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Introduction to ML

Neural Networks

Instructor: Pat Virtue




Poll 1

Logistic regression for 28x28=784 pixel hand-written digit images into
10 classes:

How many parameters (including bias terms)?
A. 10

10+784

10*784

. 10*784 + 10

10*784 + 784

m o0 o



Linear Classifiers for Nonlinear Data

Linear classifiers have linear decision boundaries
Feature mapping can convert nonlinear data to higher dimensions
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This slide is courtesy of www.iro.umontreal ca/~pift6080/documents/papers/svm_tutorial ppt

Today, instead of choosing a feature mapping function, we’ll use neural
networks to learn nonlinear decision boundaries.

=  We'll quickly shift this to doing nonlinear regression too!



Network to Approximate a 1-D Function
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Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU



Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU



Network to Approximate a 1-D Function
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Network to Approximate a 1-D Function
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Perceptron History

Frank Rosenblatt, 1957

The New Yorker, December 6, 1958 P. 44

Talk story about the perceptron, a new electronic brain which hasn't been built,
but which has been successfully simulated on the I.B.M. 704. Talk with Dr.
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, who is one of the
two men who developed the prodigy; the other man is Dr. Marshall C. Yovits,
of the Office of Naval Research, in Washington. Dr. Rosenblatt defined the
perceptron as the first non-biological object which will achieve an organization
o its external environment in a meaningful way. It interacts with its
environment, forming concepts that have not been made ready for it by a
human agent. If a triangle is held up, the perceptron's eye picks up the image &
conveys it along a random succession of lines to the response units, where the
image is registered. It can tell the difference betw. a cat and a dog, although it
wouldn't be able to tell whether the dog was to theleft or right of the cat. Right
now it is of no practical use, Dr. Rosenblatt conceded, but he said that one day

it might be useful to send one into outer space to take in impressions for us.



Exercise

Which of the following perceptron parameters

will perfectly classify this data?

A w= 1 b=0

B w= :_11:,b=0
C. w= __11:,b=0
D. w=::1:,b=0
E. None of the above

h(x) = sign(wTx + b)

sign(z) = {i’

if z=0
1, if z<O0



Poll 2

Which of the following perceptron parameters
will perfectly classify this data?

A w= 1 b=0

B w= :_11:,b=0
C. w= __11:,b=0
D. w=::1:,b=0
E. None of the above

h(x) = sign(wTx + b)

sign(z) = {i’

if z=0
1, if z<O0



Poll 3 he(z) = Sign(wgz + b(;)
Which of the following parameters of h(z)

will perfectly classify this data? . 1, ifx=0
o sign(x) = {—1 if x <0
_ 1] _
A. We = 1 JbC =0 Zo
B WC — 1 JbC — 1 - T =
C. wq = 1 b = —1
A b1 | — %1

D. None of the above




Classification Design Challenge ha(x) = sign(wax + b,)
hg(x) = sign(whx + bg)

How could you configure three specific he(x) = Sign(ng 4+ bc)

perceptrons to classify this data?
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Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function
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Simple Model of a Neuron (McCulloch & Pitts,

1 943 ) 1 Bias Weight
ao= a;= g(in
W, = g(in))
}A
Input Input  Activation Output
Links Function Function Output Links

Inputs a; come from the output of node i to this node j (or from “outside”)

Each input link has a weight w; ;

There is an additional fixed input a, with bias weight w .
The total input is in, = 2, w; ; a,

The output is a; = g(in)) = g(%; w;; a;) = g(w.a)




Neural Networks
Inspired by actual human brain

Image: https://en.wikipedia.org/wiki/Neuron

Output
Signal

DOG
CAT
TREE

CAR
SKY



Neural Networks
Building on optimization for linear and logistic regression

= Selling my car

m () -0.10
b () 20000
30000 "
Error (RMSE)=6176.6
E 20000
@
=
A 10000
0 . . .
0 50000 100000 150000

Mileage (miles)



Neural Networks

Many layers of neurons, millions of parameters Output
Signal
Input y
DOG
CAT
TREE
CAR

SKY




Neural Networks
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Neural Networks
Many layers of neurons, millions of parameters Output

Input
Signal




Single Neuron

Single neuron system

= Perceptron (if g is step function)
" Logistic regression (if g is sigmoid)
" Linear regression (if g is nothing)

Computed Value True Label
Z1 Y

hy, (x) = Z1

hy(x) =g Z W;X;

l



Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

1 z=0 d_g_{() z=0

* Hard threshold: g(z) = {O z<0 dz |0 z<0

» Sigmoid:  g(z) = 1;_2 Z—“z = g(z)(l — g(z))
= (Softmax)

= RelLU: g(z) = max(0,z) Z—i = {(1) ;i 8

S




Optimizing

How do we find the “best” set of weights?

hy(x) =g (z W;X;



Loss Functions

Regression
= Squared error: £(y,9) = (y — 9)?

Classification
= Cross entropy: 2(y,y) = — Y. Vi log V.



Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function




Neural Network Equations

Zqq Wi11

Zyq = g(ZiWS,i,l ZB,i)
Z31 = Q(Zi Waii1 Zz,i)

Zg1 = Q(Zin—1,i,1 Zd—l,i)

W311

W321




Optimizing

How do we find the “best” set of weights?

hy(x) =g z W3k1 9 zwz,j,k 9 (z Wi.i,j xi)
k j i



Optimizing

How do we find the “best” set of weights?

hy(x) =g z W3k1 9 zwz,j,k 9 (z Wi.i,j xi)
k j i



Neural Network Equations

Z11 Wi11 3 g

g Wi1q
X, g
g =2 W21
X5 g
How do we describe this network?
input neuron (node) loss

hidden layer
output layer




Network Optimization Details



Reminder: Calculus Chain Rule (scalar version)

y = f(2)
z=g(x)

dy dydz
dx dzdx



Network Optimization
J(w) = z3

z3 = f3(W3, 2;3)
zy = fo(wy, z1)

z1 = f1(wy, x)



Network Optimization: Forward then Backwards

J(w) = z3 ¢, e O “ j
X — —L3 —=
z3 = f3(W3, 2;3) @ @—) 70?

A4
Zy = fz(Wz;Z1)= wfz\

z1 = f1(wy, x)

< —éj w27 217 —> Lo

!

Wo

0] _ 0] 0z3

E - 0z3 0wW3

0] _ 0] 0z3 0z,
M - 0z3 0z, 0w,

0] _ 0] 0z30z, 0z,
6_\/|/1 - 0z3 0z, 0z1 OWq

Lots of repeated calculations



Network Optimization
J(w) = z3

z3 = f3(W3, 2;3)
zy = fo(wy, z1)

z1 = f1(wy, x)

d] _ 0] 0z3

6_W3 - 0z3 0wW3

d] _ 0] 0z3 0z,
m - 0z3 0z, 0w,

d] _ 0] 0z30z, 0z,
6_\/|/1 - 0z3 0z, 0z1 OWq

Lots of repeated calculations

. Layer Implementation



Backpropagation (so-far)

Compute derivatives per layer, utilizing previous derivatives

Objective: J(w) @:@——4 @‘_” @

Arbitrary layer: y = f(x,w)

Need:
_ﬂzﬂa_y x — > |Layer y=f(x,w) >y
dx dy 0x 9y
d — 0
L _ 0y T ox —
ow dy ow ay g
ow

S —>
4——



Previous Exercise

Suppose we have a function that takes in a vector and squares each
element individually, returning another vector, y = f(x).

e N KA A TN [49
f<x2>—> x4 Example:f(3)—> 9
5] |25,

F

gl [ 0 0

ﬁ — My X3 Q
Ox by oy e |= | O X3 O
o0 a0

o Oys %; O O 07)(3 l



Exercise

Prove > vT Ay = (AT + A)v forv € R% and A € R%*2

ov
. [A1,1 Al,zl

v
—viAv v = [ 1] —
f(v)=v'Av v v, Ayy Ags

Prove —=(AT +A)v

Hint: Start by expanding Av and then expanding vI' Av, i.e., write f (v, V) in terms of
scalars vq,v,,41 1,412, 421,45,

9 and — of

Hint: Write out scalar partial derivatives,
6 V1 avz

Hint: Work both top-down and bottom-up, i.e., also expand (AT + A)V, SO you can see
where you are going.



Derivatives of Functions with Respect to Vectors

Numerator layout | Denominator layout | Notes
s, i ) N
E Ij\-' Ij\. Vv G R
o T i , N
E V I N I N Vv 'E R
i tv tIn tIn v e RY
ov s .
9 ulvy vl v
du
2 uly ul u
v
;i viv v’ 2v
ov
o T T(, AT ; AT
5o VI Av vi(A+ AY) (A+ A" )v
% v Av 2vl A 2AV If A=A"
)i Av A AT
awv
9 yT'A At A




Calculus

Multivariable Chain Rule



Multivariable Chain Rule

g1(x) = 3x
g>(x) = 5x
f(z1,2,) = 221 + 727,

y = f(g1(x), g2(x))



af _ 9f 991  9f 99:

Exercise: Multivariable Chain Rule

dx  dg, 0x dg, Ox

z1 = g1(x) = sin(x)
Zy = ga(x) = x>
y = f(z4,2,) = z{e?2 + 5z, + 7z,



af _ df dg. | O0f 0g,

Multivariable Chain Rule +

dx  dg, 0x dg, Ox

zy = g1(x) = sin(x)
Z; = g (x) = x°

y = f(z1,22) = 212,



Calculus Chain Rule

Scalar: Multivariate: Multivariate:

y = f(2) y = f(z) y = f(2)

z=g(x) z=g(x) z=g(x)

dy _ dy dz dy ¢ 0y 0zj dy; ¢ 0yi9Zj
dx  dzdx E_Zjazj 0x dxk_zjazjaxk



Multivariable Chain Rule

Numerator layout | Denominator layout | Notes

L (g(t), h(D)) a9y g Same f:(RxR) =R, tcR
g:R—R, h:R—R

(91(t), ..., gn (1)) S L Same h:Rx---xR)—=R, teR
fi:R—R Vie{l,... N}

1 af o He O N . N
= f(g(t) o e 25l f:RY SR, g:R-R
teR
) af dg O TN Y N
2 f(g(v)) GLo8 Ge oL f:RN SR, g:RM - RD
3 of 9 )f 9h og O 9h O . K N M
2 f(g(v),h(v)) e+ Lo el + h:REXxRY 5 R veR

f : RM N RK, g Rﬂ[ N RN




Poll 4

y=f(z) vyeER zeRY xeR
z=g(x)

mY N W x2S

oy 9z
0z 0x

0y\! oz
) o
dy (9z\T
> (5)
oI raz\T
) ()

None of the above

Assume numerator layout:
Num outputs X Num inputs




Poll 5 Assume numerator layout:
Num outputs X Num inputs

y = f(2)
z=g(x)

oy oz
0z 0x

0y\! 9z
(52) 3
oy (9z\

5 (52)

dy T 0z T
5) ()

None of the above

TS o e



Network Optimization
Jw) =z,

Zy = fo(Wp, W, Z;, Z3)
zz = f3(we, 1)
Zy = [ (wg, z1)

z1 = f1(Wy, x)

Need multivariate chain rule!



L : 9]  d] 9z,
Network Optimization S = 3 o
Jw) =z, of _ 9] 9z
ow 0z, 0w

zy = fa(Wp, Wg, 2, Z3) o
B o] 9] 0z,

Z3 = f3 (WC)Zl) 0z; 07,075
B o] 9] 0z,

Zy = f2 (WBle) 0z, 02,02,
z1 = f1(wy, X) 9] 9] 0z
aWC - 023 aWC

o . o] d] 0z,

Need multivariate chain rule! dwy _ 0z, 0wy

@ Zy —/é 0] _ d] 0z, N 0] 0z3
, 0zy 0z,0z; 0230274
Z1 4
@ 6] _ 6] 621

\ aWA B 6Z1 aWA

e ®




Backpropagation (updated)

Compute derivatives per layer, utilizing previous derivatives
Objective: J(w)

Arbitrary layer: y = f(x,w)

Init:
] ﬂ — 0
669; x — > |Layer y=f(x,w)
"aw =V - 9y
, — — 0x
Compute: 0x
9y
J2 . _ 0oy ow
dx dy 0x
9] ,_9]9%y T l
ow = dy ow w ﬂ

_’y

]




Neural Network Implementation

Which pieces to we treat as functions?

g W31

Joi W321




Neural Network Properties



Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
* Modelling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.



Classification Design Challenge ha(x) = sign(wax + b,)

hp(x) = sign(whx + b
How could you configure three specific hBE % B .g E ;3, N ng
perceptrons to classify this data? C 32 = stgn ch C

\ | | W




Network to Approximate Binary Classification

https://playground.tensorflow.org/#activation=sigmoid

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
000,000 0.03 - Sigmoid - None v i - Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset Which Test loss 0.503
do you want to properties do + + Training loss 0.502
use? you want to
feed in? 4 neurons 2 neurons
] - - » »
g N\ i »
€ 6o
i ini o :. "’oe o’
Ratio of training ® oy oy O
2 : % o v P 0
to test Xq - The outputs are i :,'t't:;‘z.’. % o
data: 50% - mixed with varying °% o°™ s .:o‘.
- weights, shown ® ®t et
X S F by the thickness of 2
= the lines.
Noise: 0 <
® XX This is the output
- from one neuron. '
Batch size: 10 Hover to see it 0



https://playground.tensorflow.org/#activation=sigmoid

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate a 1-D Function
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Network to Approximate a 1-D Function
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Objective Function is Not Convex

. .. : Closed-form
Objective function for... Convex? :
solution?

Linear regression

Logistic regression

Neural networks



Optimization

Linear function

If f(x) is linear, then:

" fix+2z)=f(x)+ f(2)

" flax) =af(x) Va

* flax+(1—-a)z)=af(x)+ (1 —-—a)f(z) Va |



Optimization

Linear function

If f(x) is linear, then:

" fix+2z)=f(x)+ f(2)

" flax) =af(x) Va

* flax+(1—-a)z)=af(x)+ (1 —-—a)f(z) Va



Optimization

Convex function
If f(x) is convex, then:
» flax+ (1 —-—a)z) <af(x))+(1—-—a)f(z) VO<a<l1



Optimization

Convex function
If f(x) is convex, then:

" flax+ (1 -a)z) <af(x) + (1 - a)f(2)

Vo<a<l
Demo on Desmos



https://www.desmos.com/calculator/3zljmwqyel

Optimization
Convex function

If f(x) is convex, then:
" flax+(1-a)z) <af(x)+(1-a)f(z) VO<a<l

Convex optimization

If second derivative is = 0
everywhere then function is
convex

If f(x) is convex, then:

" Every local minimum is also a
global minimum ©
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