A 3D surface plot on the left side of the slide. The surface is a smooth, rounded shape with a grid of colored lines (red, green, blue, yellow) forming a mesh. The colors transition from red at the bottom left to green at the top right. The surface has a slight upward curvature.

10-315  
Introduction to ML

Neural Networks

Instructor: Pat Virtue

## Poll 1

Logistic regression for  $28 \times 28 = 784$  pixel hand-written digit images into 10 classes:

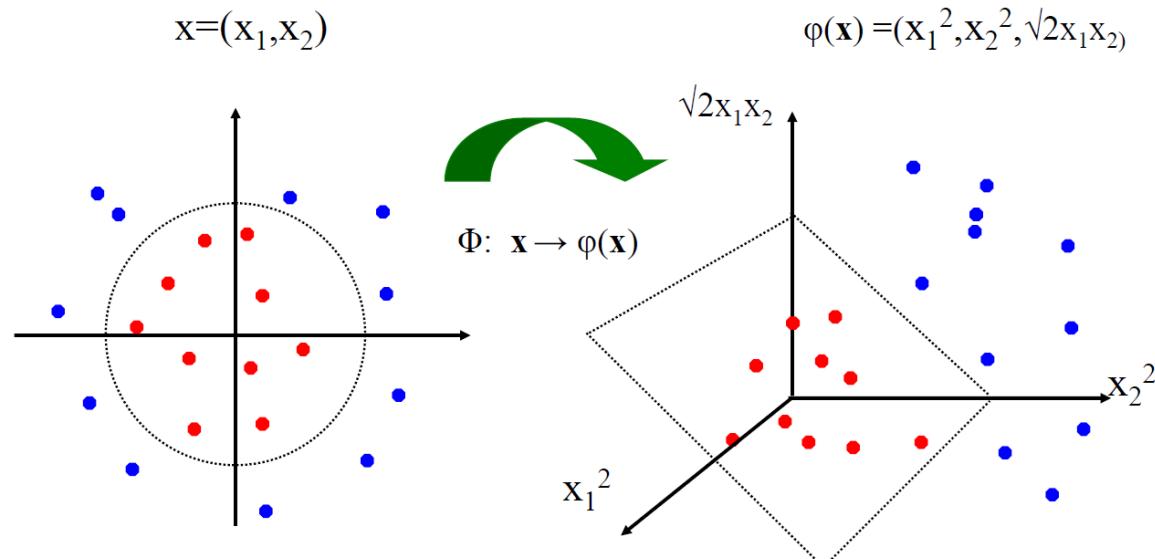
How many parameters (including bias terms)?

- A. 10
- B.  $10 + 784$
- C.  $10 * 784$
- D.  $10 * 784 + 10$
- E.  $10 * 784 + 784$

# Linear Classifiers for Nonlinear Data

Linear classifiers have linear decision boundaries

Feature mapping can convert nonlinear data to higher dimensions

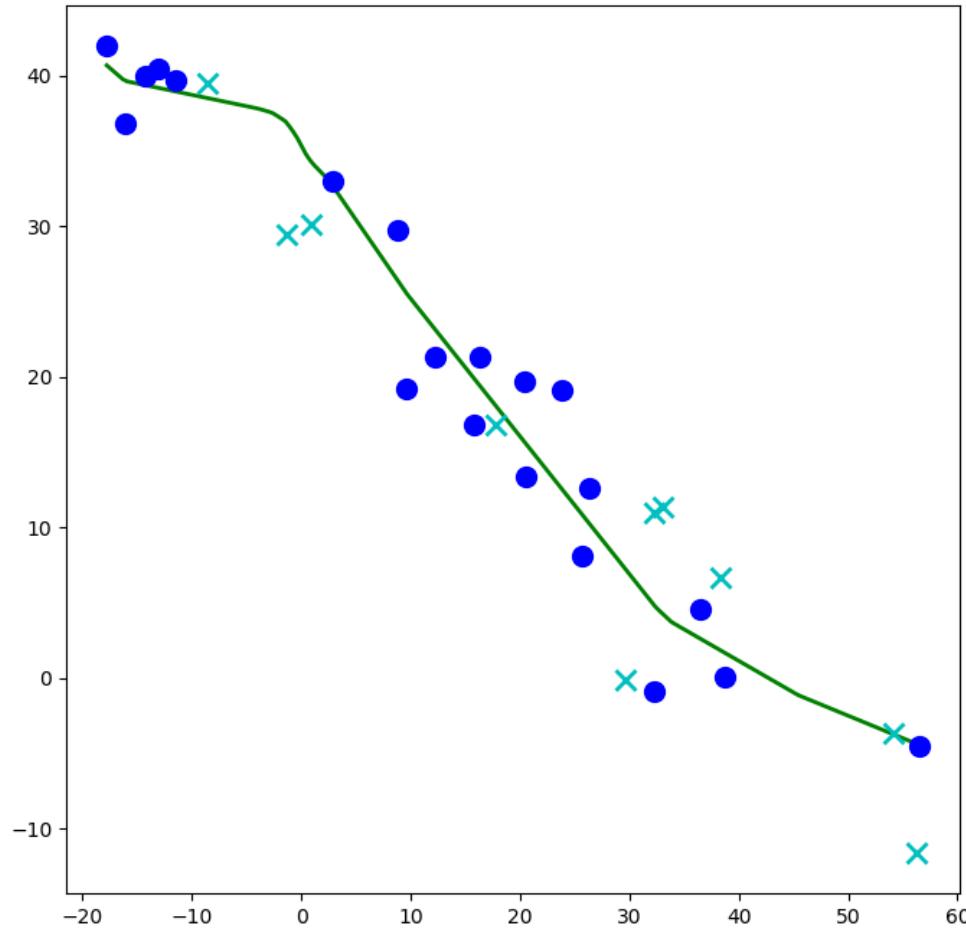
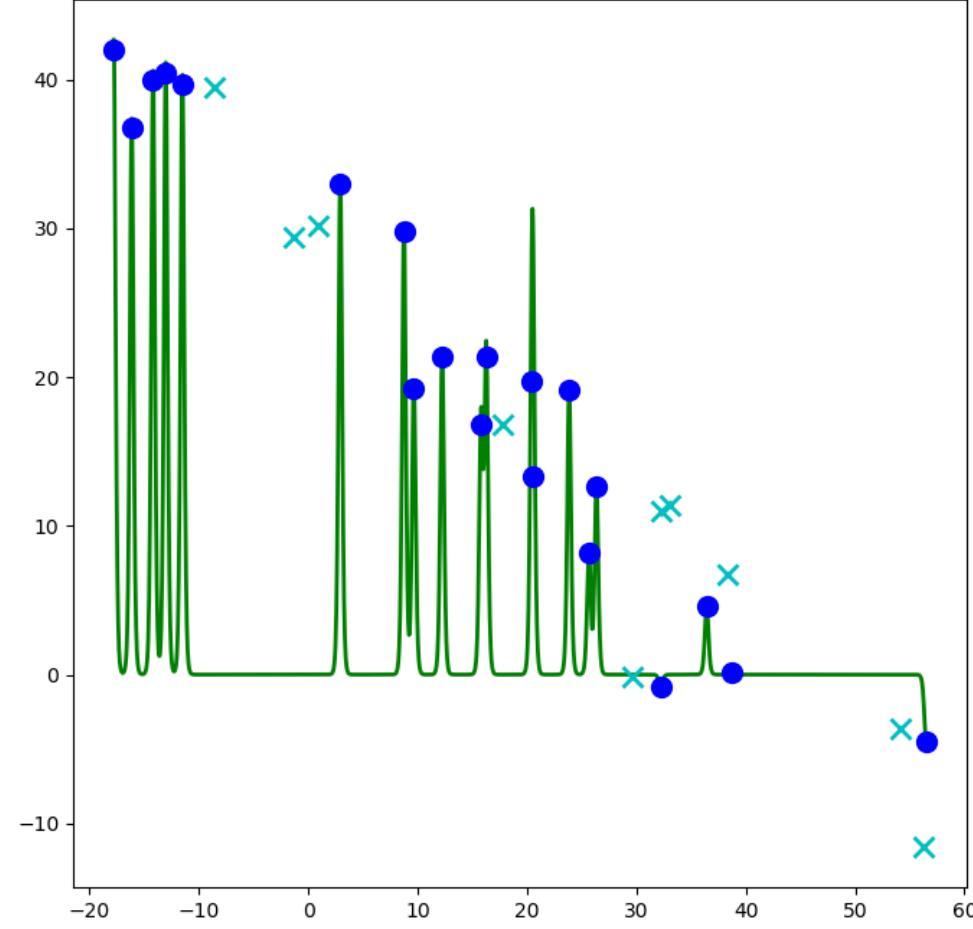


This slide is courtesy of [www.iro.umontreal.ca/~pift6080/documents/papers/svm\\_tutorial.ppt](http://www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt)

Today, instead of choosing a feature mapping function, we'll use neural networks to learn nonlinear decision boundaries.

- We'll quickly shift this to doing nonlinear regression too!

# Network to Approximate a 1-D Function



# Network to Approximate a 1-D Function

Design a network to approximate this function using:

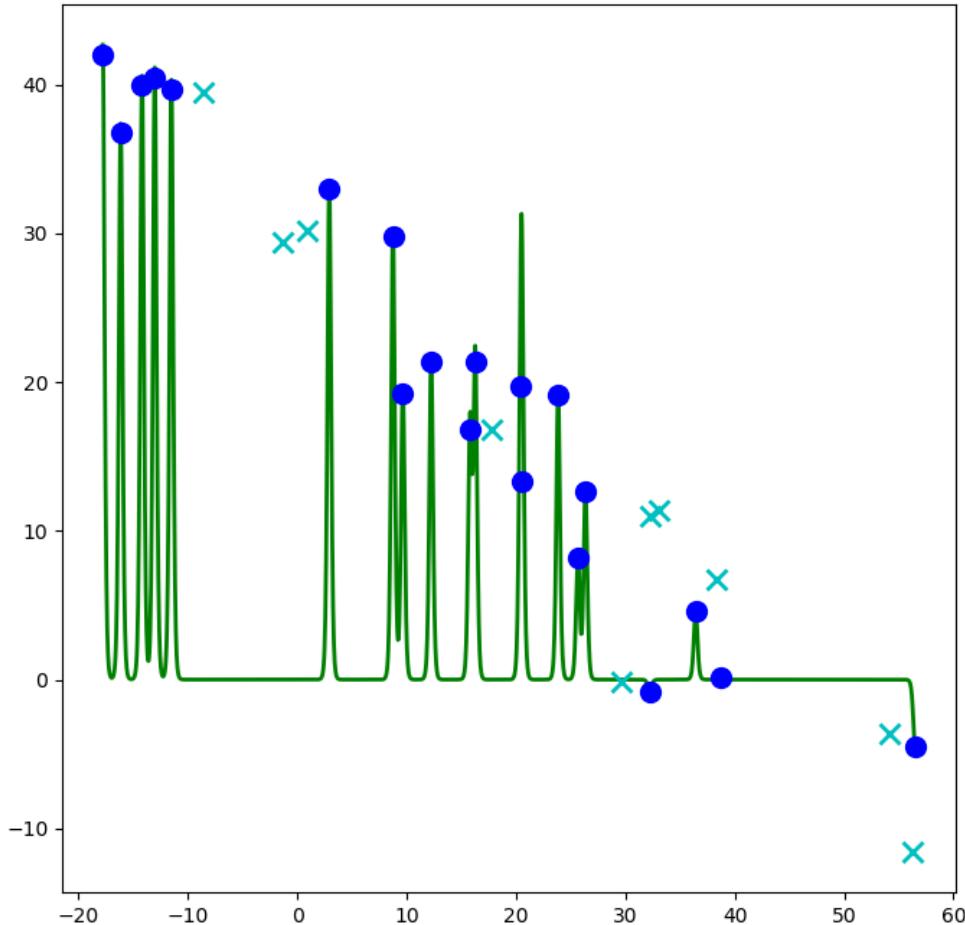
Linear, Sigmoid, Step, or ReLU

# Network to Approximate a 1-D Function

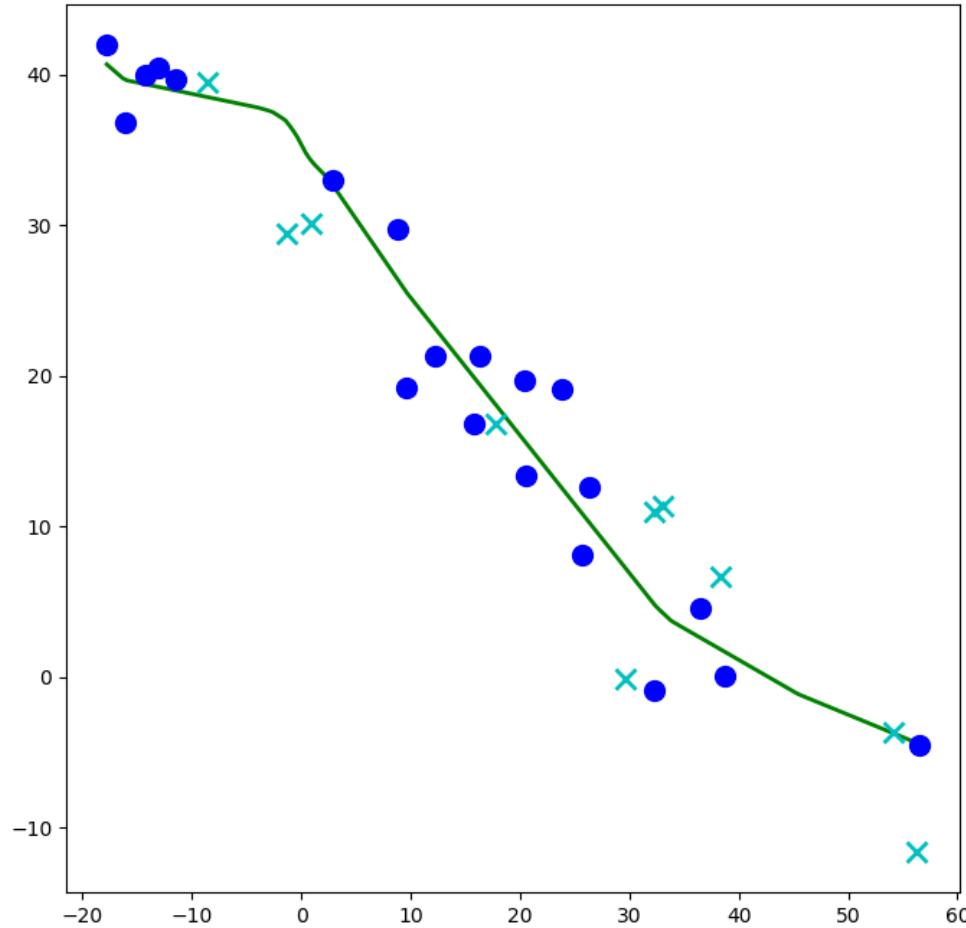
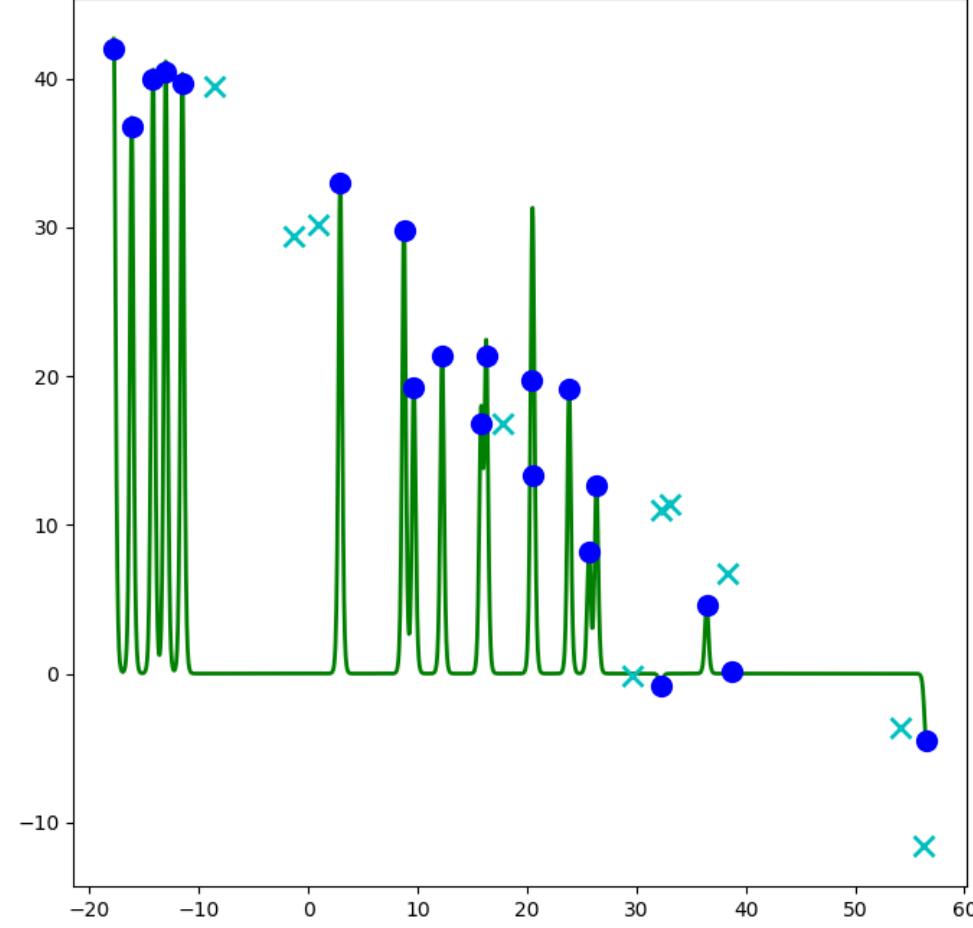
Design a network to approximate this function using:

Linear, Sigmoid, Step, or ReLU

# Network to Approximate a 1-D Function



# Network to Approximate a 1-D Function



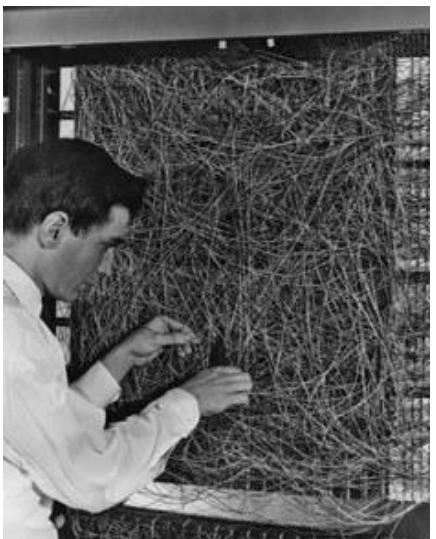
# Perceptron History

## Frank Rosenblatt, 1957



*The New Yorker*, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built, but which has been successfully simulated on the I.B.M. 704. Talk with Dr. Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the two men who developed the prodigy; the other man is Dr. Marshall C. Yovits, of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the perceptron as the first non-biological object which will achieve an organization o its external environment in a meaningful way. It interacts with its environment, forming concepts that have not been made ready for it by a human agent. If a triangle is held up, the perceptron's eye picks up the image & conveys it along a random succession of lines to the response units, where the image is registered. It can tell the difference betw. a cat and a dog, although it wouldn't be able to tell whether the dog was to theleft or right of the cat. Right now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day it might be useful to send one into outer space to take in impressions for us.



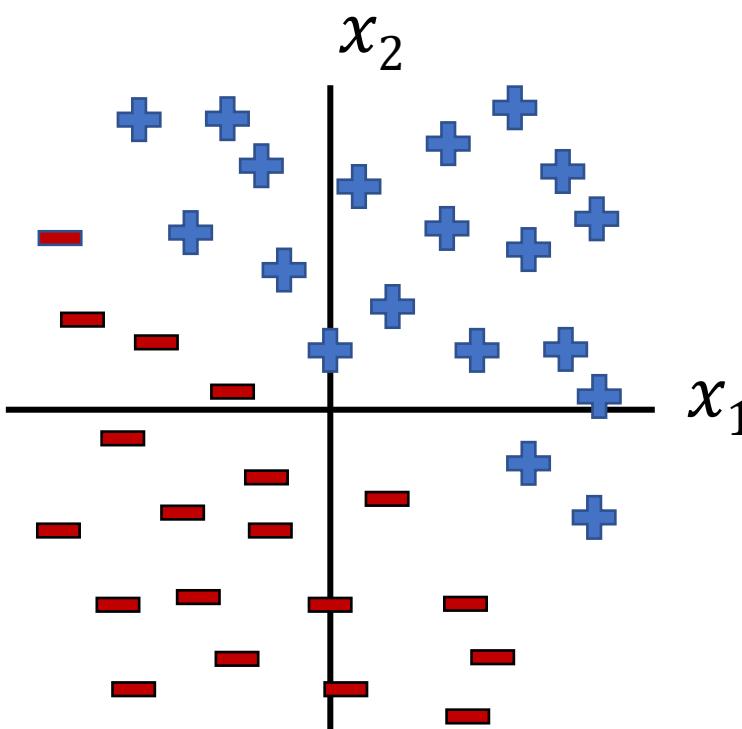
## Exercise

Which of the following perceptron parameters will perfectly classify this data?

- A.  $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b = 0$
- B.  $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, b = 0$
- C.  $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, b = 0$
- D.  $\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, b = 0$
- E. None of the above

$$h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$$

$$\text{sign}(\mathbf{z}) = \begin{cases} 1, & \text{if } z \geq 0 \\ -1, & \text{if } z < 0 \end{cases}$$

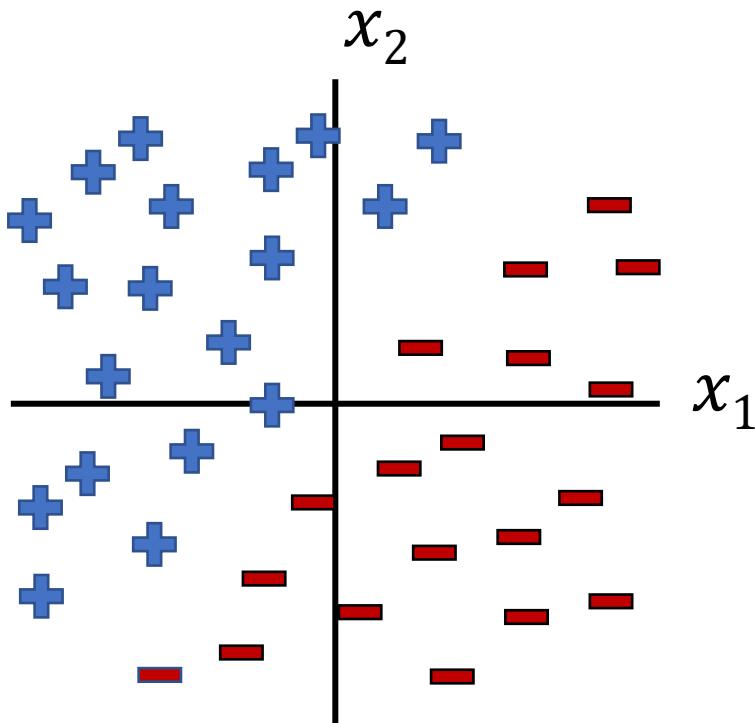


## Poll 2

$$h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$$

Which of the following perceptron parameters will perfectly classify this data?

- A.  $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b = 0$
- B.  $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, b = 0$
- C.  $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, b = 0$
- D.  $\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, b = 0$
- E. None of the above



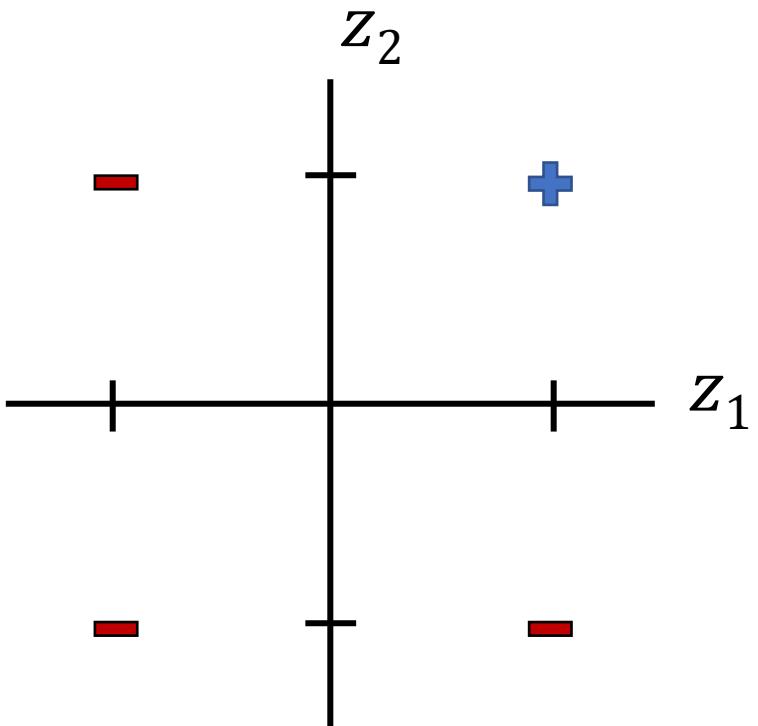
$$\text{sign}(\mathbf{z}) = \begin{cases} 1, & \text{if } z \geq 0 \\ -1, & \text{if } z < 0 \end{cases}$$

## Poll 3

$$h_C(\mathbf{z}) = \text{sign}(\mathbf{w}_C^T \mathbf{z} + b_C)$$

Which of the following parameters of  $h_C(\mathbf{z})$  will perfectly classify this data?

- A.  $\mathbf{w}_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b_C = 0$
- B.  $\mathbf{w}_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b_C = 1$
- C.  $\mathbf{w}_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, b_C = -1$
- D. None of the above



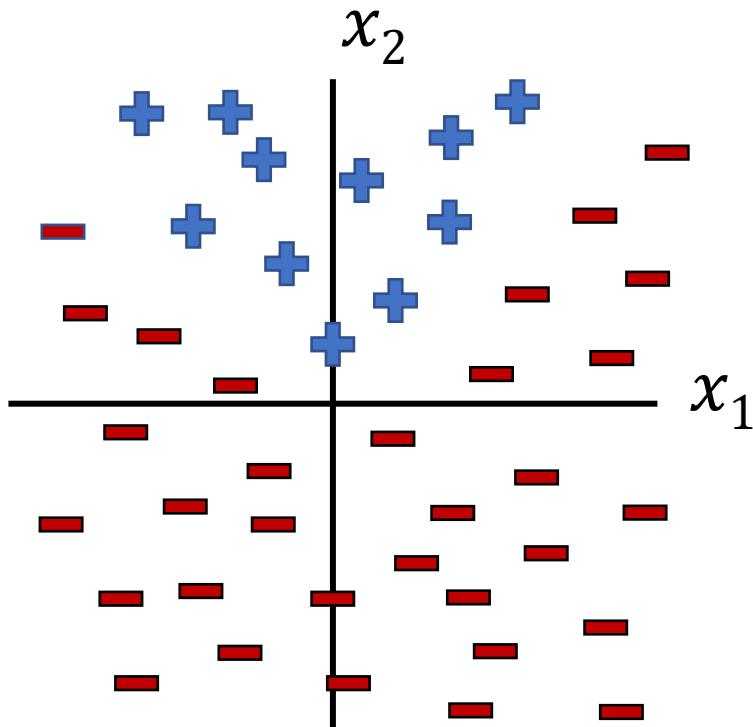
# Classification Design Challenge

How could you configure three specific perceptrons to classify this data?

$$h_A(\mathbf{x}) = \text{sign}(\mathbf{w}_A^T \mathbf{x} + b_A)$$

$$h_B(\mathbf{x}) = \text{sign}(\mathbf{w}_B^T \mathbf{x} + b_B)$$

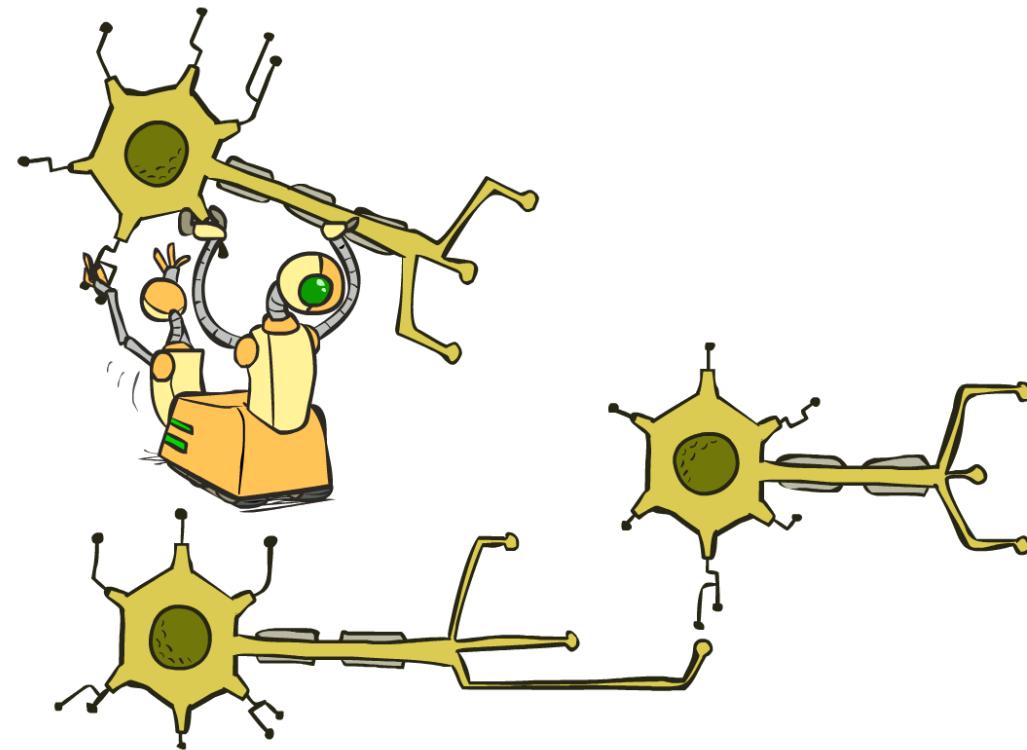
$$h_C(\mathbf{x}) = \text{sign}(\mathbf{w}_C^T \mathbf{x} + b_C)$$



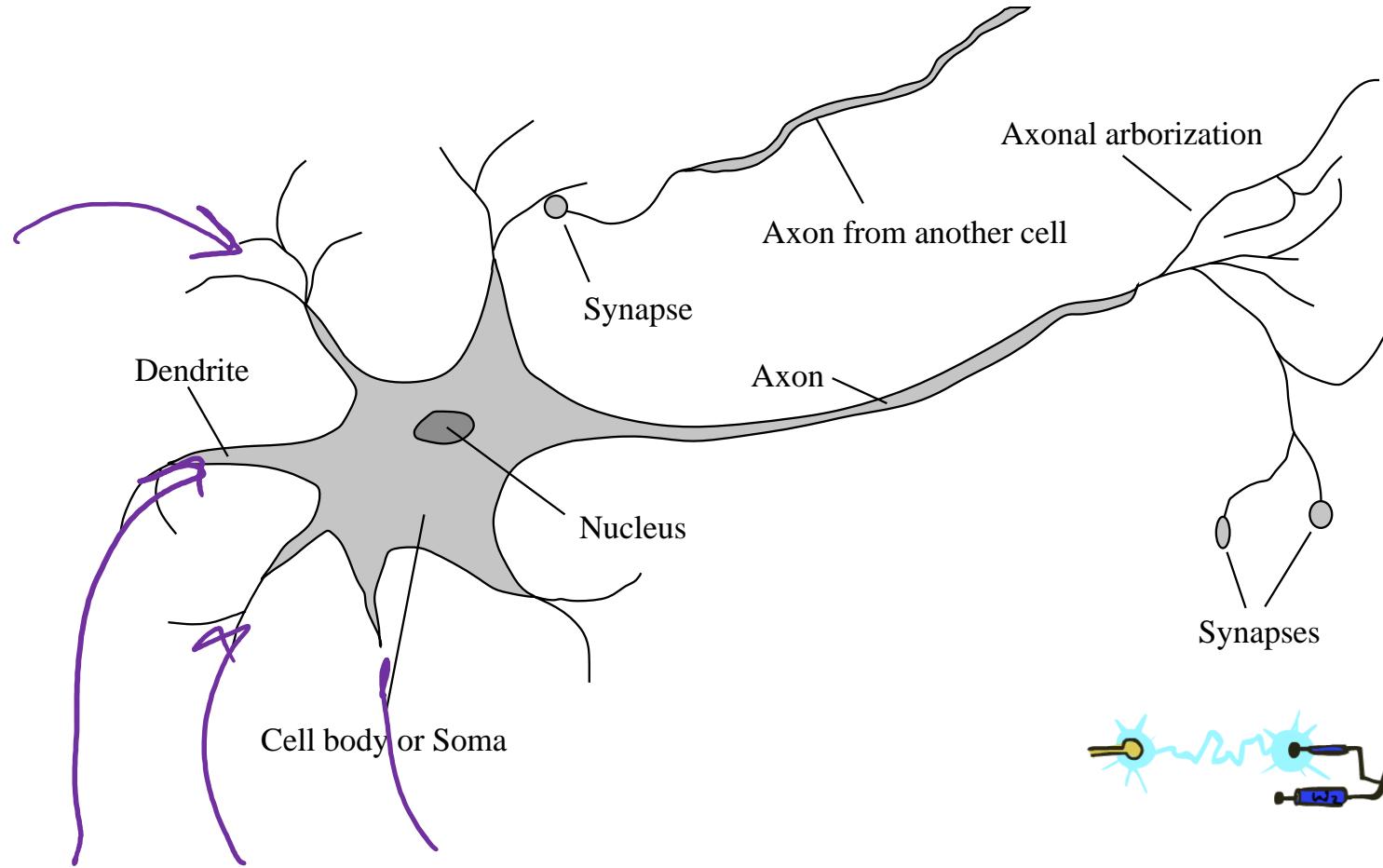
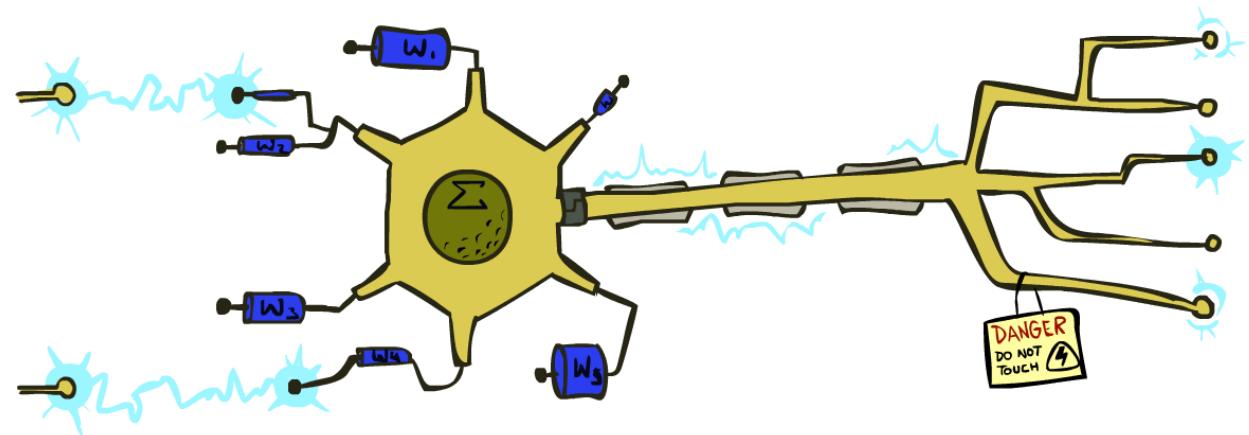
# Multilayer Perceptrons

A **multilayer perceptron** is a feedforward neural network with at least one **hidden layer** (nodes that are neither inputs nor outputs)

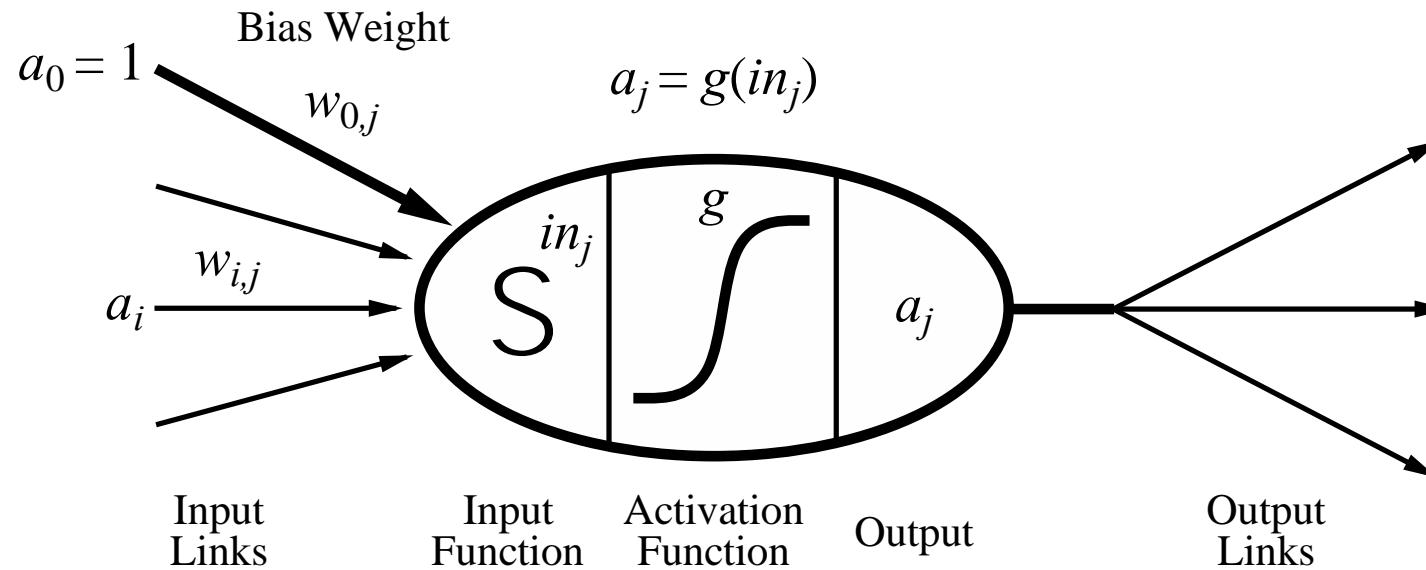
MLPs with enough hidden nodes can represent any function



# Very Loose Inspiration: Human Neurons



# Simple Model of a Neuron (McCulloch & Pitts, 1943)



Inputs  $a_i$  come from the output of node  $i$  to this node  $j$  (or from “outside”)

Each input link has a **weight**  $w_{i,j}$

There is an additional fixed input  $a_0$  with **bias** weight  $w_{0,j}$

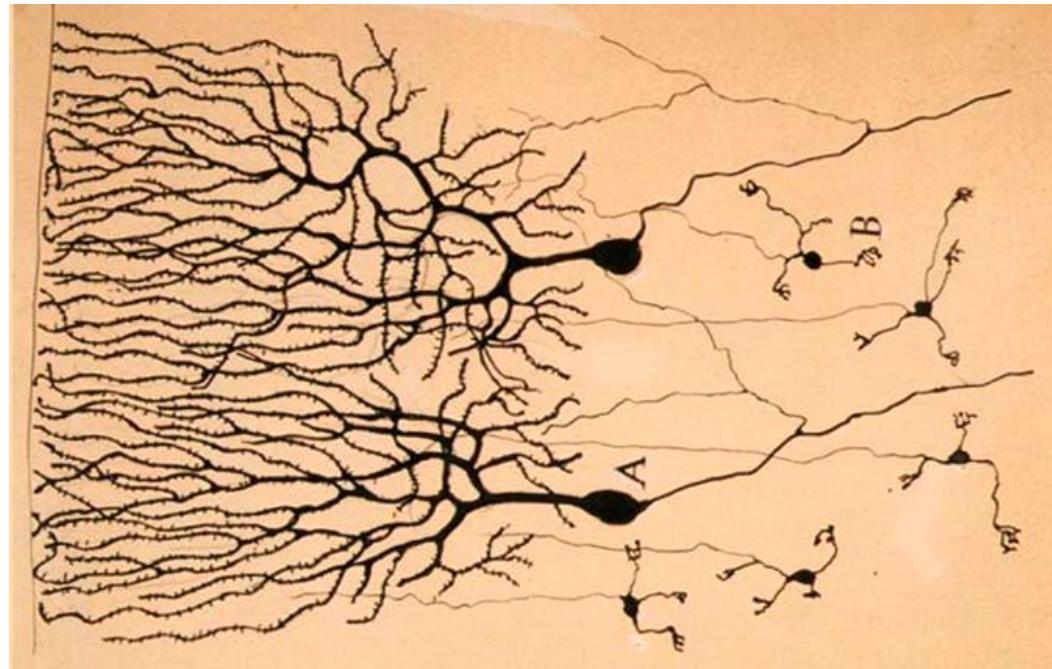
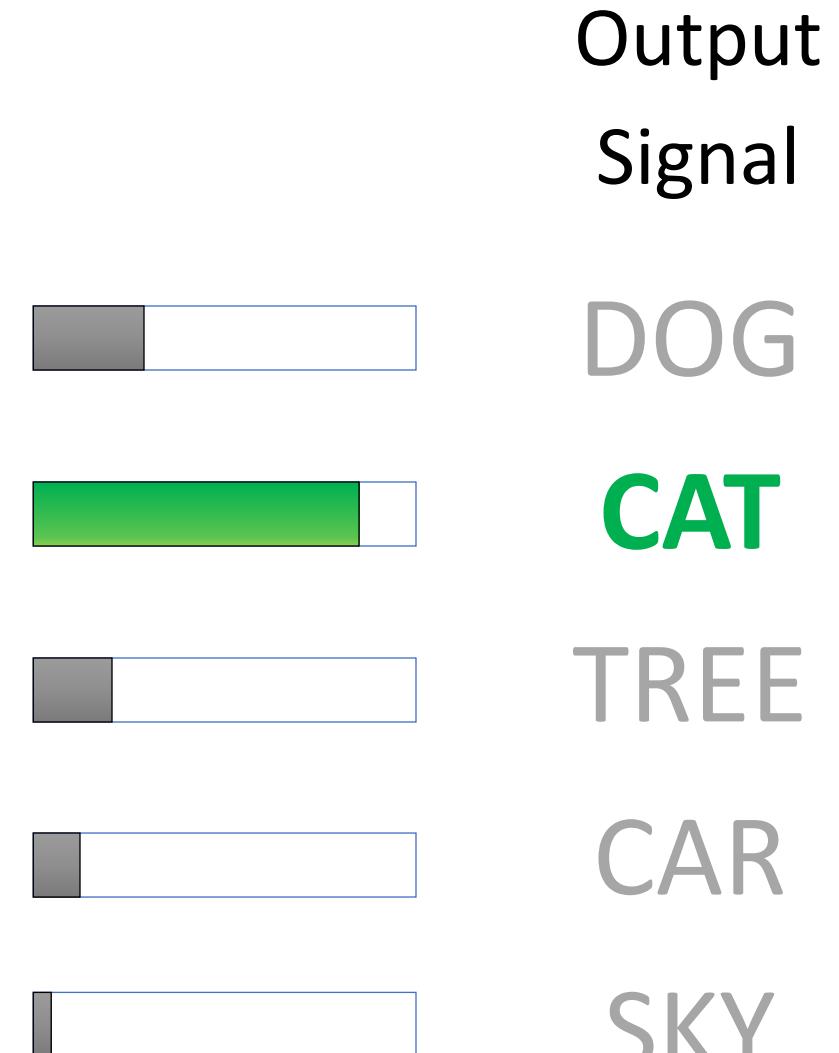
The total input is  $in_j = \sum_i w_{i,j} a_i$

The output is  $a_j = g(in_j) = g(\sum_i w_{i,j} a_i) = g(w \cdot a)$

# Neural Networks

## Inspired by actual human brain

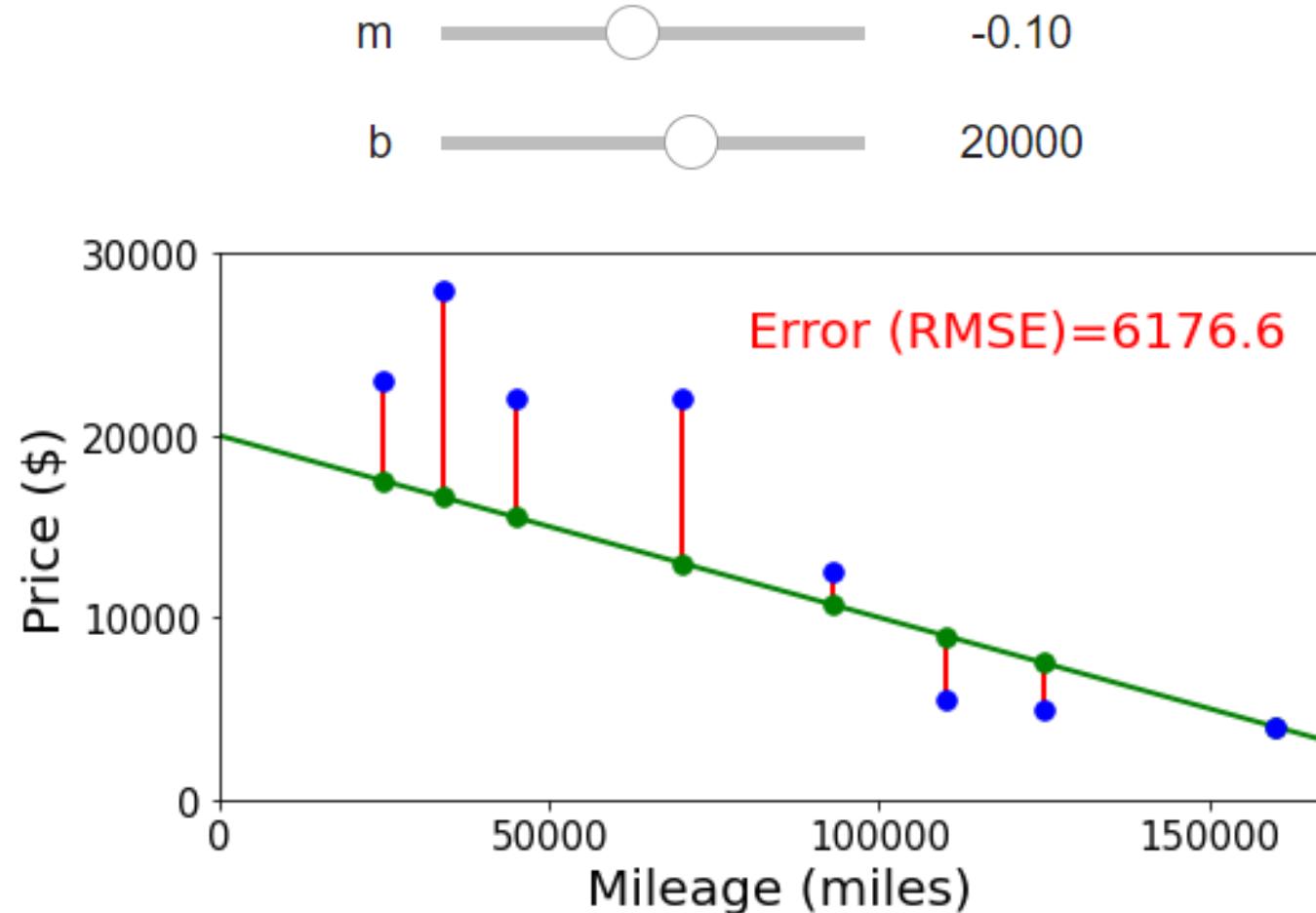
Input  
Signal



# Neural Networks

## Building on optimization for linear and logistic regression

- Selling my car



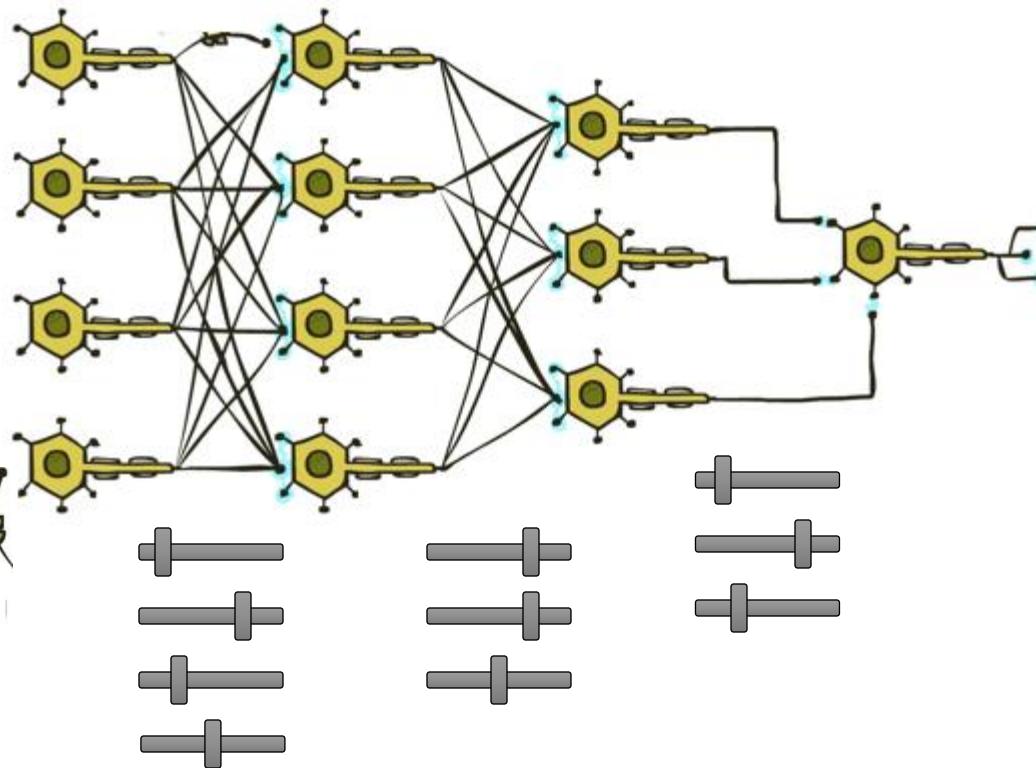
# Neural Networks

Many layers of neurons, millions of parameters

Output  
Signal

$\hat{y}$

Input  
Signal



DOG



CAT



TREE



CAR

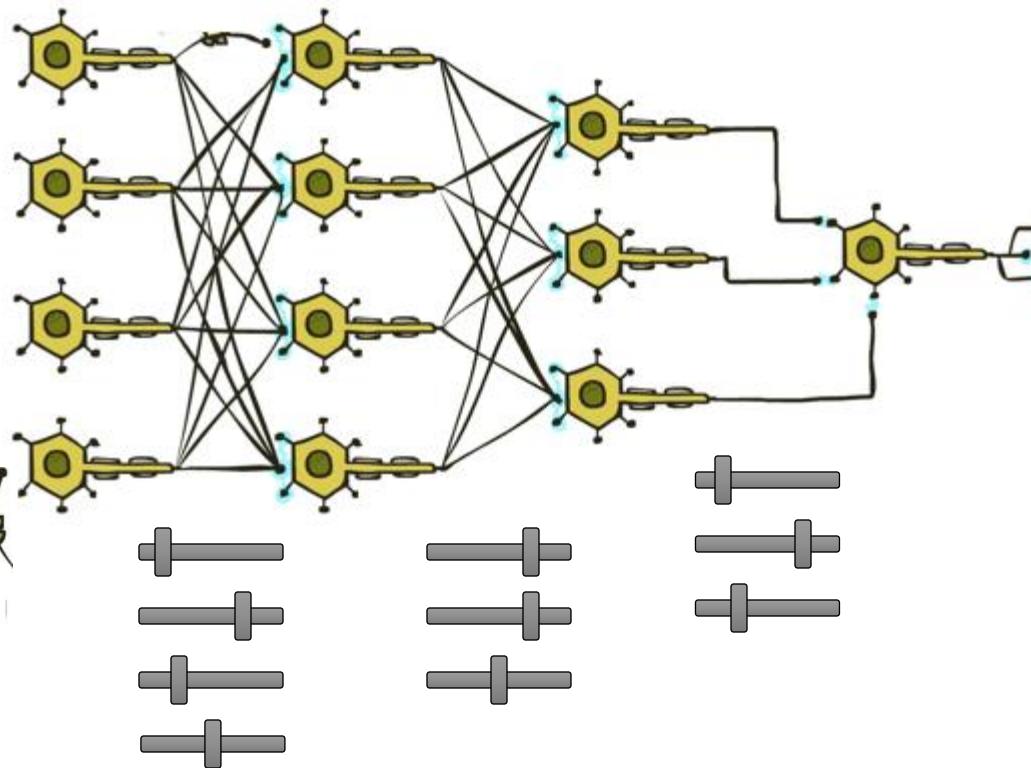


SKY

# Neural Networks

Many layers of neurons, millions of parameters

Input  
Signal



Output  
Signal

$\hat{y}$

$y$



0

DOG



1

CAT



0

TREE



0

CAR



0

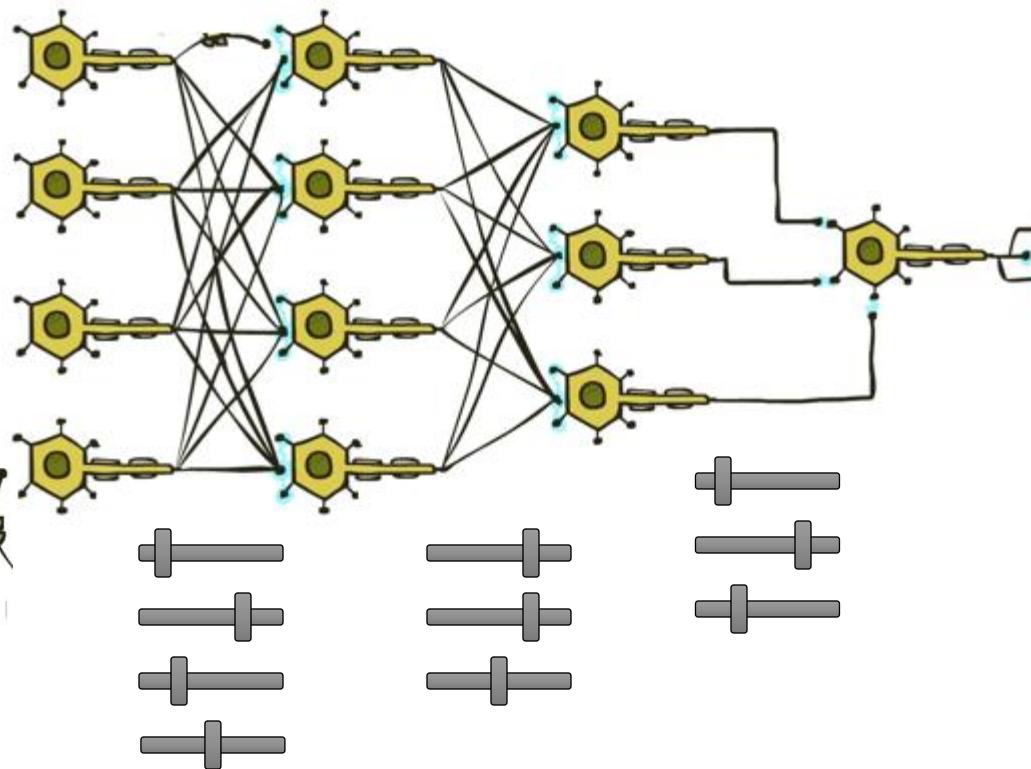
SKY

# Neural Networks

Many layers of neurons, millions of parameters

Output  
Signal

Input  
Signal



$\hat{y}$



LEFT

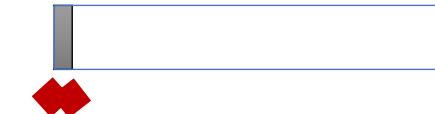
**RIGHT**



UP



DOWN

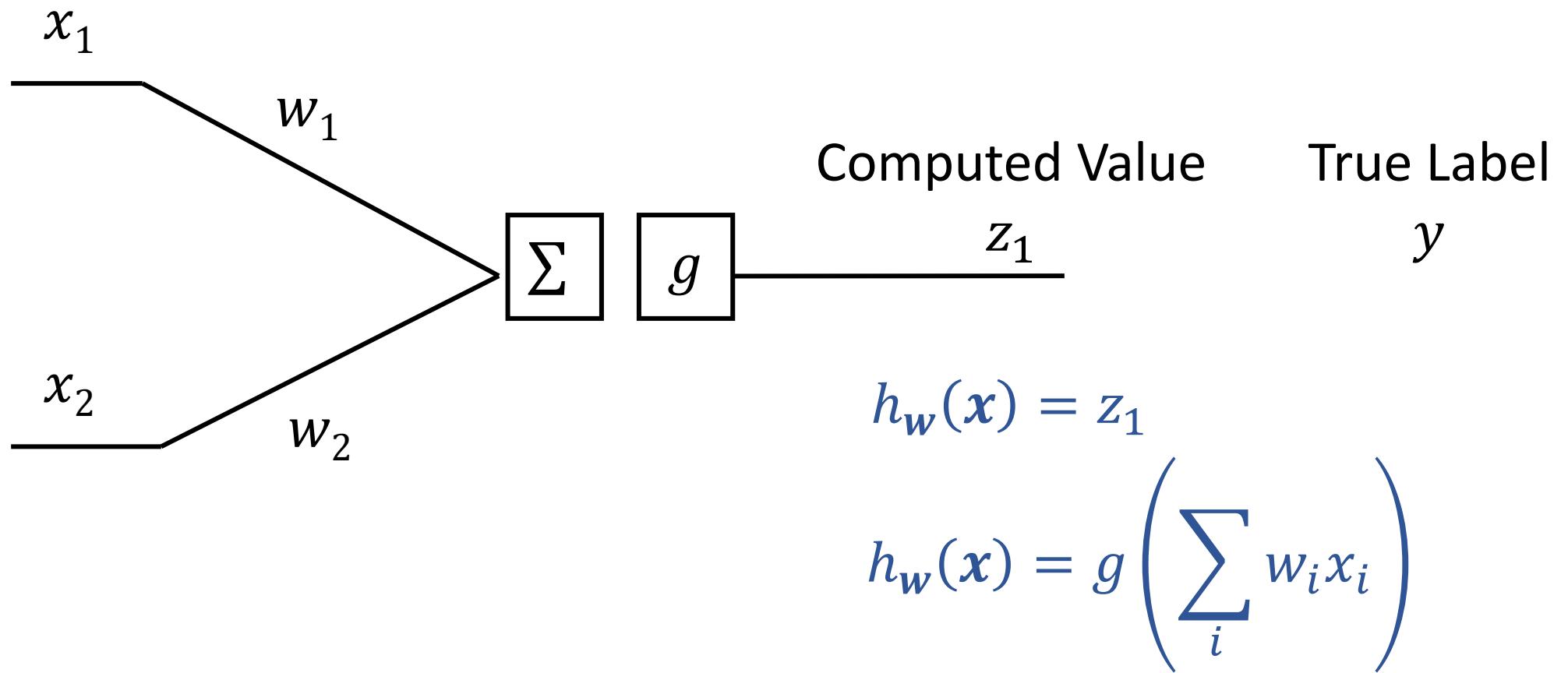


BUTTON

# Single Neuron

## Single neuron system

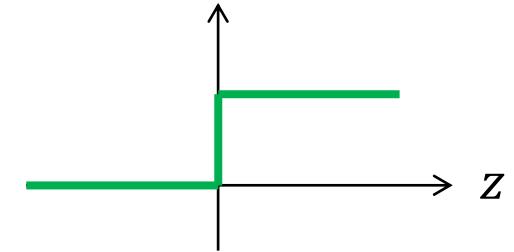
- Perceptron (if  $g$  is step function)
- Logistic regression (if  $g$  is sigmoid)
- Linear regression (if  $g$  is nothing)



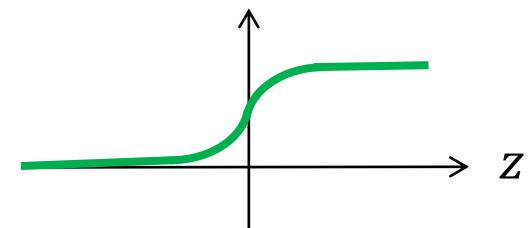
# Activation Functions

It would be really helpful to have a  $g(z)$  that was nicely differentiable

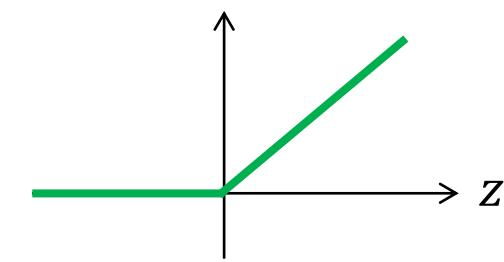
- Hard threshold:  $g(z) = \begin{cases} 1 & z \geq 0 \\ 0 & z < 0 \end{cases}$   $\frac{dg}{dz} = \begin{cases} 0 & z \geq 0 \\ 0 & z < 0 \end{cases}$



- Sigmoid:  $g(z) = \frac{1}{1+e^{-z}}$   $\frac{dg}{dz} = g(z)(1 - g(z))$
- (Softmax)



- ReLU:  $g(z) = \max(0, z)$   $\frac{dg}{dz} = \begin{cases} 1 & z \geq 0 \\ 0 & z < 0 \end{cases}$



# Optimizing

How do we find the “best” set of weights?

$$h_{\mathbf{w}}(\mathbf{x}) = g\left(\sum_j w_j x_j\right)$$

# Loss Functions

## Regression

- Squared error:  $\ell(y, \hat{y}) = (y - \hat{y})^2$

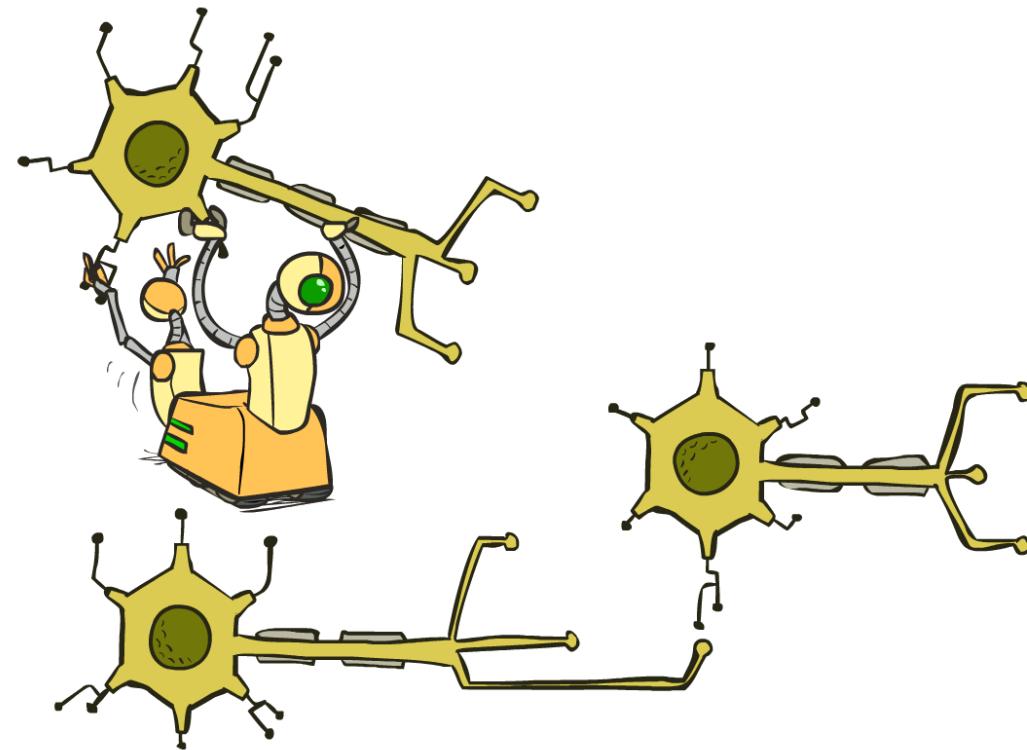
## Classification

- Cross entropy:  $\ell(y, \hat{y}) = -\sum_k y_k \log \hat{y}_k$

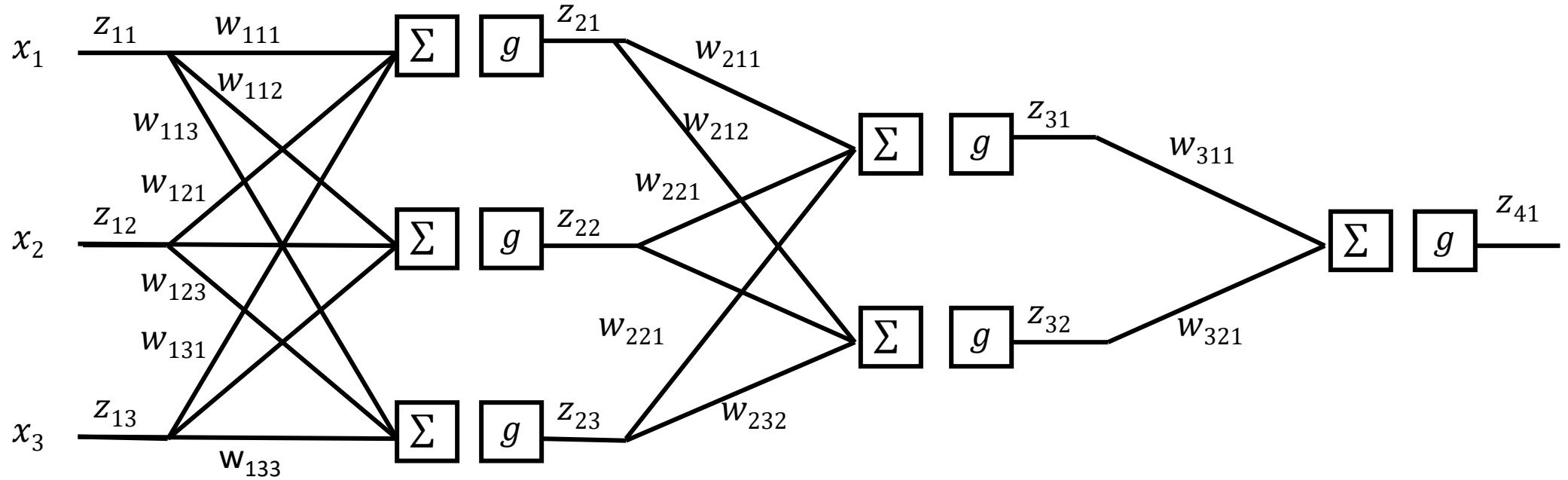
# Multilayer Perceptrons

A ***multilayer perceptron*** is a feedforward neural network with at least one ***hidden layer*** (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function



# Neural Network Equations



$$h_w(\mathbf{x}) = z_{4,1}$$

$$z_{1,1} = x_1$$

$$z_{4,1} = g\left(\sum_i w_{3,i,1} z_{3,i}\right)$$

$$z_{3,1} = g\left(\sum_i w_{2,i,1} z_{2,i}\right)$$

$$z_{d,1} = g\left(\sum_i w_{d-1,i,1} z_{d-1,i}\right)$$

$$h_w(\mathbf{x}) = g\left(\sum_k w_{3,k,1} g\left(\sum_j w_{2,j,1} g\left(\sum_i w_{1,i,1} x_i\right)\right)\right)$$

# Optimizing

How do we find the “best” set of weights?

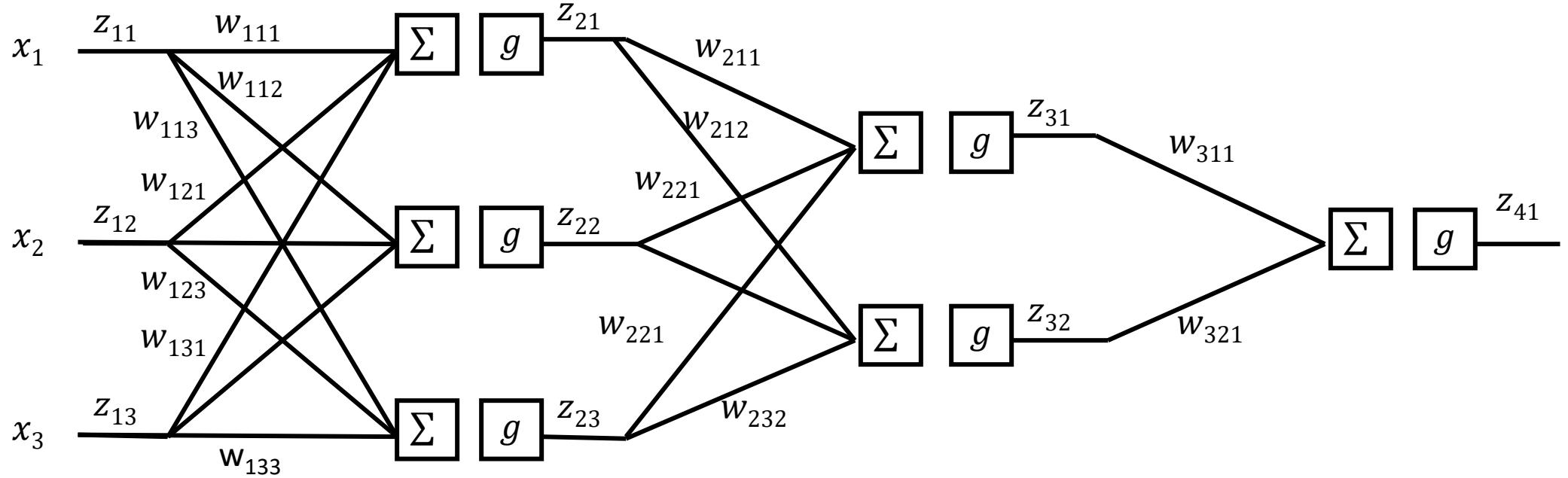
$$h_w(x) = g\left(\sum_k w_{3,k,1} \ g\left(\sum_j w_{2,j,k} \ g\left(\sum_i w_{1,i,j} \ x_i\right)\right)\right)$$

# Optimizing

How do we find the “best” set of weights?

$$h_w(x) = g\left(\sum_k w_{3,k,1} \ g\left(\sum_j w_{2,j,k} \ g\left(\sum_i w_{1,i,j} \ x_i\right)\right)\right)$$

# Neural Network Equations



How do we describe this network?

input

neuron (node)

loss

hidden layer

output layer

# Network Optimization Details

# Reminder: Calculus Chain Rule (scalar version)

$$\begin{aligned}y &= f(z) \\z &= g(x)\end{aligned}$$

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

# Network Optimization

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

# Network Optimization: Forward then Backwards

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

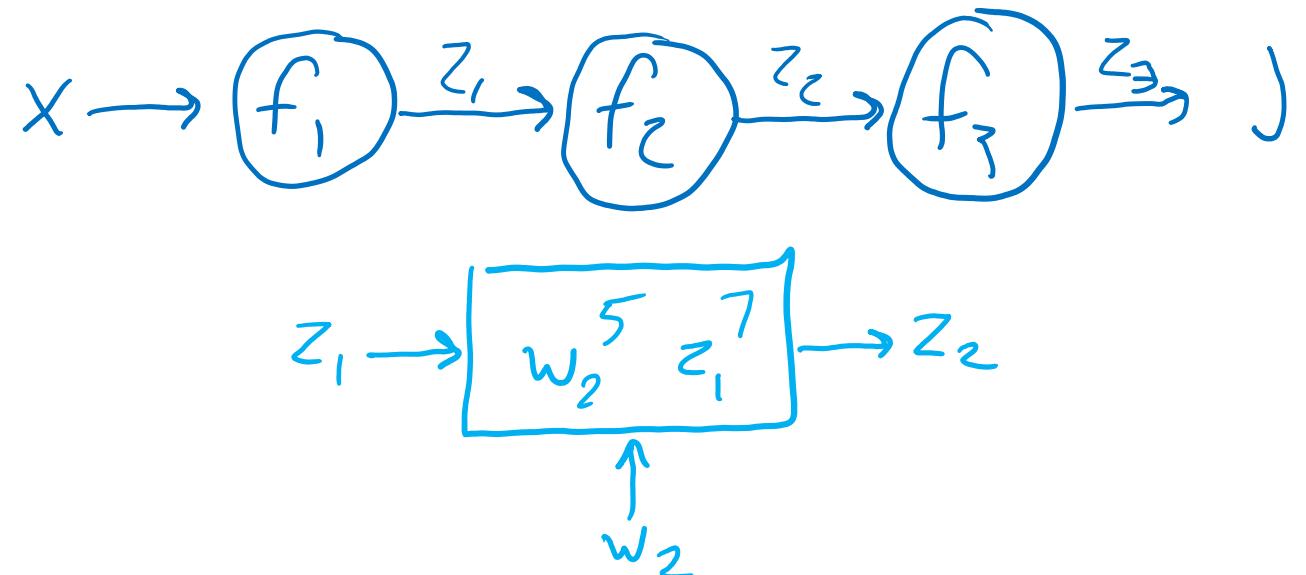
$$z_2 = f_2(w_2, z_1) = w_2^5 z_1^7$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$



Lots of repeated calculations

# Network Optimization: Layer Implementation

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Lots of repeated calculations

# Backpropagation (so-far)

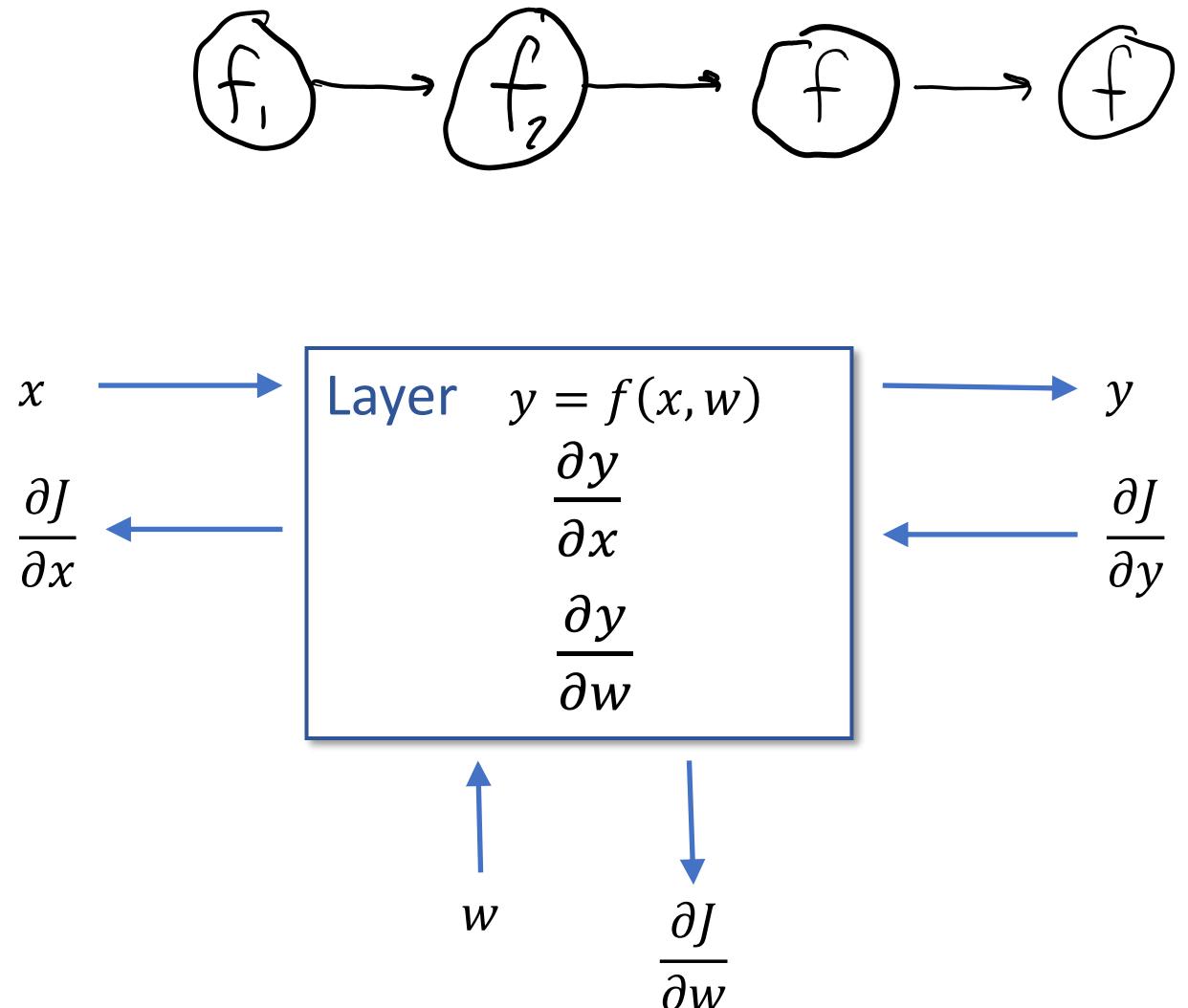
Compute derivatives per layer, utilizing previous derivatives

Objective:  $J(\mathbf{w})$

Arbitrary layer:  $y = f(x, w)$

Need:

- $\frac{\partial J}{\partial x} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x}$
- $\frac{\partial J}{\partial w} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial w}$



## Previous Exercise

Suppose we have a function that takes in a vector and squares each element individually, returning another vector,  $y = f(x)$ .

$$f \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) \rightarrow \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_3^2 \end{bmatrix} \quad y_1$$

Example:  $f \left( \begin{bmatrix} 7 \\ 3 \\ 5 \end{bmatrix} \right) \rightarrow \begin{bmatrix} 49 \\ 9 \\ 25 \end{bmatrix}$

What is  $\frac{\partial y}{\partial x}$ ? (use numerator layout)

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 & 0 & 0 \\ 0 & 2x_2 & 0 \\ 0 & 0 & 2x_3 \end{bmatrix}$$

# Exercise

Prove  $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A \mathbf{v} = (A^T + A)\mathbf{v}$  for  $\mathbf{v} \in \mathbb{R}^2$  and  $A \in \mathbb{R}^{2 \times 2}$

$$f(\mathbf{v}) = \mathbf{v}^T A \mathbf{v} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

Prove  $\frac{\partial f}{\partial \mathbf{v}} = (A^T + A)\mathbf{v}$

*Hint:* Start by expanding  $A\mathbf{v}$  and then expanding  $\mathbf{v}^T A \mathbf{v}$ , i.e., write  $f(v_1, v_2)$  in terms of scalars  $v_1, v_2, A_{1,1}, A_{1,2}, A_{2,1}, A_{2,2}$

*Hint:* Write out scalar partial derivatives,  $\frac{\partial f}{\partial v_1}$  and  $\frac{\partial f}{\partial v_2}$

*Hint:* Work both top-down and bottom-up, i.e., also expand  $(A^T + A)\mathbf{v}$ , so you can see where you are going.

# Derivatives of Functions with Respect to Vectors

|                                                                  | Numerator layout         | Denominator layout     | Notes                         |
|------------------------------------------------------------------|--------------------------|------------------------|-------------------------------|
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}$                | $I_N$                    | $I_N$                  | $\mathbf{v} \in \mathbb{R}^N$ |
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T$              | $I_N$                    | $I_N$                  | $\mathbf{v} \in \mathbb{R}^N$ |
| $\frac{\partial}{\partial \mathbf{v}} t\mathbf{v}$               | $tI_N$                   | $tI_N$                 | $\mathbf{v} \in \mathbb{R}^N$ |
| $\frac{\partial}{\partial \mathbf{u}} \mathbf{u}^T \mathbf{v}$   | $\mathbf{v}^T$           | $\mathbf{v}$           |                               |
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{u}^T \mathbf{v}$   | $\mathbf{u}^T$           | $\mathbf{u}$           |                               |
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T \mathbf{v}$   | $2\mathbf{v}^T$          | $2\mathbf{v}$          |                               |
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A \mathbf{v}$ | $\mathbf{v}^T (A + A^T)$ | $(A + A^T) \mathbf{v}$ |                               |
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A \mathbf{v}$ | $2\mathbf{v}^T A$        | $2A\mathbf{v}$         | If $A = A^T$                  |
| $\frac{\partial}{\partial \mathbf{v}} A\mathbf{v}$               | $A$                      | $A^T$                  |                               |
| $\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A$            | $A^T$                    | $A$                    |                               |

# Calculus

## Multivariable Chain Rule

# Multivariable Chain Rule

$$g_1(x) = 3x$$

$$g_2(x) = 5x$$

$$f(z_1, z_2) = 2z_1 + 7z_2$$

$$y = f(g_1(x), g_2(x))$$

## Exercise: Multivariable Chain Rule

$$\frac{df}{dx} = \frac{\partial f}{\partial g_1} \frac{\partial g_1}{\partial x} + \frac{\partial f}{\partial g_2} \frac{\partial g_2}{\partial x}$$

$$z_1 = g_1(x) = \sin(x)$$

$$z_2 = g_2(x) = x^3$$

$$y = f(z_1, z_2) = z_1^4 e^{z_2} + 5z_1 + 7z_2$$

# Multivariable Chain Rule

$$\frac{df}{dx} = \frac{\partial f}{\partial g_1} \frac{\partial g_1}{\partial x} + \frac{\partial f}{\partial g_2} \frac{\partial g_2}{\partial x}$$

$$z_1 = g_1(x) = \sin(x)$$

$$z_2 = g_2(x) = x^3$$

$$y = f(z_1, z_2) = z_1 z_2$$

# Calculus Chain Rule

Scalar:

$$y = f(z)$$

$$z = g(x)$$

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

Multivariate:

$$y = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{dy}{dx} = \sum_j \frac{\partial y}{\partial z_j} \frac{\partial z_j}{\partial x}$$

Multivariate:

$$\mathbf{y} = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{dy_i}{dx_k} = \sum_j \frac{\partial y_i}{\partial z_j} \frac{\partial z_j}{\partial x_k}$$

# Multivariable Chain Rule

|                                                                                          | Numerator layout                                                                                                                                                                  | Denominator layout                                                                                                                                                                | Notes                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{d}{dt} f(g(t), h(t))$                                                             | $\frac{df}{dg} \frac{dg}{dt} + \frac{df}{dh} \frac{dh}{dt}$                                                                                                                       | Same                                                                                                                                                                              | $f : (\mathbb{R} \times \mathbb{R}) \rightarrow \mathbb{R}, t \in \mathbb{R}$<br>$g : \mathbb{R} \rightarrow \mathbb{R}, h : \mathbb{R} \rightarrow \mathbb{R}$                               |
| $\frac{d}{dt} f(g_1(t), \dots, g_N(t))$                                                  | $\sum_{i=1}^N \frac{df}{dg_i} \frac{dg_i}{dt}$                                                                                                                                    | Same                                                                                                                                                                              | $h : (\mathbb{R} \times \dots \times \mathbb{R}) \rightarrow \mathbb{R}, t \in \mathbb{R}$<br>$f_i : \mathbb{R} \rightarrow \mathbb{R} \quad \forall i \in \{1, \dots, N\}$                   |
| $\frac{d}{dt} f(\mathbf{g}(t))$                                                          | $\frac{\partial f}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial t}$                                                                                                   | $\frac{\partial \mathbf{g}}{\partial t} \frac{\partial f}{\partial \mathbf{g}}$                                                                                                   | $f : \mathbb{R}^N \rightarrow \mathbb{R}, \mathbf{g} : \mathbb{R} \rightarrow \mathbb{R}^N$<br>$t \in \mathbb{R}$                                                                             |
| $\frac{\partial}{\partial \mathbf{v}} f(\mathbf{g}(\mathbf{v}))$                         | $\frac{\partial f}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial \mathbf{v}}$                                                                                          | $\frac{\partial \mathbf{g}}{\partial \mathbf{v}} \frac{\partial f}{\partial \mathbf{g}}$                                                                                          | $f : \mathbb{R}^N \rightarrow \mathbb{R}, \mathbf{g} : \mathbb{R}^M \rightarrow \mathbb{R}^N$<br>$\mathbf{v} \in \mathbb{R}^M$                                                                |
| $\frac{\partial}{\partial \mathbf{v}} f(\mathbf{g}(\mathbf{v}), \mathbf{h}(\mathbf{v}))$ | $\frac{\partial f}{\partial \mathbf{g}} \frac{\partial \mathbf{g}}{\partial \mathbf{v}} + \frac{\partial f}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{v}}$ | $\frac{\partial \mathbf{g}}{\partial \mathbf{v}} \frac{\partial f}{\partial \mathbf{g}} + \frac{\partial \mathbf{h}}{\partial \mathbf{v}} \frac{\partial f}{\partial \mathbf{h}}$ | $h : \mathbb{R}^K \times \mathbb{R}^N \rightarrow \mathbb{R}, \mathbf{v} \in \mathbb{R}^M$<br>$f : \mathbb{R}^M \rightarrow \mathbb{R}^K, \mathbf{g} : \mathbb{R}^M \rightarrow \mathbb{R}^N$ |

## Poll 4

$$y = f(\mathbf{z}) \quad y \in \mathbb{R}, \mathbf{z} \in \mathbb{R}^N, x \in \mathbb{R}$$

$$\mathbf{z} = g(x)$$

$$\frac{\partial y}{\partial x} = \dots$$

A.  $\frac{\partial y}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial x}$

B.  $\left(\frac{\partial y}{\partial \mathbf{z}}\right)^T \frac{\partial \mathbf{z}}{\partial x}$

C.  $\frac{\partial y}{\partial \mathbf{z}} \left(\frac{\partial \mathbf{z}}{\partial x}\right)^T$

D.  $\left(\frac{\partial y}{\partial \mathbf{z}}\right)^T \left(\frac{\partial \mathbf{z}}{\partial x}\right)^T$

E. None of the above

Assume numerator layout:  
Num outputs  $\times$  Num inputs

## Poll 5

$$y = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{\partial y}{\partial \mathbf{x}} = \dots$$

A.  $\frac{\partial y}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{x}}$

B.  $\left(\frac{\partial y}{\partial \mathbf{z}}\right)^T \frac{\partial \mathbf{z}}{\partial \mathbf{x}}$

C.  $\frac{\partial y}{\partial \mathbf{z}} \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^T$

D.  $\left(\frac{\partial y}{\partial \mathbf{z}}\right)^T \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^T$

E. None of the above

Assume numerator layout:  
Num outputs  $\times$  Num inputs

# Network Optimization

$$J(\mathbf{w}) = z_4$$

$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!

# Network Optimization

$$J(\mathbf{w}) = z_4$$

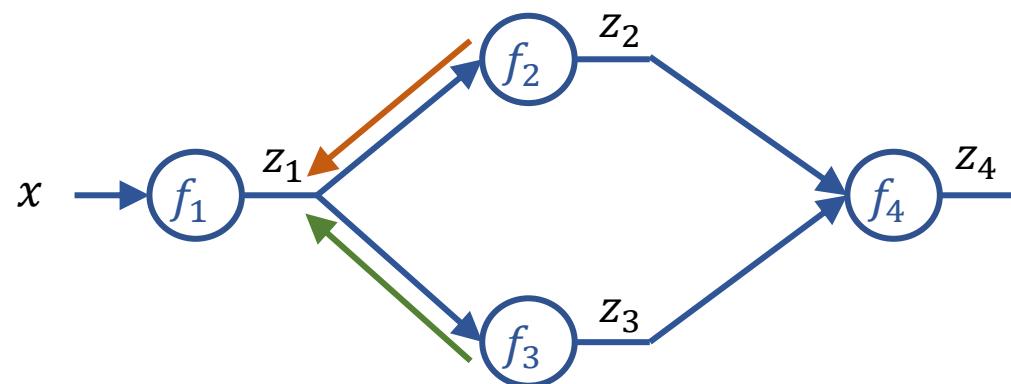
$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!



$$\frac{\partial J}{\partial w_E} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_E}$$

$$\frac{\partial J}{\partial w_D} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_D}$$

$$\frac{\partial J}{\partial z_3} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_3}$$
$$\frac{\partial J}{\partial z_2} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_2}$$

$$\frac{\partial J}{\partial w_C} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_C}$$
$$\frac{\partial J}{\partial w_B} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial w_B}$$

$$\frac{\partial J}{\partial z_1} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_1}$$

$$\frac{\partial J}{\partial w_A} = \frac{\partial J}{\partial z_1} \frac{\partial z_1}{\partial w_A}$$

# Backpropagation (updated)

Compute derivatives per layer, utilizing previous derivatives

Objective:  $J(\mathbf{w})$

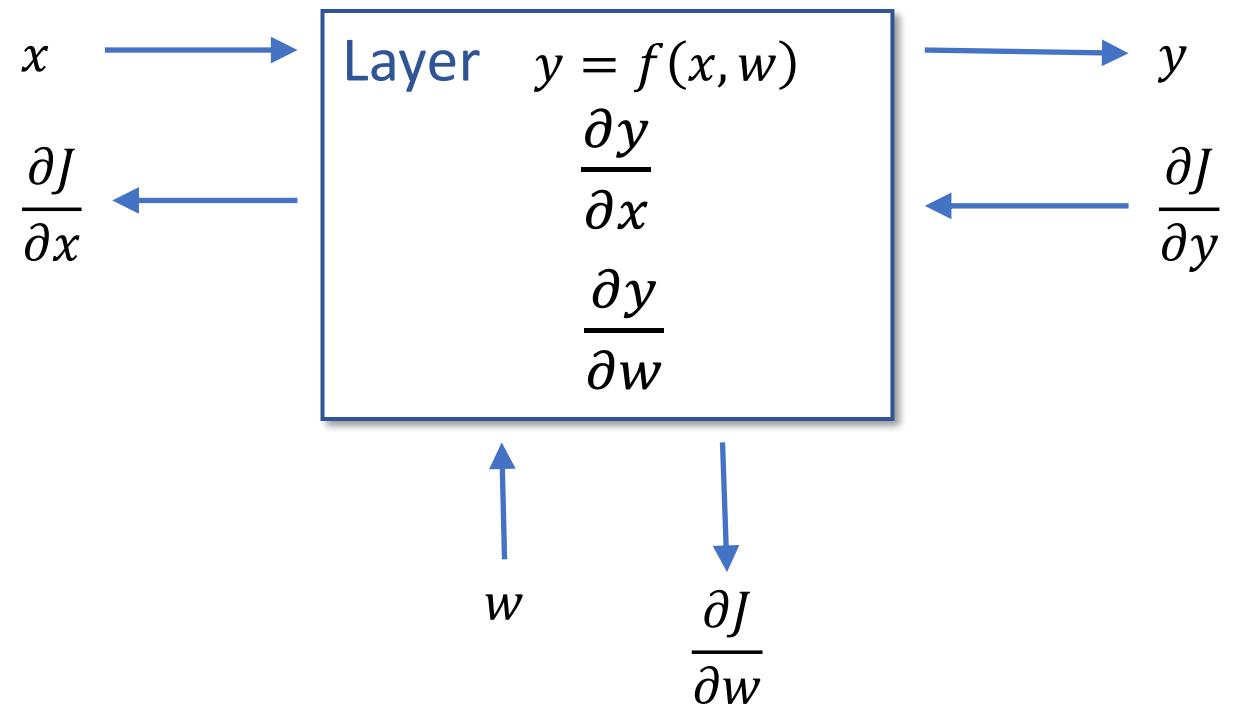
Arbitrary layer:  $y = f(x, w)$

Init:

- $\frac{\partial J}{\partial x} = 0$
- $\frac{\partial J}{\partial w} = 0$

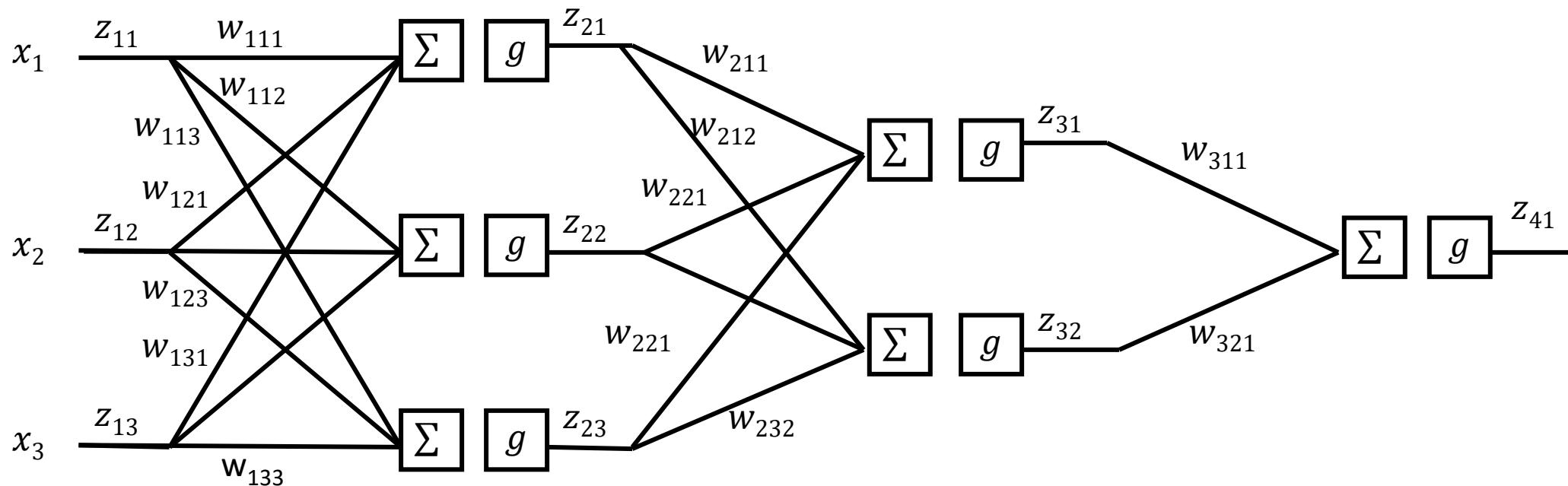
Compute:

- $\frac{\partial J}{\partial x} + = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x}$
- $\frac{\partial J}{\partial w} + = \frac{\partial J}{\partial y} \frac{\partial y}{\partial w}$



# Neural Network Implementation

Which pieces to we treat as functions?



# Neural Network Properties

# Neural Networks Properties

## Practical considerations

- Large number of neurons
  - Danger for overfitting
- Modelling assumptions vs data assumptions trade-off
- Gradient descent can easily get stuck local optima

## What if there are no non-linear activations?

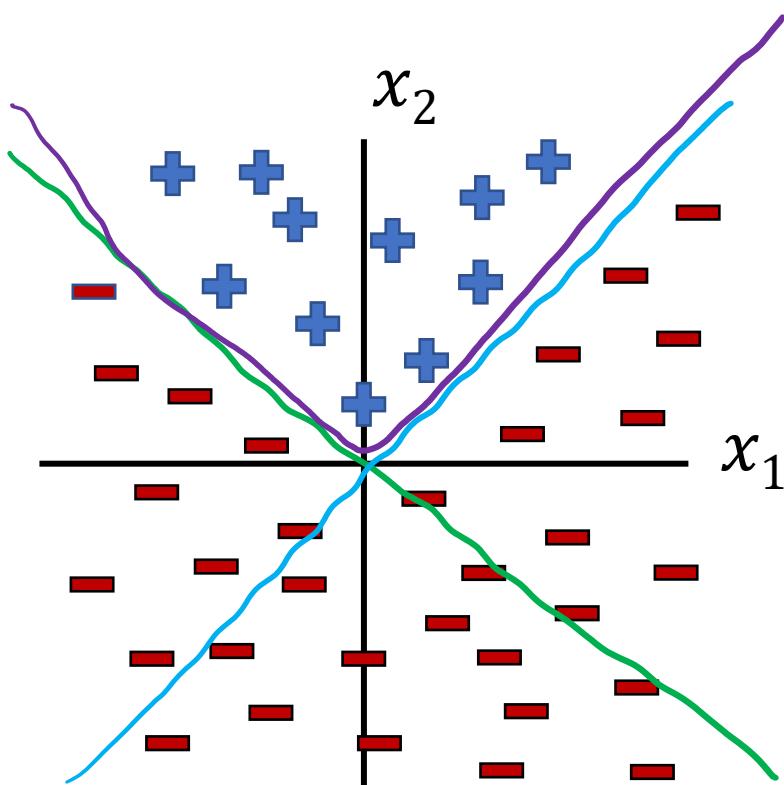
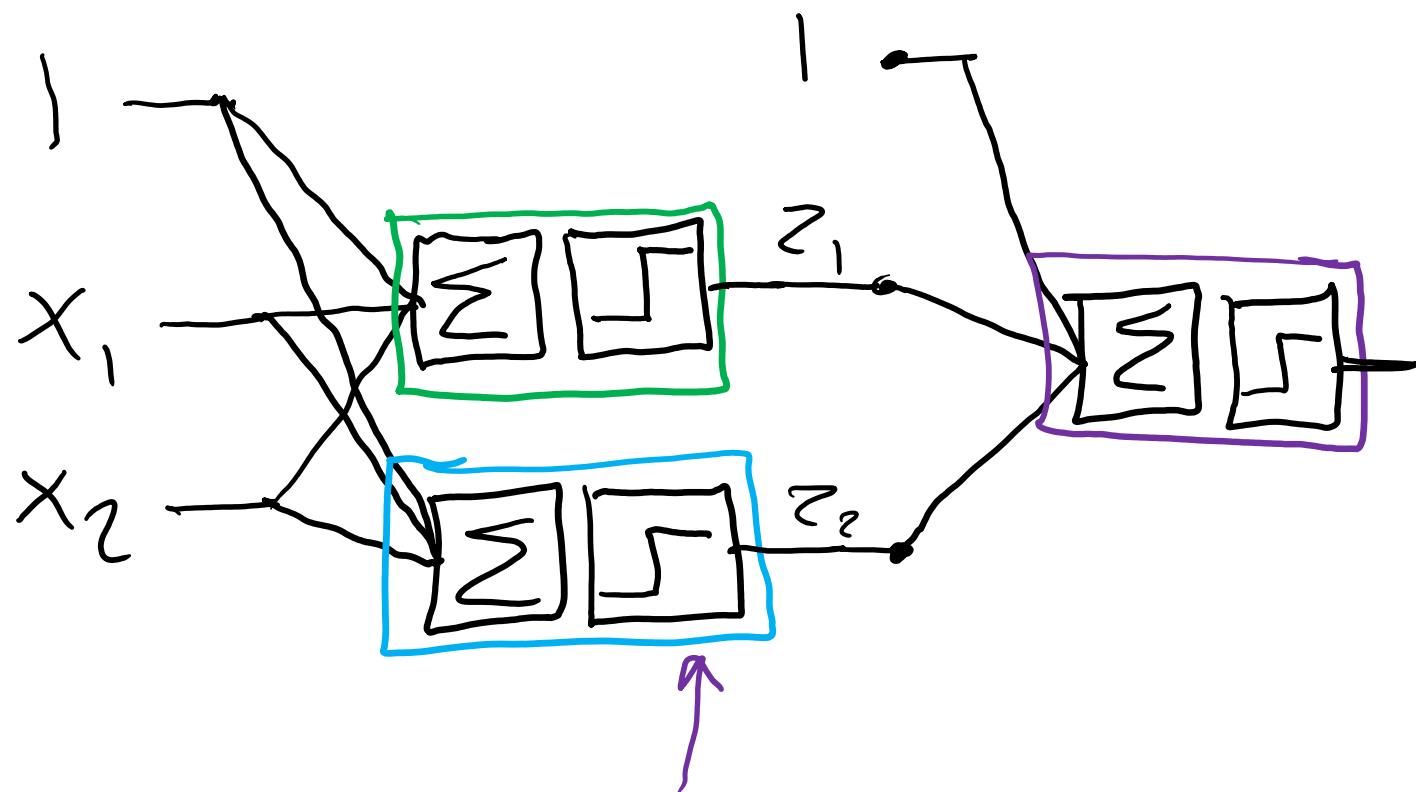
- A deep neural network with only linear layers can be reduced to an exactly equivalent single linear layer

## Universal Approximation Theorem:

- A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.

# Classification Design Challenge

How could you configure three specific perceptrons to classify this data?



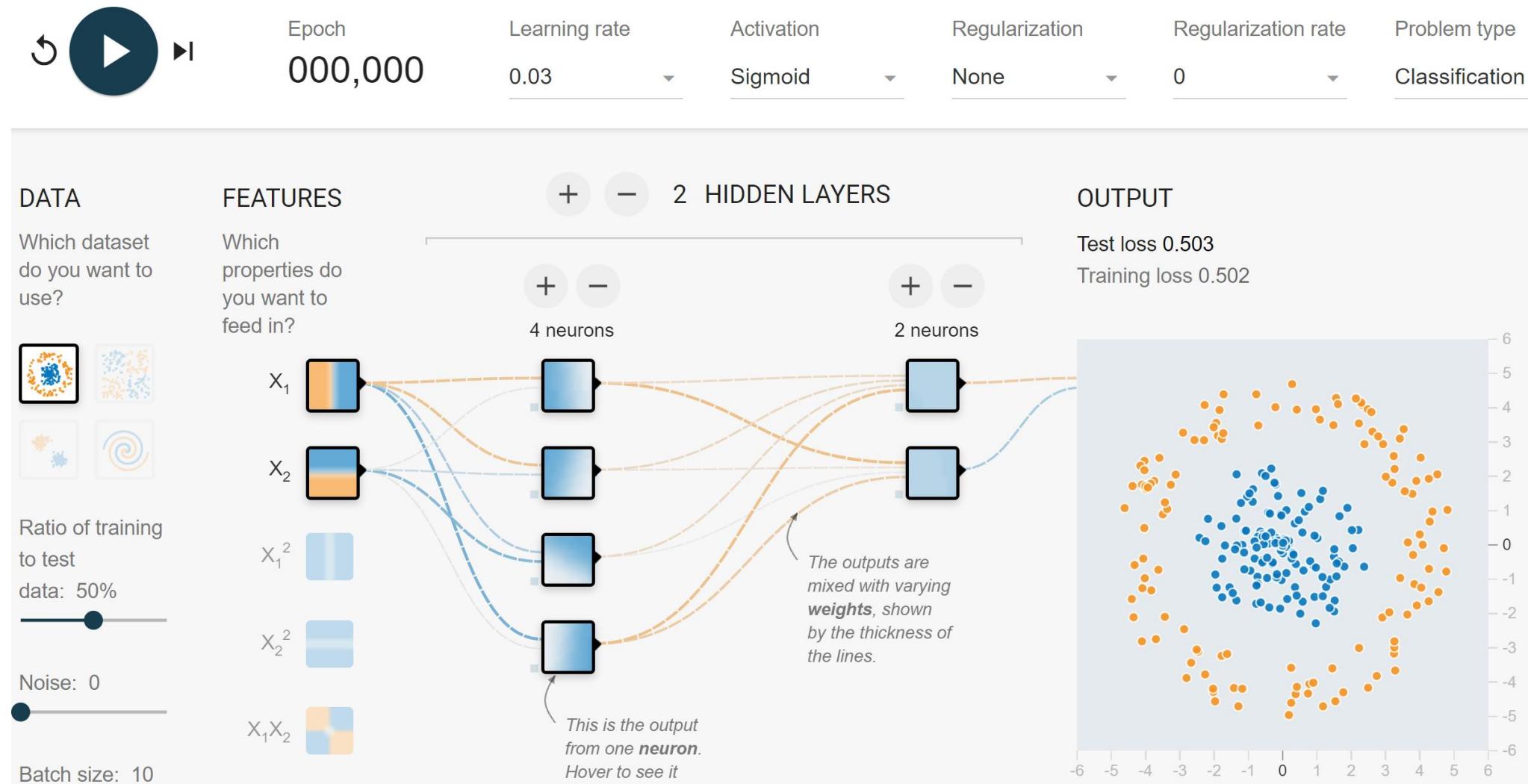
$$h_A(x) = \text{sign}(\mathbf{w}_A^T x + b_A)$$

$$h_B(x) = \text{sign}(\mathbf{w}_B^T x + b_B)$$

$$h_C(z) = \text{sign}(\mathbf{w}_C^T z + b_C)$$

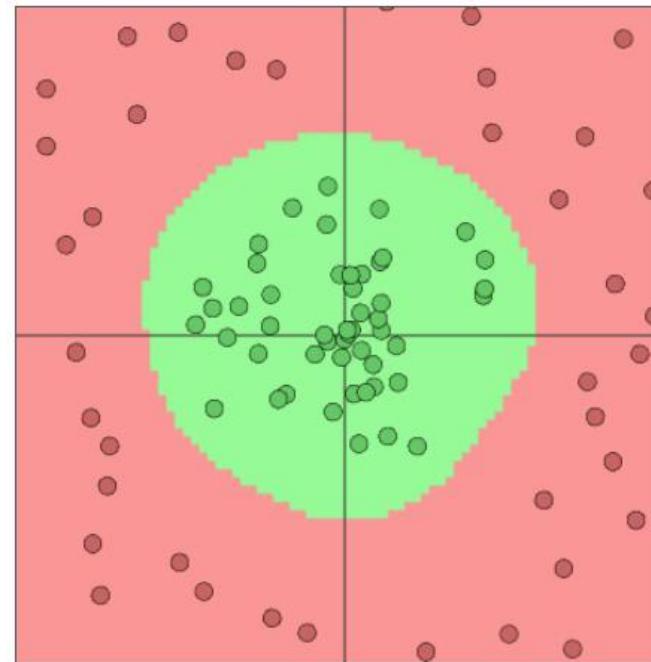
# Network to Approximate Binary Classification

<https://playground.tensorflow.org/#activation=sigmoid>



# Network to Approximate Binary Classification

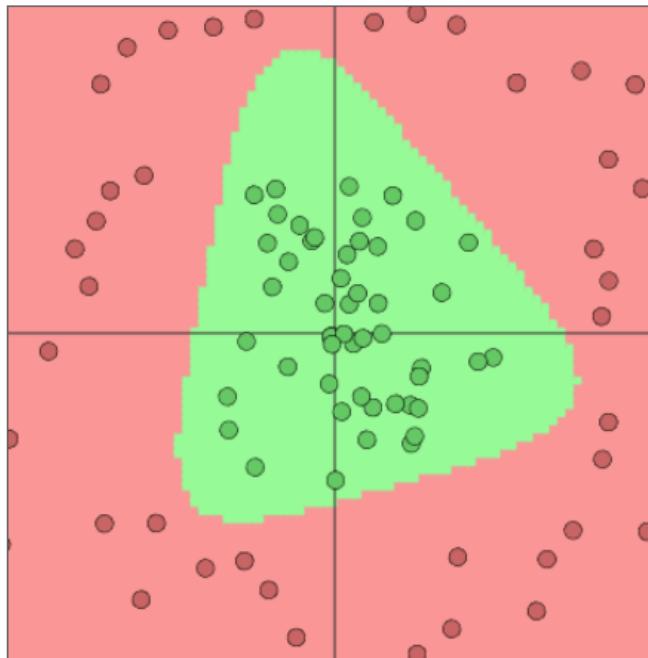
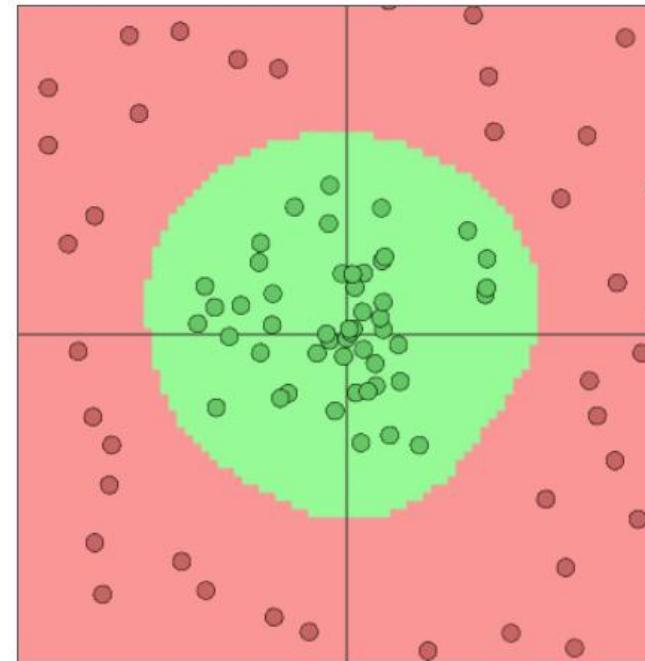
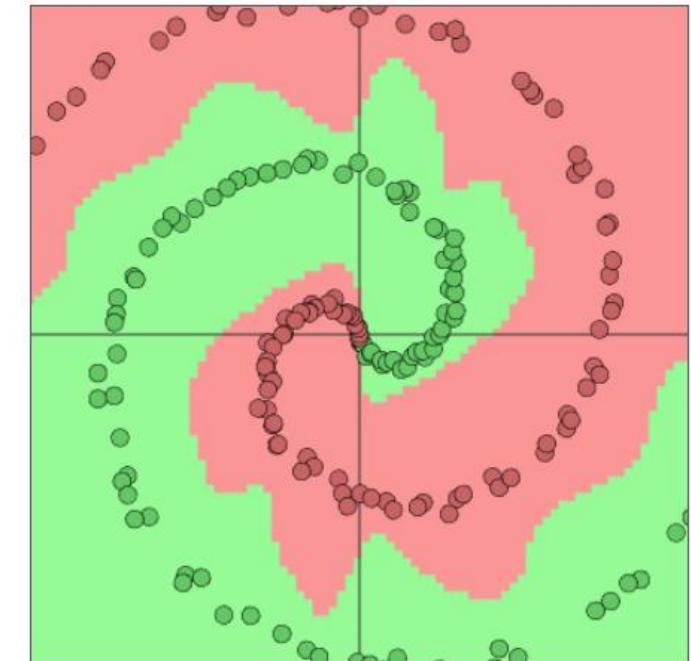
Approximate arbitrary decision boundary



<https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html>

# Network to Approximate Binary Classification

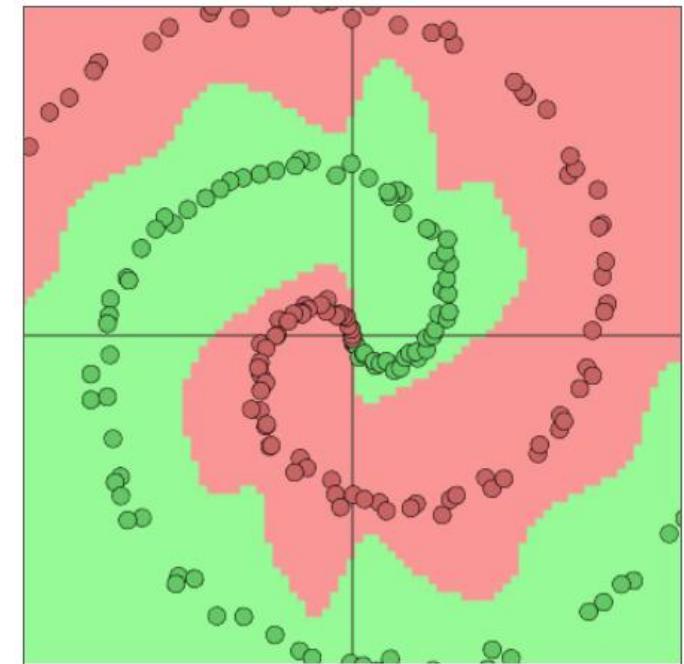
Approximate arbitrary decision boundary



<https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html>

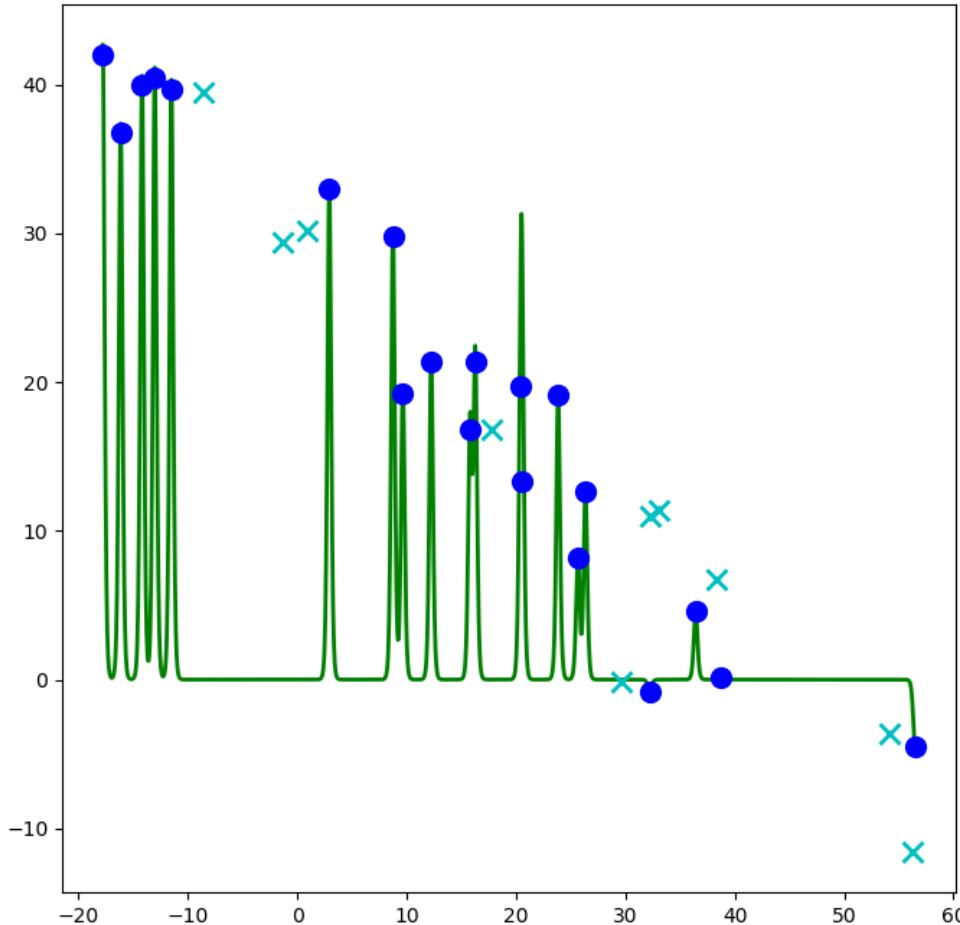
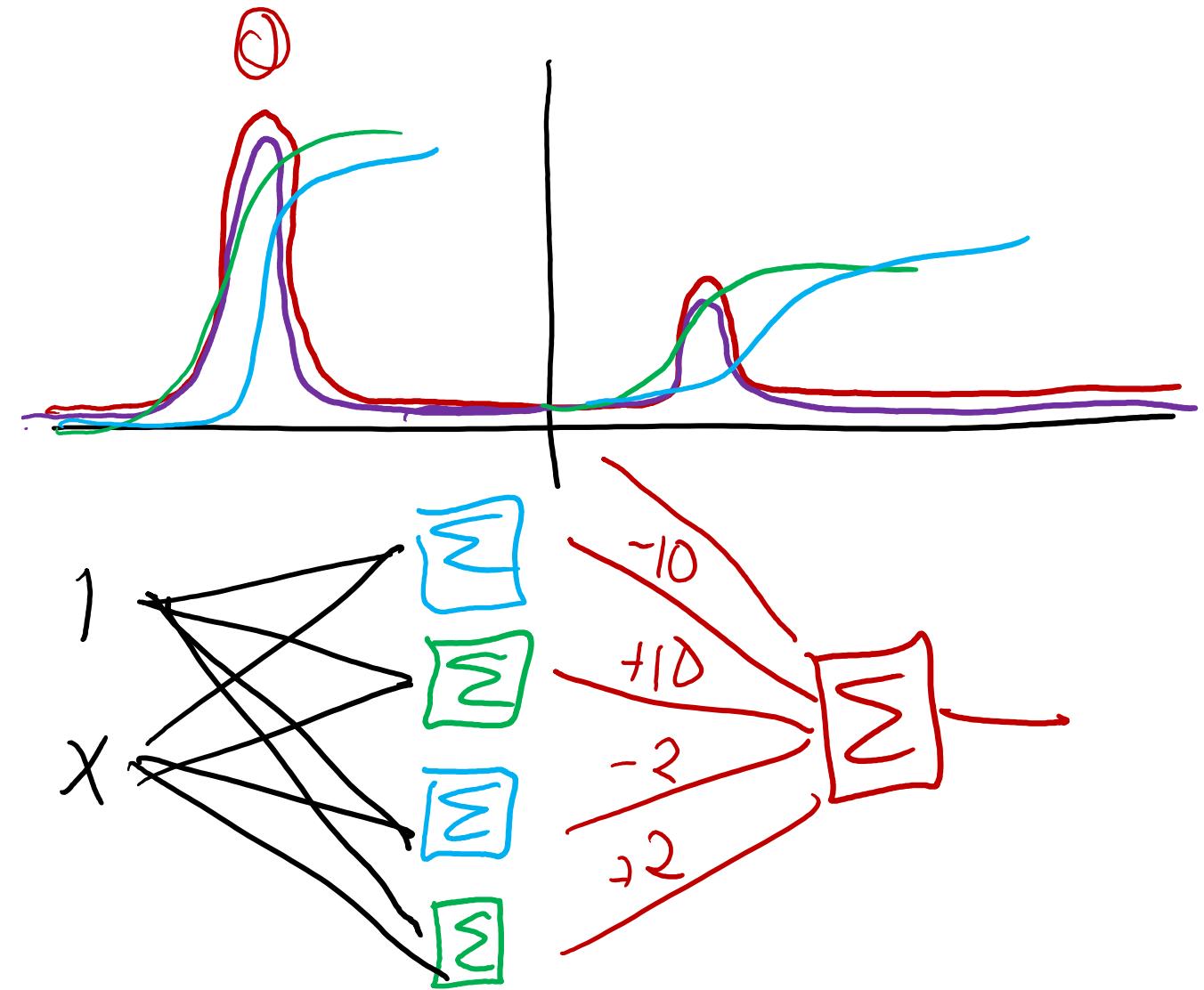
# Network to Approximate Binary Classification

Approximate arbitrary decision boundary

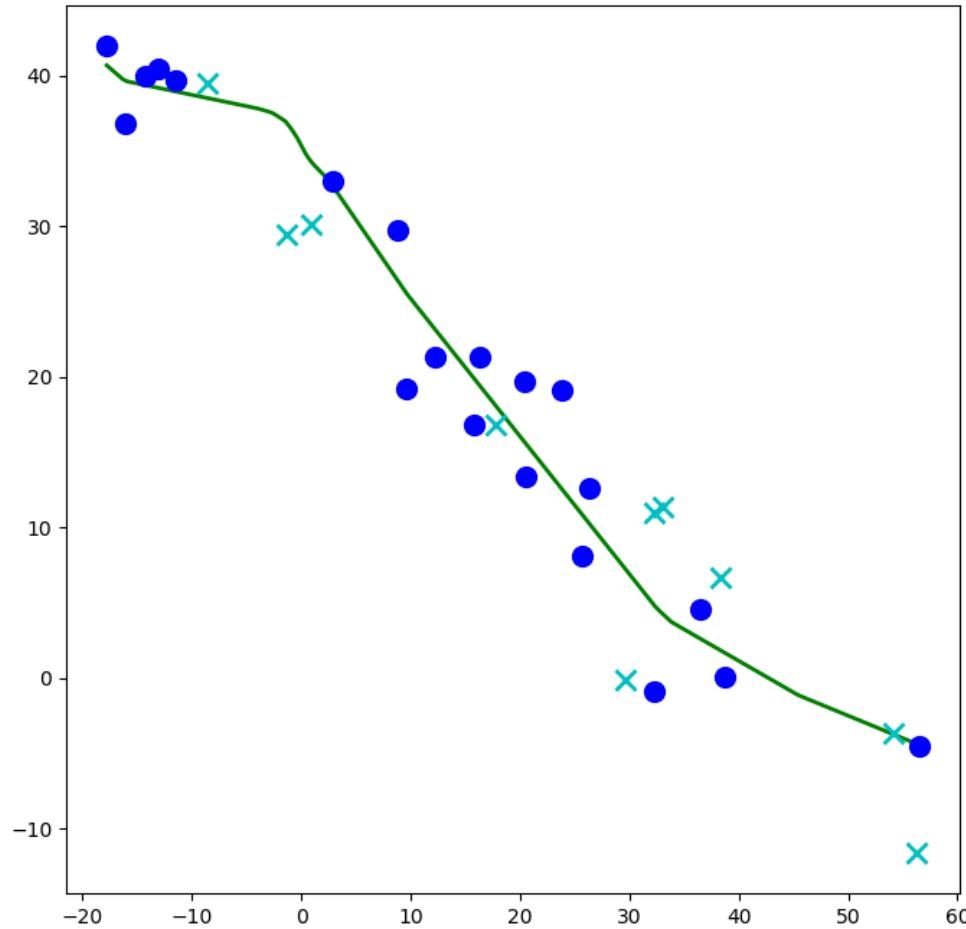
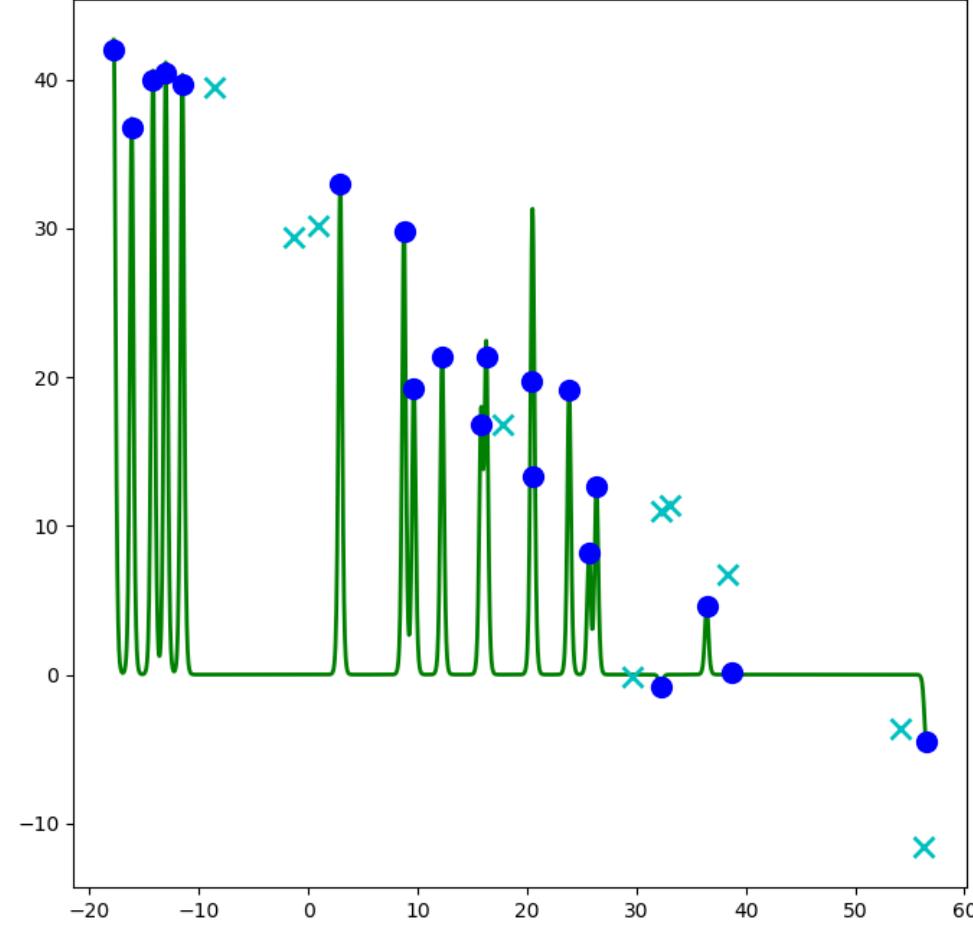


<https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html>

# Network to Approximate a 1-D Function



# Network to Approximate a 1-D Function



# Objective Function is Not Convex

| Objective function for... | Convex? | Closed-form solution? |
|---------------------------|---------|-----------------------|
| Linear regression         |         |                       |
| Logistic regression       |         |                       |
| Neural networks           |         |                       |

# Optimization

## Linear function

If  $f(\mathbf{x})$  is linear, then:

- $f(\mathbf{x} + \mathbf{z}) = f(\mathbf{x}) + f(\mathbf{z})$
- $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) \quad \forall \alpha$
- $f(\alpha \mathbf{x} + (1 - \alpha) \mathbf{z}) = \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{z}) \quad \forall \alpha$

# Optimization

## Linear function

If  $f(\mathbf{x})$  is linear, then:

- $f(\mathbf{x} + \mathbf{z}) = f(\mathbf{x}) + f(\mathbf{z})$
- $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}) \quad \forall \alpha$
- $f(\alpha \mathbf{x} + (1 - \alpha) \mathbf{z}) = \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{z}) \quad \forall \alpha$

# Optimization

## Convex function

If  $f(\mathbf{x})$  is convex, then:

- $f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{z}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{z}) \quad \forall 0 \leq \alpha \leq 1$

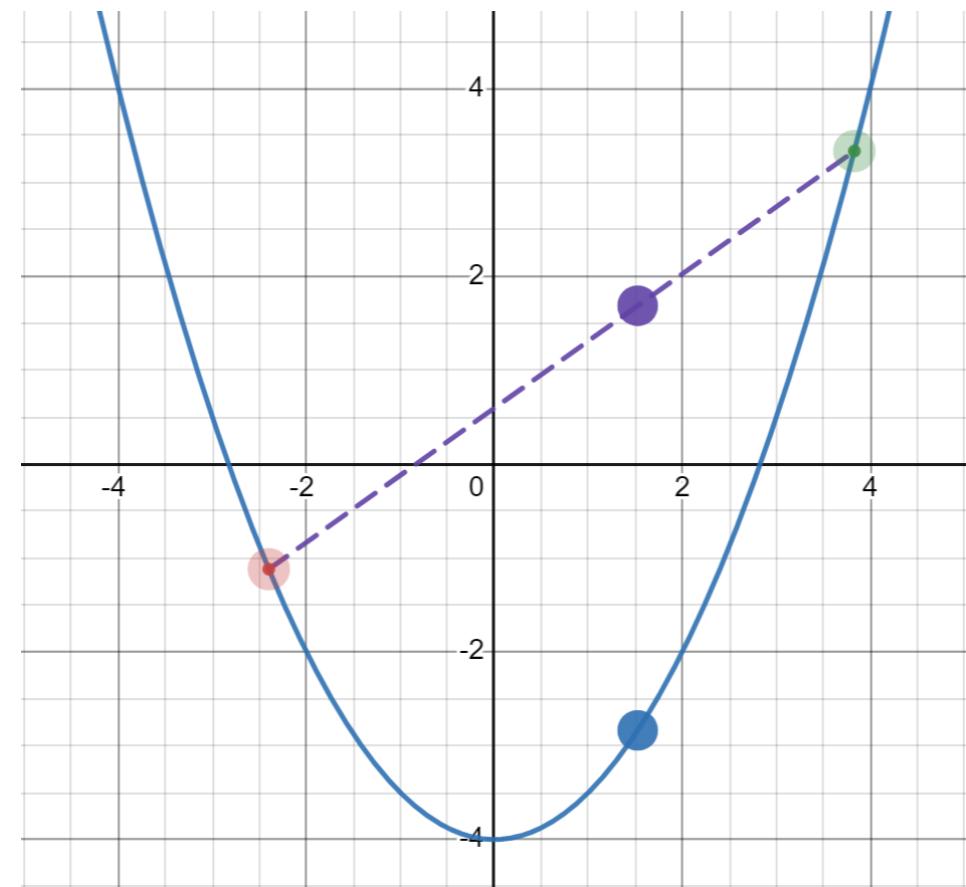
# Optimization

## Convex function

If  $f(x)$  is convex, then:

- $f(\alpha x + (1 - \alpha)z) \leq \alpha f(x) + (1 - \alpha)f(z)$   
 $\forall 0 \leq \alpha \leq 1$

[Demo on Desmos](#)



# Optimization

## Convex function

If  $f(\mathbf{x})$  is convex, then:

- $f(\alpha\mathbf{x} + (1 - \alpha)\mathbf{z}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{z}) \quad \forall 0 \leq \alpha \leq 1$

## Convex optimization

If second derivative is  $\geq 0$  everywhere then function is convex

If  $f(\mathbf{x})$  is convex, then:

- Every local minimum is also a global minimum ☺