
10-315: Introduction to Machine Learning Recitation 9

1 Definitions

1. Dimensionality Reduction: The transformation of data from a high-dimensional space into a low-
dimensional space so that the low-dimensional representation retains some meaningful properties of the
original data. Dimensionality Reduction is useful because time and space can be saved by using fewer
features, especially when dealing with a large dataset.

2. Principal Component Analysis: A dimensionality reduction method that transforms a set of fea-
tures in a dataset into a smaller number of features, called principal components, while also trying
to retain as much information from the original dataset as possible. The principal components are
uncorrelated, and the first principal component will explain the most variance in the original dataset.

3. Lagrange Multiplier: A simple and elegant method of finding the local minima or local maxima of
a function subject to equality or inequality constraints. It allows us to wrap the constraint into the
objective function.

4. Eigenvalue & Eigenvector: For a matrix An×n and column vector vn×1, we consider v to be an
eigenvector of A and λ ̸= 0 to be an eigenvalue of A iff Av = λv. Note how for a given eigenvalue, we
can have infinite eigenvectors associated with it by taking constant multiples of v. To be consistent, we
are usually concerned with the eigenvector that’s an unit vector (i.e. ∥v∥2 = 1).

5. Eigen Value Decomposition: If a matrix An×n has a full set of eigenvalues, then we can write
A = XΛX−1 where Λn×n is a diagonal matrix with eigenvalues on the diagonal and Xn×n is the matrix
whose columns are the eigenvectors corresponding to the eigenvalues in Λ.

6. Singular Value Decomposition (SVD): the factorization of a matrix Am×n into three matrices
U,W, V T . U is defined as an m × n matrix of the orthonormal eigenvectors of AAT . W is defined as
an n× n diagonal matrix of the singular values, which are the square roots of the eigenvalues of ATA.
Finally V T is the transpose of a n× n matrix containing the orthonormal eigenvectors of ATA.
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2 Naive Bayes with Laplace Smoothing

We’re going to repeat the example from last week but introduce Laplace Smoothing as the Prior. It was
very convenient to assume that the featues are independent given the class–it allowed us to simplify the
calculations a lot. But, we found a problem with our example last week. Whenever a word/token didn’t
occur for a given class, the probability for that token given that class becomes 0, hence the probability of
that class also becomes 0. This is a massive drawback. We cannot extrapolate our model to an example that
contains a word that we have not seen before in our training data. If we tried, the probability for each class
would just be 0.

In order to get around this, we can use something called Laplace Smoothing. We can smooth our
probabilities upwards by some constant α. To be more precise,

P (xi|Y = k) =
Number of samples that belong to class k and contains the token xi + α

Number of samples that belong to class k + αK̇

K is the total number of classes and α is a constant hyperparameter. Compare this to the formula from before:

P (xi|Y = k) =
Number of samples that belong to class k and contains the token xi

Number of samples that belong to class k

Let’s repeat the same example from last week but use Laplace Smoothing this time to see how we can avoid
getting zero as our class probability. Use α = 1.

Consider the following training samples:

SPAM Email Body

1 Money is free now

0 Pat teach 315

0 Pat free to teach

1 Sir money to teach

1 Pat free money now

0 Teach 315 now

0 Pat to teach 315

The vocabulary consists of the following words: {315, free, is, money, now, Pat, Sir, teach, to, tomorrow}.
Compute the following probabilities:

1. Fill in the tables below:

P (Y = 1) P (Y = 0)

P (Y = 1) = 3/7 P (Y = 0) = 4/7
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j P (Xj = 1 | Y = 1) P (Xj = 1 | Y = 0)

315
1/5 4/6

free
3/5 2/6

is
2/5 1/6

money
4/5 1/6

now
3/5 2/6

Pat
2/5 4/6

Sir
2/5 1/6

teach
2/5 5/6

to
2/5 3/6

tomorrow
1/5 1/6
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2. Consider the following email body: X = Pat teach now. Accounting for the laplace smoothing, fill in
the table below:

j x P (Xj = x | Y = 1) P (Xj = x | Y = 0)

315 0
4/5 2/6

free 0
2/5 4/6

is 0
3/5 5/6

money 0
1/5 5/6

now 1
3/5 2/6

Pat 1
2/5 4/6

Sir 0
3/5 5/6

teach 1
2/5 5/6

to 0
3/5 3/6

tomorrow 0
4/5 5/6

3. Reminder that with naive Bayes, P (Y,X1, . . . , XM ) =
∏

P (X | Y )P (Y ).

P (Y = 1, X1, ..., XM ) P (Y = 0, X1, ..., XM )
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P (Y = 1, X1, ..., Xm) =
∏

P (X | Y = 1)P (Y = 1)
4/5 * 2/5 * 3/5 * 1/5 * 3/5 * 2/5 * 3/5 * 2/5 * 3/5 * 4/5 * 3/7
= 0.00045500708

P (Y = 0, X1, ..., XM )
2/6 * 4/6 * 5/6 * 5/6 * 2/6 * 4/6 * 5/6 * 5/6 * 3/6 * 3/6 * 4/7
=0.00340213817

4.

P (Y = 1 | X1, ..., XM ) P (Y = 0 | X1, ..., XM )

0.00045500708 / (0.00045500708 +
0.00340213817) = 0.118

0.00340213817 / (0.00045500708 +
0.00340213817) = 0.882

We see that P (Y = 1 | X1, ..., XM ) is no longer 0.

What’s the effect of α? Compare when α = 1 with when α = ∞

As α increases, the likelihood probability moves towards uniform distribution.
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3 PCA Walkthrough

Consider dataset D = {x(1) =

[
1
2

]
,x(2) =

[
2
3

]
,x(3) =

[
3
2

]
,x(4) =

[
4
3

]
}. A visualization of the dataset is as

below.

1. Centering is crucial for PCA. We must preprocess data so that all features have zero mean before
applying PCA, i.e.

1

N

N∑
i=1

x(i) = 0⃗

Compute the centered dataset D′ = {x(1),x(2),x(3),x(4)}.

First, note that E[x1] =
1
N

∑N
i=1 x

(i)
1 = 2.5 and E[x2] =

1
N

∑N
i=1 x

(i)
2 = 2.5.

x(1) =

[
−1.5
−0.5

]
x(2) =

[
−0.5
0.5

]
x(3) =

[
0.5
−0.5

]
x(4) =

[
1.5
0.5

]
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2. In order to easily compute the projected coordinates of data, we need to make the projected directions

unit vectors. Suppose we want to project our data onto the vector v =

[
1
1

]
. Normalize v to be a unit

vector.

To make v into a unit vector, we divide v by its magnitude. The magnitude of a vector is
given by the L2 norm.

||v|| =
√

12 + 12 =
√
2

v =

[
1√
2
1√
2

]

3. The centered data should now look like the following:

Suppose we want to project the centered data onto v, where v goes through the origin.

Compute the magnitude of the projections, i.e. compute z(i) = vTx(i),∀1 ≤ i ≤ N .
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z(1) = [
1√
2
,
1√
2
]

[
−1.5
−0.5

]
=

−3

2
√
2
− 1

2
√
2
= − 4

2
√
2
= −

√
2

z(2) = [
1√
2
,
1√
2
]

[
−0.5
0.5

]
=

−1

2
√
2
+

1

2
√
2
= 0

z(3) = [
1√
2
,
1√
2
]

[
0.5
−0.5

]
=

−1

2
√
2
+

1

2
√
2
= 0

z(4) = [
1√
2
,
1√
2
]

[
1.5
0.5

]
=

3

2
√
2
+

1

2
√
2
=

4

2
√
2
=

√
2

4. Let x(i)′ be the projected point of x(i). Note that x(i)′ = vTx(i)v = z(i)v. Compute the projected
coordinates x(1)′ ,x(2)′ ,x(3)′ , and x(4)′ .

x(1)′ =

[
−1
−1

]
x(2)′ =

[
0
0

]
x(3)′ =

[
0
0

]
x(4)′ =

[
1
1

]
Below is a visualization of the projections:
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5. One of the two goals of PCA is to find new directions to project our dataset onto such that itminimizes
the reconstruction error, where the reconstruction error is defined as following:

Reconstruction Error =
1

N

N∑
i=1

∥x(i)′ − x(i)∥22

What is the reconstruction error in our case?

Recon. Error =
1

N

N∑
i=1

∥x(i)′ − x(i)∥22

=
1

N
(∥

[
−1
−1

]
−

[
−1.5
−0.5

]
∥22 + ∥

[
0
0

]
−
[
−0.5
0.5

]
∥22 + ∥

[
0
0

]
−

[
0.5
−0.5

]
∥22 + ∥

[
1
1

]
−

[
1.5
0.5

]
∥22)

=
1

4
((
1

2
)2 + (−1

2
)2 + (

1

2
)2 + (−1

2
)2 + (−1

2
)2 + (

1

2
)2 + (−1

2
)2 + (

1

2
)2)

=
1

4
(
1

2
+

1

2
+

1

2
+

1

2
)

=
1

2

6. Another goal is to find new directions to project our dataset onto such that itmaximizes the variance
of the projections, where the variance of projections is defined as following:

variance of projection =
1

N

N∑
i=1

(z(i) − E[z])2

=
1

N

N∑
i=1

(vTx(i) − 1

N

N∑
j=1

vTx(j))2

=
1

N

N∑
i=1

(vTx(i) − vT (
1

N

N∑
j=1

x(j)))2

=
1

N

N∑
i=1

(vTx(i) − vT 0⃗)2

=
1

N

N∑
i=1

(vTx(i))2

What is the variance of the projections?
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variance =
1

N

N∑
i=1

(z(i))2

=
1

4
((−

√
2)2 + 02 + 02 + (

√
2)2)

=
1

4
(2 + 0 + 0 + 2)

= 1

7. What methods can we use to find the principal components?

Eigenvalue decomposition and SVD

8. What is the first principal component of X = [x(1), x(2), x(3), x(4)]T using the eigenvalue decomposition?

X =


−1.5 −0.5
−0.5 0.5
0.5 −0.5
1.5 0.5


XTX =

[
5 1
1 1

]

Solve the eigenvalues and eigenvectors for XTX.

XTXvi = λivi

λ1 = 3 +
√
5, v1 =

[
2 +

√
5

1

]
λ2 = 3−

√
5, v2 =

[
2−

√
5

1

]

So the first principal component is v1/||v1||2 =

[
0.973
0.230

]
.
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4 Fun With Lagrange and PCA

Consider the following optimization where A is a symmetric matrix:

v̂ = argmax.
v

vTAv

s.t. ∥v∥22 = 1

1. Formulate the Lagrangian, L(v, λ).

L(v, λ) = vTAv − λ(∥v∥22 − 1)

2. Write the gradient of the Lagrangian with respect to v, ∇vL(v, λ).

L(θ, λ) = vTAv − λ(vTv − 1)

∇θL(θ, λ) = 2Av − 2λv

3. After setting ∇vL(v, λ) equal to zero, what can you say about the relationship between λ, v, and the
eigenvalues and eigenvectors of A?

2Av − 2λv = 0

Av = λv

v is an eigenvector of A and λ is the corresponding eigenvalue of A!
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