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Instructions:

• Please fill in your name and Andrew ID above.

• Be sure to write neatly and dark enough or you may not receive credit for your exam.

• This exam contains 22 pages (including this cover page and a blank page at the end).
The total number of points is 100.

• Repeated from Piazza post: You use two two-sided, hand-written sheets of paper
containing your notes to use during the exam. Note: this may NOT be created digitally
and printed out. No calculators will be necessary or allowed.

• Note: All vectors on this exam are column vectors unless we state otherwise.

• Note: All logs are natural logs unless we state otherwise.

Below is a space for you to write any assumptions you make as you go through the exam that
you would like us to consider. If you have nothing to state, you can leave this box blank.

Note: If at all possible, you should raise your hand to ask a clarifying question during the
exam rather than relying on any assumptions.
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1 Short Answer / Multiple Choice

1. (8 points) Which of the following machine learning algorithms are probabilistic genera-
tive models?

Select all that apply.

□ Logistic regression

□ Logistic regression with ℓ1 regularization

□ Linear regression with a Gaussian prior on the parameters

□ Convolutional neural network

□ Naive Bayes with Categorical class distributions and Gaussian class-conditional
distributions ← Answer

□ Naive Bayes with Categorical class distributions and Bernoulli class-conditional
distributions with add-one smoothing ← Answer

□ Linear Discriminant Analysis ← Answer

□ Quadratic Discriminant Analysis ← Answer

□ None of the above

2. (2 points) True or False: Generative models allow us to formulate the joint distribution
of the input features and the output, e.g. p(y, x1, x2, x3).

⃝ True ⃝ False True

3. (10 points) Probabilistic Models

For each machine learning model, select the probabilistic model that it attempts to fit.
Assume that x is the input, y is the output, and θ is the vector of all parameters.

(The set of options is the same for all of the following questions.)

(a) Linear regression (without regularization)

⃝ p(y | θ)

⃝ p(x | θ)

⃝ p(y | x,θ) ← Answer

⃝ p(x | y,θ)

⃝ p(x | y,θ) p(y | θ)

⃝ p(y | θ) p(θ)

⃝ p(x | θ) p(θ)

⃝ p(y | x,θ) p(θ)

⃝ p(x | y,θ) p(θ)

⃝ p(x | y,θ) p(y | θ)p(θ)

(b) Linear regression with L2 regularization
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⃝ p(y | θ)

⃝ p(x | θ)

⃝ p(y | x,θ)

⃝ p(x | y,θ)

⃝ p(x | y,θ) p(y | θ)

⃝ p(y | θ) p(θ)

⃝ p(x | θ) p(θ)

⃝ p(y | x,θ) p(θ) ← Answer

⃝ p(x | y,θ) p(θ)

⃝ p(x | y,θ) p(y | θ)p(θ)

(c) Neural networks for classification (no regularization)

⃝ p(y | θ)

⃝ p(x | θ)

⃝ p(y | x,θ) ← Answer

⃝ p(x | y,θ)

⃝ p(x | y,θ) p(y | θ)

⃝ p(y | θ) p(θ)

⃝ p(x | θ) p(θ)

⃝ p(y | x,θ) p(θ)

⃝ p(x | y,θ) p(θ)

⃝ p(x | y,θ) p(y | θ)p(θ)

(d) Classification using categorical class distributions and Gaussian class-conditional
distributions. No additional assumptions including no naive Bayes assumption.

⃝ p(y | θ)

⃝ p(x | θ)

⃝ p(y | x,θ)

⃝ p(x | y,θ)

⃝ p(x | y,θ) p(y | θ) ← Answer

⃝ p(y | θ) p(θ)

⃝ p(x | θ) p(θ)

⃝ p(y | x,θ) p(θ)

⃝ p(x | y,θ) p(θ)

⃝ p(x | y,θ) p(y | θ)p(θ)

(e) Classification using categorical class distributions and Gaussian class-conditional
distributions with a naive Bayes assumption but no other assumptions.

⃝ p(y | θ)

⃝ p(x | θ)

⃝ p(y | x,θ)

⃝ p(x | y,θ)

⃝ p(x | y,θ) p(y | θ) ← Answer

⃝ p(y | θ) p(θ)

⃝ p(x | θ) p(θ)

⃝ p(y | x,θ) p(θ)

⃝ p(x | y,θ) p(θ)

⃝ p(x | y,θ) p(y | θ)p(θ)
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4. (4 points) Kernel Regression: Gammas and Lambdas

Consider kernel regression with an RBF filter, k(x, z) = e−γ∥x−z∥22 , and the following
process to train and predict:

1. Step 1: Compute α = (K +λI)−1y where Kij = k(x(i),x(j)) and k(x, z) is your
kernel function.

2. Step 2: Given a new point x, predict ŷ =
∑N

i=1 αik(x,x
(i))

Which of the following are likely to help reduce overfitting?

Select all that apply.

□ Increase λ ← Answer

□ Decrease λ

□ Increase γ

□ Decrease γ ← Answer

□ None of the above
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2 Regularization

1. We attempt to solve the binary classification task depicted in the following figure with
the simple logistic regression model.

P (Y = 1 | x,w) = g(w0 + w1x1 + w2x2) =
1

1 + exp (−w0 − w1x1 − w2x2)

In the figure below, the + values represent class Y = 1, and the − values represent class
Y = 0. Notice that the training data can be separated with zero training error with a
linear separator.

(a) (6 points) Consider training a version of regularized logistic regression models where
we try to maximize:

N∑
i=1

logP (y(i) | x(i), w0, w1, w2)− C(wj)
2

where hyperparameter C >> 0, and the penalty is on only one fixed j from {0, 1, 2}.
In other words, only one of the parameters is penalized.

For the regularization of each wj and C >> 0, state whether the training error on
the above dataset increases, decreases, or stays the same when compared to the
unpenalized logistic regression model. Provide a brief justification for each of your
answers.
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By penalizing w0, the training error:

⃝ Increases ⃝ Remains the Same ⃝ Decreases

Justification

Increases. When we penalize w0, it will go to zero, The decision boundary
will have to pass through the origin.

By regularizing w1, the training error:

⃝ Increases ⃝ Remains the Same ⃝ Decreases

Justification

Remains the same. When we regularize w1, the resulting boundary can rely
less and less on the values of x1 and therefore becomes more horizontal and
the training data can be separated with zero training error with a horizontal
linear separator.

By regularizing w2, the training error:

⃝ Increases ⃝ Remains the Same ⃝ Decreases

Justification

Increases. When we regularize w2, the resulting boundary can rely less and
less on the value of x2 and therefore becomes more vertical. For very large C,
the training error increases as there is no good linear vertical separator of the
training data.



10-315 Intro to ML Midterm Exam 2 - Page 7 of 22

(b) (3 points) If we change the form of regularization to L1-norm (absolute value) and
regularize w1 and w2 only (but not w0), we get the following penalized log-likelihood:∑N

i=2 logP (y(i) | x(i), w0, w1, w2)− C(|w1|+ |w2|)

Consider again the problem in Figure 1 and the same logistic regression model
P (y = 1 | x,w) = g(w0 + w1x1 + w2x2)

As we increase the regularization parameter C, which of the following scenarios do
you expect to observe? (Choose only one) Briefly explain your choice:

⃝ First w1 will become 0, then w2

⃝ First w2 will become zero then w1

⃝ w1 and w2 will become zero simultaneously

⃝ None of the weights will become exactly zero, only smaller as C increases.

Justification

The data can be classified with zero training error and therefore also with
high log-probability by looking at the value of x2 alone, i.e. making w1 =
0. A non-zero value for w1 is definitely better because it will allow for a
better conditional likelihood, but w1 will go to zero rather quickly as we
increase regularization because we can still perfectly classify the data with
w1 = 0. Also, the absolute value regularization ensures that w1 will indeed go
to exactly zero. As C increases further, even w2 will eventually become zero.
We pay a higher and higher cost for setting w2 to non-zero value. Eventually,
this cost overwhelms the gain from the log-probability of labels that we can
achieve with a non-zero w2.
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3 MLE and MAP

1. (6 points) Assume we have data D = {x(i)}Ni=1 and assume our x(i) are i.i.d from a
distribution with the following density function: f(x;λ) = λx

x!
e−λ

Write the expression for the likelihood of the data D in terms of x(i), λ and N?

N∏
i=1

λx(i)

x(i)!
e−λ =

λ
∑N

i x(i)∏N
i x(i)!

e−Nλ

Write the expression for the log-likelihood of the data D in terms of x(i), λ and N?

N∑
i

x(i) log(λ)− log(
N∏
i

x(i)!)−Nλ

N∑
i

x(i) log(λ)− (
N∑
i

log x(i)!)−Nλ

Derive the equation for the MLE of λ in terms of x(i) and N . You must show your work.

dℓ

dλ
=

∑N
i x(i)

λ
−N = 0

=⇒ λ =

∑N
i x(i)

N
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2. Let binary Y be a random variable representing a coin flip. The probability of outcome
heads, Y = 1 is modeled by a Bernoulli distribution with parameter ϕ ∈ [0, 1], i.e.
p(Y = 1 | ϕ) = ϕ.

Consider the observed outcomes of four coin flips being tails, heads, tails, tails, DA =
[y(1), y(2), y(3), y(4)] = [0, 1, 0, 0].

You may include basic arithmetic in your answers.

(a) (4 points) MLE

Write an expression for the likelihood for this dataset p(DA | ϕ) in terms of ϕ. Don’t
include any symbols for the data such as DA or y.

p(D | ϕ):
ϕ(1− ϕ)3

For this data, DA, what is the maximum likelihood estimate of ϕ?

ϕ̂MLE:

0.25

(b) (6 points) MAP

We now add a prior on the parameter ϕ, specifically p(ϕ) = 2ϕ.

Write an expression for p(DA, ϕ) in terms of ϕ. Don’t include any symbols for the
data such as DA or y.

p(D, ϕ):
ϕ(1− ϕ)32ϕ = 2ϕ2(1− ϕ)3

Write an expression for the objective function J(ϕ) = − log p(DA, ϕ) in terms of ϕ.
Don’t include any symbols for the data such as DA or y.

J(ϕ) = − log p(D, ϕ):
− log 2−2 log ϕ−3 log(1−ϕ)
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Write an expression for the derivative of the objective function with respect to ϕ,
dJ/dϕ.

dJ/dϕ:

−2/ϕ+ 3/(1− ϕ)

For this data, DA = [0, 1, 0, 0], what is the MAP estimate of ϕ?

ϕ̂MAP:

0.4

(c) (4 points) MAP with more points

Now, we flip the coin a total of 99 times and end up with dataset DB containing 11
heads and 88 tails.

Using the same prior as before, p(ϕ) = 2ϕ, compute the MAP estimate for this new
dataset, DB.

ϕ̂MAP:

0.12

Finally, we flip the coin a total of 999 times and end up with dataset DC containing
111 heads and 888 tails.

Using the same prior as before, p(ϕ) = 2ϕ, compute the MAP estimate for this new
dataset, DC .

ϕ̂MAP:

0.112
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4 Naive Bayes

1. (8 points) We are given a database of vehicles and their features with a theft record of
whether they were stolen or not.

Use Bernoulli naive Bayes without smoothing to compute the following probabilities
given this dataset.

Note: Leave your answers as unsimplified arithmetic expressions, i.e. you don’t have to
simplify your arithmetic down to numerical value. Please show any work.

Given a new car x = [Red, SUV,Domestic], what is P (Stolen = Y es,x)?

P (Stolen = Y es,x) =
5

10

3

5

1

5

2

5
=

3

125
= 0.024

Given the same new car x = [Red, SUV,Domestic], what is P (Stolen = Y es | x)?

P (Stolen = No,x) =
5

10

2

5

3

5

3

5
=

9

125

P (Stolen = Y es | x) =
3

125
3

125
+ 9

125

=
1

4
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5 PCA

1. (6 points) On the figure below, draw the following:

• The first principal component: as an arrow labeled 1

• The second principal component: as an arrow labeled 2

• The reconstructed points for the 3 data points labeled A, B, C after projecting onto
the first principal component

• The reconstruction error lines connecting points A, B, C and their reconstructed
points after projecting onto the first principal component

• First principal component at roughly 30 degree angle below positive x1 axis (or
above negative x1 axis

• Second principal component must be perpendicular to first

• Reconstructed points should be on first principal component and error lines should
be perpendicular to the first principal component and connected to the original
points.
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6 Recommender Systems

1. (3 points) Given a sparse set of training recommendations, ri,j, for N users andM items,
assume that you have already solved for the matrix factorization of R ∈ RN×M and now
have matrices U ∈ RN×K and V ∈ RM×K .

Now, you are given a new user, user N + 1, that was not considered at all during your
training. You collect reviews from that user on the first 5 items. Describe precisely how
you would go about recommending the single item that the user is most likely to rate
the highest (other than the first 5 items of course).

You’d have to:
1) add your ratings to R and add a row to U , 2) retrain, and 3) take the
argmaxj u

T
N+1vj.

It would probably be beneficial to initialize the new system with the previous U
and V .
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2. (6 points) Consider the following ratings matrix, where ‘?’ indicates that no rating has
been given:

R =


4 ? ?
? 2 ?
? 5 ?
? ? 3


We would like to use matrix factorization to embed our users and items in a K = 2 di-
mensional space. Write specific U and V matrices that optimize the matrix factorization
objective function J(U, V ) for K = 2:

J(U, V ) =
1

2

∑
i,j∈S

(ri,j − uT
i vj)

2

where, as usual, uT
i is the i-th row of U , vT

j is the j-th row of V , and S is the set of
indices, i, j, for ratings that are not ’?’.

Note: There is more than one correct answer.

Write your answers as matrices filled with numerical values.

U : V :

The dot product of the first row of U and the first row of V must equal 4.

The dot product of the second row of U and the second row of V must equal 2.

The dot product of the third row of U and the second row of V must equal 5.

The dot product of the fourth row of U and the third row of V must equal 3. For

example, U =


4 0
2 0
5 0
3 0

 and V =

1 0
1 0
1 0


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7 Applying ML

Once a machine learning system has been trained, it is important to understand how to use
it. For the following trained systems, give a precise mathematical equation to compute the
output for a given input.

If you would like to use any temporary variables, be sure to give the equation for that variable
AND define the size of the variable, e.g. scalar or ∈ RN , etc.

We’ll start with an example, so you know what to expect.

Logistic Regression (example)

System: We applied a feature map to our input data, ϕ(·), and then trained a binary logistic
regression model on the mapped features. The logistic regression model included a bias term.

Test: For a new input, xtest, give an equation for p̂, the predicted probability of xtest belonging
to class Y = 1.

Example acceptable answer:

p̂ = 1

1+e−(wT ϕ(xtest)+b)

Example insufficient answers:

p̂ = g(wTϕ(xtest) + b) // Issue: Using undefined function g

p̂ = 1
1+e−z // Issue: Using undefined variable z

p̂ = the logistic function of the weight vector dotted with the feature map vector plus the
bias term // Issue: Using words, not precise math
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1. (3 points) K-means

System: We clustered unlabelled input data D = {x(i)}Ni=1 into K clusters using K-
means. K-means produced cluster centers, µ1, . . . ,µK and cluster assignments, z1, . . . , zN .

Test: For a new input, xtest, give an equation for ẑ, the predicted cluster assignment for
xtest.

ẑ = argminj∥xtest − µj∥2
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2. (3 points) Recommender Systems

System: We solved the following regularized matrix factorization optimization for a given
sparse set of ratings {Rij}i,j∈S , where S is the set of all pairs (i, j) where there exists a
rating from the i-th user on the j-th item.

argminU,V

∑
i,j∈S(Rij − uT

i vj)
2 + λ(

∑
i ||ui||22 +

∑
j ||vj||22)

For hyperparameter λ, the optimization returned an N × K user matrix, U, and an
M ×K item matrix, V, where uT

i is the i-th row of U and vT
j is the j-th row of V.

Test: For user index i, give an equation for ĵ, the index with the highest predicted rating
for that user. To simplify things, it is ok if this predicted index is of an item that user i
already rated.

ĵ = argmaxj u
T
i vj
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3. (6 points) Grouping Photos

System: Identify which cluster an input image is likely to belong to.

To do this, we first trained an autoencoder network to map the D number of (vectorized)
input pixels into an M -dimensional space. Second, we trained a Gaussian mixture model
with K classes on the encoded M -dimensional points (not the D-dimensional recovered
points). Finally, we use the GMM to determine the index, k̂, of the cluster that has the
highest probability of the encoded test point belonging to that cluster.

The neural network (encoder then decoder) has a total of four fully-connected layers.
The first and third layers use a ReLU activation function; the second and output layers
have no activation functions. The trained autoencoder network contains the following
parameters: W1 ∈ RL×D, b1 ∈ RL,W2 ∈ RM×L, b2 ∈ RM , W3 ∈ RL×M , b3 ∈ RL,W4 ∈
RD×L, b4 ∈ RD.

The Gaussian mixture model has a set of parameters for each class: mixture probabilities,
means, and covariance matrices, πk ∈ [0, 1], µk ∈ RM , and Σk ∈ RM×M , respectively.

Test: For an input image in vector form, xtest, give an equation for î, the index of the
training image that matches bestswaqq.

You may use the following functions in your answer:

• ReLU(z), which applies a ReLU to each entry in the input vector, z, and returns
the resulting output vector

• f(z,µ,Σ), which returns the density from the multidimensional Gaussian pdf at z

Note: Given the length of the answer, you should temporary variables for this question.
Be sure to give the equation for that variable AND define the size of the variable, e.g.
scalar or ∈ RN , etc.

Define vtest ∈ RM

vtest = W2ReLU(W1xtest + b1) + b2

k̂ = argmaxk πkf(vtest, µk,Σk)
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8 Word Embeddings

1. Consider the following word2vec SGD objective function for a single pair of tokens in a
training corpus with N tokens, where (i, j) is the corresponding pair of indices into a
vocabulary of M tokens:

J(U, V )(i,j) = − log gsoftmax (V ui)

where gsoftmax is the softmax function, ui is the i-th row of U as a column vector, and
vj is the j-th row of V as a column vector.

Let’s define the following:

• s = V ui, the score vector for each vocab token

• ŷ = gsoftmax (s), the predicted probability for each vocab token

• y is the one-hot vector with a one at index j.

The following are the corresponding SGD gradient update expressions, derived using the
partial derivative of the cross-entropy and softmax functions, ∂J/∂s = ŷ − y:

ui ← ui − αV ⊤ (ŷ − y)

V ← V − α (ŷ − y)u⊤
i

(a) (3 points) Give your answers to the following in terms of N , M , K, where K is the
number of dimensions of embedded space.

What is the size of U :

M ×K

What is the size of V :

M ×K

How many iterations are in one epoch of SGD (batch size one)?

N − 1
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2. Now, we would like to train a word2vec model to predict the next word from a context
of exactly C = 3 previous words rather than just one, as in the model above.

(a) (2 points) How many parameters are in this model in terms of N , M , K?

2MK

How many iterations are in one epoch of SGD (batch size one)in terms of N , M ,
K?

N − 3

(b) (2 points) Write the equation for the vector ŷ containing predicted next token prob-
abilities for each token in the vocabulary, given input context indices, i1, i2, i3. You
may use gsoftmax in your answer.

ŷ = gsoftmax

(
V

(
1

3

3∑
c=1

uic

))

(c) (2 points) Write the SGD objective function for four consecutive tokens in the
training corpus where i1, i2, i3, i4 are the corresponding vocabulary indices, where
i4 is the index of the fourth word. You may write your answer in terms of your
definition for ŷ above.

J(U, V )(i,j) = − log ŷi4
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(d) (3 points) Write the SGD gradient update expressions for one tuple of vocabulary
indices, i1, i2, i3, i4, and learning rate α. You may write your answer in terms of
your definition for ŷ above as well as the one-hot vector y that has a one at index i4.

ui1 ← ui1 − α
1

3
V ⊤ (ŷ − y)

ui2 ← ui2 − α
1

3
V ⊤ (ŷ − y)

ui3 ← ui3 − α
1

3
V ⊤ (ŷ − y)

V ← V − α (ŷ − y)

(
1

3

3∑
c=1

u⊤
ic

)
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