
10-315: Introduction to Machine Learning Recitation 4

1 Definitions For Real!

1. Linear Regression: Linear regression is a machine learning algorithm to perform the task of regres-
sion. Consider a dataset D = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}, where x(i) ∈ RM and y(i) ∈ R.
We’ll assume that the input x has already been augmented to include an extra 1 to allow for a bias
term in θ. The linear regression hypothesis function is defined as:

ŷ(i) = hθ

(
x(i)

)
= θ⊤x(i)

where θ ∈ RM .

2. Logistic Function: The logistic function is part of a more general class of sigmoid functions charac-
terized by an S-shaped curve. The logistic function is often useful for machine learning since we are
required to differentiate functions and find their gradient.

glogistic(z) =
1

1 + e−z

3. Logistic Regression: Logistic regression is used for classification tasks, but instead of predicting a
specific class, it returns a real value that is meant to model the probability of the data point belonging
to that class. As such, it assumes the following functional form for P (Y = 1 | x;θ) :

ŷ(i) = hθ

(
x(i)

)
= P (Y = 1 | x(i);θ) =

1

1 + eθ
⊤x(i)

Here we’re starting to use a bit of probability notation, where capital letters represent random variables.
In this case, Y is a binary random variable.

4. One-hot Encoding: A vector representation of a scalar integer n. Typically used to represent partic-
ular classes in a vector form, such that if there are a total of K classes, then the one-hot encoding of n
would result in vector u where un = 1 and ui = 0 ∀ i ̸= n.
Ex. K = 5, n = 3 then u = [0, 0, 1, 0, 0]⊤
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5. Multi-class Logistic Regression: In class, we saw how to use logistic regression to model a binary
variable. However, logistic regression can be used to learn a classifier for K classes too. There are 2
ways to implement this using logistic regression.

In a K-class classification scenario, we can have the datasetD = {(x(1),y(1)), (x(2),y(2)), ..., (x(N),y(N))},
where x(i) ∈ RM and now y(i) ∈ {0, 1}K is a one-hot vector filled with all zeros except a one in the k-th
location when the data point belongs to class k ∈ {1, 2, · · · ,K}. Again, we’ll assume that the input x
has already been augmented to include an extra 1 to allow for a bias term in θ.

(a) One-vs-All: Train K independent logistic regression models. Consists of the following two steps:

i. Independently train K binary logistic regression models, one for each class. For each 1 ≤ k ≤
K, treat samples of class k as positive and all other samples as negative. Then we perform
binary logistic regression on this dataset, that is, find P (Yk = 1 | x;θk)

ii. Perform majority vote on all P (Yk = 1 | x;θk). That is, find ŷ = argmaxk P (Yk = 1 | x;θk).

Unfortunately, this one-vs-all approach 1) doesn’t take advantage of the relationship between these
classes and 2) loses the probabilistic result that we were interested in.

(b) Multi-class with Softmax: Train a single model that considers all K classes all together. Each
class will still have its own θk but instead of one logistic function per class, we will tie all of the
classes together using a softmax function. Consider K linear models, zk = θ⊤

k x. For a vector
z = [z1, z2, · · · , zK ]⊤ ∈ RK , the softmax function normalizes the input to output a vector of the
same dimension:

gsoftmax(z) =


ez1

ez2
...

ezK

 1∑K
k=1 e

zk

This guarantees that all entries in the softmax vector are in the range [0, 1] and that the sum over
all the elements in the softmax vector is 1.

We can then use linear algebra to stack all K linear models together by creating one parameter
matrix:

Θ =


− θ⊤

1 −
− θ⊤

2 −
...

− θ⊤
K −

 and z = Θx

ŷ = hΘ (x) =


P (Y1 = 1 | x; Θ)
P (Y2 = 1 | x; Θ)

...
P (YK = 1 | x; Θ)

 = gsoftmax(Θx)
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2 Quick Logistic Regression Questions

2.1 What’s the difference between linear regression and logistic regression?

List some differences between linear regression and logistic regression. In what situation would we use logistic
regression instead of linear regression?

2.2 Just some logistics :)

Let g(z) = glogistic(z)

1. We see that g(z) falls strictly between (0,1). Given what we have discussed so far, what probability
distribution does this graph represent?

2. Now let’s consider x ∈ R3. For weight vector θ =

14
3


(a) Define some x such that θ⊤x > 0. What is the resulting g(θ⊤x)?

(b) Now define some x such that θ⊤x = 0. What is the resulting g
(
θ⊤x

)
?
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Explain the overall relationship between g
(
θ⊤x

)
and θ⊤x.

3 Multiclass Logistic Regression Walkthrough

In a previous recitation, we saw how Pat loves to go on runs! Often times after his runs, he enjoys a good
ice cream. We know that Pat has 3 favorite flavors and he only chooses from one of these: chocolate, vanilla,
and strawberry. The ice cream he ends up choosing depends on two things: His mood ranges from 0 to 5
(sad to happy) and how hungry he is ranges from 0 to 5 (not at all hungry to very hungry). Since you are
10-315 students, the ice cream vendor reaches out to you for your help with predicting which ice cream flavor
he would pick. Here is some information about the last 5 times Pat has had ice cream from the shop.

Mood (X1) Hunger (X2) Ice cream flavor (Y )
1 1 vanilla
4 5 strawberry
2 3 chocolate
3 4 chocolate
5 5 strawberry

Let’s say your initial weight matrix Θ is defined as Θ =

0 3.8 3.9
0 4.6 3.8
0 5.4 3.1

 (the initial bias terms happen to

be all zero).
As a first step, you map the possible flavors to the following class indices: {vanilla : 1, strawberry : 2,

chocolate : 3}

1. Calculate the predicted softmax probabilities for each flavor for all training samples.
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2. Create a corresponding one-hot vector, y(i), output in the training set.

3. Compute the average cross-entropy loss J(Θ)
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4 K=2: Multi-class vs. Binary Logistic Regression

In the special case where K = 2, one can show that multi-class logistic regression reduces to binary logistic
regression. This shows that multi-class logistic regression is a generalization of binary logistic regression.

1. Show that the following two equations are equivalent, where equation 1 is K=2 multi-class logistic
regression and equation 2 is binary logistic regression:

P (Yk = 1 | x(i); Θ) =
exp(θ⊤

k x
(i))∑K=2

l=1 exp(θ⊤
l x

(i))
(1)

P (Y = k | x(i); θα) =


1

1+exp(−(θ⊤
αx(i)))

if k = 1

exp(−(θ⊤
αx(i)))

1+exp(−(θ⊤
αx(i)))

if k = 2

(2)

6


	Definitions For Real!
	Quick Logistic Regression Questions
	What's the difference between linear regression and logistic regression?
	Just some logistics :)

	Multiclass Logistic Regression Walkthrough
	K=2: Multi-class vs. Binary Logistic Regression

