
10-315: Introduction to Machine Learning Recitation 5

1 Definitions

(a) Convexity: A function f : RM → R is convex if and only if ∀α ∈ [0, 1], i.e., 0 ≤ α ≤ 1,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− t)f(x2)

You can think of a convex function as a curve or surface that opens upward like a smiley face. It could
also be completely flat or flat in some places, but it definitely can’t curve/bend downward.

(b) Multivariate Chain Rule: Let f : RN → R. Let gi : R → R for all i ∈ {1, 2, . . . , N}. Let x ∈ R,
zi = gi(x), and y = f(g1(x), g2(x), . . . , gN (x)). Then, the multivariate chain rule states that:

d

dx
f(g1(x), g2(x), . . . , gN (x)) =

N∑
i=1

dy

dzi

dzi
dx

If instead, we combined all of the gi functions into one function g : R → RN , z = g(x), we effectively
have the same thing but now using vectors (and partial derivatives). Given y = f(g(x))

∂

∂x
f(g(x)) =

N∑
i=1

∂y

∂zi

∂zi
∂x

=
∂y

∂z

∂z

∂x

Note that the above chain rule is written according to numerator layout. If specified to use denominator
layout, the order of the derivatives is opposite that of numerator layout.

Numerator layout Denominator layout Notes

d
dt f (g(t), h(t)) df

dg
dg
dt +

df
dh

dh
dt Same f : (R× R) → R, t ∈ R

g : R → R, h : R → R

d
dt f (g1(t), . . . , gN (t))

∑N
i=1

df
dgi

dgi
dt Same h : (R× · · · × R) → R, t ∈ R

fi : R → R ∀i ∈ {1, . . . , N}

d
dt f(g(t)) ∂f

∂g
∂g
∂t

∂g
∂t

∂f
∂g f : RN → R, g : R → RN

t ∈ R

∂
∂v f(g(v)) ∂f

∂g
∂g
∂v

∂g
∂v

∂f
∂g f : RN → R, g : RM → RN

v ∈ RM

∂
∂v f(g(v),h(v)) ∂f

∂g
∂g
∂v + ∂f

∂h
∂h
∂v

∂g
∂v

∂f
∂g + ∂h

∂v
∂f
∂h h : RK × RN → R, v ∈ RM

f : RM → RK , g : RM → RN

(c) Neural Network: A machine learning model that aims to approximate some function through the
composition of both linear and nonlinear functions. There are two parts of neural networks: forward
pass and backpropagation.

(a) Forward Pass: The process of calculating the predicted output of your network (and correspond-
ing loss), given data, weights, and network structure. Given the input data x, we can 1) transform
the data using the weights associated with the first layer, W , then 2) apply the corresponding
activation function to the output, and then 3) pass the result to the next layer and repeat. The
forward pass does not involve taking derivatives and proceeds from the input layer to the output
layer.

(b) Backpropagation: Given a neural network and a corresponding loss function, backpropagation
gives us the gradient of the loss function with respect to the weights of the neural network. The
method is called backward propagation because to efficiently apply the chain rule repeatedly, we
calculate the dervatives of the final layer first, then proceed backward to the first layer.
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(d) Activation Function: A nonlinear function, that is added to a neural network in order to help the
network learn more complex patterns in the data. A few common ones are listed below.

Name Function Definition Derivative

logistic (sigmoid) g(z) = 1
1+e−z g′(z) = g(z)(1− g(z))

tanh g(z) = ez−e−z

ez+e−z 1− g2(z)

ReLU g(z) = max(0, z) g′(z) =

{
1 if z > 0

0 if z < 0
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2 Chain Rule Is All You Need

Note: Just generic math notation here. So, for example, h(x) definitely doesn’t refer to a hypothesis function.

Let m : R2 → R, g : R → R, and h : R → R be functions defined as follows:

• m(x1, x2) = x1x2 Note: we used m for multiply :)

• g(x) = sin(x)

• h(x) = x2

Suppose x ∈ R is given. We define the composite function y = m(u, v) = m(g(x), h(x)), where u = g(x) and
v = h(x).

1. Apply multivariate chain rule to write dy
dx in terms of dy

du ,
dy
dv ,

du
dx , and

dv
dx .

2. Find dy
dx using the equation from the previous part.

3. Rewrite the equation from part 1 to show that d(uv)
dx = u dv

dx + v du
dx .

4. Note that the statement proven in part 3 is the product rule. Now, try to prove the quotient rule in a
similar way. Let q : R → R and y ∈ R such that q(x1, x2) =

x1

x2
and y = q(u, v) = q(g(x), h(x)). Prove

the following equation:
dy

dx
=

v du
dx − u dv

dx

v2
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3 Neural Networks Are Fun

Assume we have the following data point x:

x =

[
2
5

]
with corresponding binary label:

y = 1

which is part of a larger dataset X with binary labels y.

Pat has tasked you with creating a neural network to solve this classification problem. For the loss function,
he wants you to use the squared error: ℓ(y, ŷ) = (y− ŷ)2. (Pat would like to note that using squared error for
classification problems is very strange!) He also requests you to use stochastic gradient descent to train the
network by minimizing the loss. Finally, he specifies that the neural network should have only one hidden
layer with two neurons, a tanh activation function at the hidden layer, a sigmoid activation function at the
output layer, and all bias terms should be included.

3.1 Forward Pass

1. Draw what the neural network will look like.

2. We often group weights into a single matrix for each layer of neurons. How many weight matrices are
there in the neural network?

3. What will be the shape of each weight matrix Wl? (Hint: we view x as a column vector that includes
an extra one so we can pack the bias terms into the weight matrix and compute the product as Wx.)
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Assume our weights are as follows with Wl,i,j where l represents the layer and i, j represent the row
and column index, respectively:

W1 =

[
W1,1,0 W1,1,1 W1,1,2

W1,2,0 W1,2,1 W1,2,2

]
=

[
−1 −3 1
2 1 3

]

W2 =
[
W2,1,0 W2,1,1 W2,1,2

]
=

[
1 2 −4

]
Note the extra column at the left in each weight matrix that will act as the bias term (hence the weird
column index starting at zero.

Here are some intermediate values that we’ll use going forward (haha,“forward” and“backward”):

Assume we add an extra one to the start of x to account for the bias term

a = W1x

z = tanh(a)

Assume we add an extra one to the start of z to account for the bias term

b = W2z

ŷ = σ(b)

4. What are the values in a, the vector being passed into our hidden neurons? Recall we need to add an
extra one to the start of x vector to account for the bias term in this layer!

5. What is z, the output values of our hidden neurons?

6. What is the value being passed into our output layer?
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7. What is our final output ŷ?

8. What does our model classify x as?

9. What is the loss ℓ(y, ŷ) on this example? (Note: recall that Pat admitted that using squared error with
classification is strange, but we can still do it.)

Objective Function

When we are considering all of the training data, as we do in gradient descent, our objective function is:

J(W1,W2;y, X) =
1

N

N∑
i=1

ℓ
(
y(i), ŷ(i)

)
(1)

=
1

N

N∑
i=1

(
y(i) − σ

(
W2 tanh

(
W1x

(i)
)))2

(2)

However, when we are using stochastic gradient descent, our objective function is with respect to just one
training point, x, y, at a time and thus, the output of the loss, ℓ, is our objective function for that one point:

J(W1,W2; y,x) = ℓ (y, ŷ) (3)

= (y − σ (W2 tanh (W1x)))
2

(4)
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3.2 Backpropagation

Since our goal is to find the best weights that optimize our neural network, now we’ll do backpropagation to
update the weights we were given. You will need to calculate the derivative of J with respect to the weights
W1 and W2, then you use gradient descent to update them.

In the interest of time, let’s just calculate the derivatives: ∂J
∂W2,1,1

and ∂J
∂W1,1,2

.

Let’s start with ∂J
∂W2,1,1

, where W2,1,1 is the 1, 1 entry in W2 weight matrix.

1. Using the multivariate chain rule, write the derivative chain expression for ∂J
∂W2,1,1

.

Hint: think about writing out the chain rule as d-out/d-in for each layer: ∂out
∂in

∂out
∂in . . . ∂out

∂weight

2. What is ∂ℓ
∂ŷ ? Write in terms of y and ŷ

3. What is ∂ŷ
∂b ? Write in terms of b (but then simplify it to write in terms of just ŷ).

4. What is ∂b
∂W2,1,1

?

5. Finally, what is ∂J
∂W2,1,1

? Hint: remember the chain rule that we wrote for this above.
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Now we will calculate the derivative with respect to W1,1,2:
∂J

∂W1,1,2
, where W1,1,2 is the 1, 2 entry in W1

weight matrix.

6. What is the derivative chain expression for ∂J
∂W1,1,2

? Reminder: d-out/d-in, d-out/d-in, ...

We already have the first two derivatives calculated from the previous question.

7. What is ∂b
∂z1

?

8. What is ∂z1
∂a1

?

9. What is ∂a1

∂W1,1,2
?

10. Finally, what is ∂J
∂W1,1,2

?

11. What is our updated W2,1,1 and W1,1,2 if we use learning rate η = 2?
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