Approximate a 1-D Function




Linear Classifiers for Nonlinear Data

Linear classifiers have linear decision boundaries
Feature mapping can convert nonlinear data to higher dimensions

X:(Xlaxz) (x) :(Xlzaxzza\/zXIXZ)
\2x X5,
¢ ®
R - o . .
Se e D: x— p(x) ° .
¢ ° ° .' o
[ ] o o © °
° ® | [ ]
° * [ ] * Ce X22
. [ °
. ., L . [ ] o o P
X12 °
°

This slide is courtesy of www.iro.umontreal ca/~pift6080/documents/papers/svm_tutorial ppt

Today, instead of choosing a feature mapping function, we’ll use neural
networks to learn nonlinear decision boundaries.

=  We’ll quickly shift this to doing nonlinear regression too!



Network to Approximate a 1-D Function
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Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU

Y —




Network to Approximate a 1-D Function

i
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X

T T
——————




Neural Network Properties
Fitting complex functions (with 2-D input)



Classification Design Challenge ha(x) = sign(wyx + by)
hg(x) = sign(Whx + bg)

How could you confi_gure .three specific he(x) = Sign(ng n bc)
perceptrons to classify this data?

X7
RNt +
+|++ ]
] P
R T




Perceptron . (1, if z>0
sign(z) =) _y, if z<0

Classification: Hard threshold on linear model
h(x) = sign(w'x + b)

f '- 10.0




Perceptron History

Frank Rosenblatt, 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the I.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron's eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.



Exercise h(x) = sign(w!x + b)

Which of the following perceptron parameters

will perfectly classify this data? . _ L ifz=0
sign(2) {—1, if z <0
A.w='ﬂ,b=o ,
—1 b=0 Y
B'W_-l-’ - - -|-++-|-+-l-
1c - .
C. — ’b = () =
w -—i_: - + & -l-*_ X,
D w = ::“’bzo - _: — ++
E. None of the above =T -
[ r =



Poll h(x) = sign(w'x + b)

Which of the following perceptron parameters

will perfectly classify this data? . _ L ifz=0
sign(z) {—1, ifz<0
1
A.W=1]’b=0 X,
—1 & B &
E’.w=_1_,b=0 -|-+-I-+-l- _
B 1 7 + + + = =
C W = ) ’b — O 25 -
—1. + T = x,
— -_:h- — + + ey -- (]
D.W—__:h_,b—O 4 . -
E. None of the above ¥ - e _ -




Poll he(z) = sign(wlz + bc)

Which of the following parameters of h(z)
will perfectly classify this data? if x =0

. 1,
SIgN(X) = 11 ifx <0

A. WC=_1_'bC=O Z2
B we=|:|,b.=1 - T &
C. We = -:h- 'bC = —1

D. None of the above




Classification Design Challenge ha(x) = sign(wyx + by)
hg(x) = sign(Whx + bg)

How could you confi_gure .three specific he(x) = Sign(ng n bc)
perceptrons to classify this data?

X7
RNt +
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Classification Design Challenge ha(x) = sign(wyx + by)
hg(x) = sign(Whx + bg)

he(®) = sign(wig + be)
> z

. ‘ 7\

How could you configure three specific
perceptrons to classify this data?




Network to Approximate Binary Classification

https://playground.tensorflow.org/#activation=sigmoid

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
000,000 0.03 - Sigmoid - None v i - Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset Which Test loss 0.503
do you want to properties do + + Training loss 0.502
use? you want to
feed in? 4 neurons 2 neurons
] - - » »
g N\ i »
€ 6o
i ini o :. "’oe o’
Ratio of training ® oy oy O
2 : % o v P 0
to test Xq - The outputs are i :,'t't:;‘z.’. % o
data: 50% - mixed with varying °% o°™ s .:o‘.
- weights, shown ® ®t et
X S F by the thickness of 2
= the lines.
Noise: 0 <
® XX This is the output
- from one neuron. '
Batch size: 10 Hover to see it 0



https://playground.tensorflow.org/#activation=sigmoid

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Neural Network Properties

(Over?) Fitting any function



Neural Networks Properties

Universal Approximation Theorem

= Atwo-layer neural network with a sufficient number of neurons can approximate any
continuous function to any desired accuracy

Reminder
Just because it can fit any function will it?
= QObijective function is non-convex
—> it will get stuck in local minima
" Stochastic gradient decent take pseudorandom steps
— Helps pop out of local minima
= |s getting stuck at a local minima necessarily a bad thing??



Network to Approximate a 1-D Function
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Debugging Overfitting and Underfitting

Underfitting (check this first!)

" Evidence: poor training loss (and poor validation loss)

= Note: Compare with human performance as a baseline, i.e., make sure
the task isn't impossible for a human (with unlimited resources)

* Try: Adding more capacity to network (wider or deeper)
= But how do we choose a new network structure?

Overfitting

" Evidence: good training loss, but poor validation loss
" Evidence: really large parameter values

"= Try: Regularization (we'll learn about this soon!)

= Try: Adding more data



Network to Approximate a 1-D Function
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Summary: Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
" Modeling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.
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