
10-315: Introduction to Machine Learning Recitation 3

1 Definitions For All

(a) Partial Derivative: Referred to when we take a derivative of a multi-variable function with respect
to one of its input. Example: f(x1, x2) = x3

1 + ex2x1. If we take derivative with respect to x1, this is
denoted as

∂f

∂x1

We treat other variables as constant so,

=
∂(x3

1 + ex2x1)

∂x1
= 3x2

1 + ex2

(b) Vector Derivative: We can express the above as a column vector where the i-th entry is the partial
derivative of the function w.r.t i-th input entry in the input vector. So, f : R2 → R.

∇f(x) =
∂f

∂x
=

[
∂f
∂x1
∂f
∂x2

]
=

[
3x2

1 + ex2

x1e
x2

]
Note: On LHS, x is in bold as this indicates a vector, NOT a scalar.

(c) Matrix Derivative: Above, we discussed derivative of a vector w.r.t to a scalar. But, we can also
take derivative of a vector w.r.t another vector.
Consider a vector-valued function y = f(x) where f : RM → RN . Then, the derivative ∂y

∂x is defined as

∂y

∂x
=


∂y1

∂x1

∂y2

∂x1
. . . ∂yn

∂x1
∂y1

∂x2

∂y2

∂x2
. . . ∂yn

∂x2

...
. . .

∂y1

∂xm

∂y2

∂xm
. . . ∂yn

∂xm


(d) Numerator vs. Denominator Layout: There are two different layouts to express vector/matrix

derivatives, namely the numerator and the denominator layout. In this course, we will always specify
which layout to use. These layouts are mostly the same and can easily be switched using transpose
operations. To demonstrate this better, some examples are shown below:

Numerator Layout Denominator Layout
∂y
∂x

1-D row vector 1-D column vector
∂y
∂x

1-D column vector 1-D row vector
∂uTv
∂v

uT u
∂Av
∂v

A AT

Note: If the variables are in bold, they are vectors. A capital variable denotes a matrix. Otherwise,
they are scalars. Knowing A ∈ RM×N and v ∈ RN×1, verify that the dimensions make sense for both
the layouts.

A handy way to distinguish numerator vs. denominator layout is to remember that the layout type
corresponds to the number of rows in the output matrix. In numerator layout, the output
matrix has number of rows equal to the size of the numerator, while in denominator layout, the output
matrix has number of rows equal to the size of the denominator.
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(e) Shortcuts: You’re in some luck as we’ve compiled some shortcuts here that you can refer to whenever
you’re stuck. This will come in handy a lot in ML.

Super Important: Always verify that your dimensions match on both sides of the equality!

2



10-315: Introduction to Machine Learning Recitation 3

2 Deriving Vector Derivatives

1. Let J(z) = ||y − z||22 where y =

[
y1
y2

]
and z =

[
z1
z2

]
. Find ∇J(z).

J(z) = ∥y − z∥22

=

∥∥∥∥[y1 − z1
y2 − z2

]∥∥∥∥2
2

= (y1 − z1)
2 + (y2 − z2)

2

δJ

δz1
= −2(y1 − z1)

δJ

δz2
= −2(y2 − z2)

∇J(z) = −2(y − z)

2. Suppose we have a function that takes in a vector x ∈ R3×1 and squares each element individually,
returning another vector, y = f(x).

f

x1

x2

x3

 =

x2
1

x2
2

x2
3


What is δy

δx? Use numerator layout.

Intuitively, one might think δy
δx = 2x. However, we can quickly see that this is not the case

because the dimensions wouldn’t make sense. ∂y
∂x has shape 3× 3 whereas x has shape 3× 1

δy

δx
=


δy1

δx1

δy1

δx2

δy1

δx3
δy2

δx1

δy2

δx2

δy2

δx3
δy3

δx1

δy3

δx2

δy3

δx3


=

2x1 0 0
0 2x2 0
0 0 2x3
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3 How About a Proof?

1. Assuming denominator layout, prove δ
δvv

TAv = (AT +A)v for v ∈ R2 and A ∈ R2×2.

Hint : Start by expanding Av and then expanding vTAv.

Hint : Write out the scalar partial derivatives.

Hint : Work both top-down and bottom-up, i.e. also expand the right side so you can see where you
are going.

v =

[
v1
v2

]
A =

[
A1,1 A1,2

A2,1 A2,2

]
AT =

[
A1,1 A2,1

A1,2 A2,2

]

vTAv =
[
v1 v2

] [A1,1 A1,2

A2,1 A2,2

] [
v1
v2

]
=

[
A1,1v1 +A2,1v2 A1,2v1 +A2,2v2

] [v1
v2

]
= A1,1v

2
1 +A2,1v1v2 +A1,2v1v2 +A2,2v

2
2

δ

δv1
vTAv = 2A1,1v1 +A2,1v2 +A1,2v2

δ

δv2
vTAv = A2,1v1 +A1,2v1 + 2A2,2v2

δ

δv
vTAv =

[
2A1,1v1 +A2,1v2 +A1,2v2
A2,1v1 +A1,2v1 + 2A2,2v2

]

(AT +A)v =

[
2A1,1 A1,2 +A2,1

A1,2 +A2,1 2A2,2

] [
v1
v2

]
=

[
2A1,1v1 +A1,2v1 +A2,1v2
A1,2v1 +A2,1v1 + 2A2,2v2

]

It turns out this statement holds for vectors and matrices of any dimension. Can you prove the same
statement for the general case?
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4 Take it Back Now, Y’all

How does this all relate to linear regression? As you can recall from lecture, the objective function for linear
regression is

J(θ) =
1

N
∥y −Xθ∥22 (1)

After expanding, this is equivalent to

J(θ) =
1

N

(
yTy − 2θTXTy + θTXTXθ

)
(2)

Our goal is find a closed-form solution to our objective function. In other words, we can find the best θ that
minimizes the equation above. Let’s do this step by step.

1. Thanks to your awesome proving skills, we now know

δ

δv
vTAv = (AT +A)v (3)

We’ll also assume
δvTu

δv
= u (4)

(try proving this on your own). Using these facts, find ∇J(θ), the derivative of the objective function
with respect to θ.

∇J(θ) =
δ

δθ

(
1

N

(
yTy − 2θTXTy + θTXTXθ

))
=

1

N

(
0− 2XTy +

δ

δθ
θTXTXθ

)
by (4)

=
1

N

(
0− 2XTy + (XTX +

(
XTX

)T
)θ
)

by (3)

=
1

N

(
0− 2XTy + 2XTXθ

)
=

2

N

(
−XTy +XTXθ

)

2. What is the closed-form solution of the objective function?

0 =
2

N

(
−XTy +XTXθ

)
= −XTy +XTXθ

XTXθ = XTy

θ =
(
XTX

)−1
XTy
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