
10-315
Introduction to ML

Neural Networks

Instructor: Pat Virtue

Poll 1
Logistic regression for 28x28=784 pixel hand-written digit images into
10 classes:

How many parameters (including bias terms)?

A. 10

B. 10+784

C. 10*784

D. 10*784 + 10

E. 10*784 + 784

Linear Classifiers for Nonlinear Data
Linear classifiers have linear decision boundaries

Feature mapping can convert nonlinear data to higher dimensions

Today, instead of choosing a feature mapping function, we’ll use neural
networks to learn nonlinear decision boundaries.

▪ We’ll quickly shift this to doing nonlinear regression too!

Network to Approximate a 1-D Function

Network to Approximate a 1-D Function
Design a network to approximate this function using:

Linear, Sigmoid, Step, or ReLU

Network to Approximate a 1-D Function
Design a network to approximate this function using:

Linear, Sigmoid, Step, or ReLU

Network to Approximate a 1-D Function

Network to Approximate a 1-D Function

Perceptron History
Frank Rosenblatt, 1957

Exercise
Which of the following perceptron parameters
will perfectly classify this data?

A. 𝒘 =
1
1
, 𝑏 = 0

B. 𝒘 =
−1
1

, 𝑏 = 0

C. 𝒘 =
1
−1

, 𝑏 = 0

D. 𝒘 =
−1
−1

, 𝑏 = 0

E. None of the above

𝑥1

𝑥2

ℎ 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙 + 𝑏

𝑠𝑖𝑔𝑛 𝒛 = ቊ
1, 𝑖𝑓 𝑧 ≥ 0
−1, 𝑖𝑓 𝑧 < 0

Poll 2
Which of the following perceptron parameters
will perfectly classify this data?

A. 𝒘 =
1
1
, 𝑏 = 0

B. 𝒘 =
−1
1

, 𝑏 = 0

C. 𝒘 =
1
−1

, 𝑏 = 0

D. 𝒘 =
−1
−1

, 𝑏 = 0

E. None of the above

𝑥1

𝑥2

ℎ 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝑇𝒙 + 𝑏

𝑠𝑖𝑔𝑛 𝒛 = ቊ
1, 𝑖𝑓 𝑧 ≥ 0
−1, 𝑖𝑓 𝑧 < 0

Poll 3
Which of the following parameters of ℎ𝐶 𝒛
will perfectly classify this data?

A. 𝒘𝐶 =
1
1
, 𝑏𝐶 = 0

B. 𝒘𝐶 =
1
1
, 𝑏𝐶 = 1

C. 𝒘𝐶 =
1
1
, 𝑏𝐶 = −1

D. None of the above

𝑧1

𝑧2

ℎ𝐶 𝒛 = 𝑠𝑖𝑔𝑛 𝒘𝐶
𝑇𝒛 + 𝑏𝐶

𝑠𝑖𝑔𝑛 𝒙 = ቊ
1, 𝑖𝑓 𝑥 ≥ 0
−1, 𝑖𝑓 𝑥 < 0

Classification Design Challenge
How could you configure three specific
perceptrons to classify this data?

𝑥1

𝑥2

ℎ𝐴 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝐴
𝑇𝒙 + 𝑏𝐴

ℎ𝐵 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝐵
𝑇𝒙 + 𝑏𝐵

ℎ𝐶 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝐶
𝑇𝒙 + 𝑏𝐶

Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Slide from UC Berkeley AI

Very Loose Inspiration: Human Neurons

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Slide from UC Berkeley AI

Simple Model of a Neuron (McCulloch & Pitts,
1943)

Inputs ai come from the output of node i to this node j (or from “outside”)

Each input link has a weight wi,j

There is an additional fixed input a0 with bias weight w0,j

The total input is inj = i wi,j ai

The output is aj = g(inj) = g(i wi,j ai) = g(w.a)

Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

Slide from UC Berkeley AI

Neural Networks
Inspired by actual human brain

Image: https://en.wikipedia.org/wiki/Neuron

Output

Signal
Input
Signal DOG

CAT

TREE

CAR

SKY

Neural Networks
Building on optimization for linear and logistic regression

▪ Selling my car

Neural Networks
Many layers of neurons, millions of parameters Output

Signal

DOG

CAT

TREE

CAR

SKY

Input
Signal

ො𝑦

Neural Networks
Many layers of neurons, millions of parameters

Input
Signal

Output

Signal

DOG

CAT

TREE

CAR

SKY

𝑦

0

1

0

0

0

ො𝑦

Neural Networks
Many layers of neurons, millions of parameters

Input
Signal LEFT

RIGHT

UP

DOWN

BUTTON

Output

Signal
ො𝑦

Single Neuron
Single neuron system
▪ Perceptron (if 𝑔 is step function)

▪ Logistic regression (if 𝑔 is sigmoid)

▪ Linear regression (if 𝑔 is nothing)

Computed Value
𝑧1∑ 𝑔

𝑥1

𝑥2

𝑤1

𝑤2

True Label
𝑦

ℎ𝒘 𝒙 = 𝑧1

ℎ𝒘 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

▪ Hard threshold: 𝑔 𝑧 = ቊ
1 𝑧 ≥ 0
0 𝑧 < 0

𝑑𝑔

𝑑𝑧
= ቊ

0 𝑧 ≥ 0
0 𝑧 < 0

▪ Sigmoid: 𝑔 𝑧 =
1

1+𝑒−𝑧
𝑑𝑔

𝑑𝑧
= 𝑔 𝑧 1 − 𝑔 𝑧

▪ (Softmax)

▪ ReLU: 𝑔 𝑧 = 𝑚𝑎𝑥(0, 𝑧)
𝑑𝑔

𝑑𝑧
= ቊ

1 𝑧 ≥ 0
0 𝑧 < 0

𝑧

𝑧

𝑧

Optimizing
How do we find the “best” set of weights?

ℎ𝒘 𝒙 = 𝑔 ෍

𝑗

𝑤𝑗𝑥𝑗

Loss Functions

Regression

▪ Squared error: ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

Classification

▪ Cross entropy: ℓ 𝒚, ෝ𝒚 = −∑𝑘 𝑦𝑘 log ො𝑦𝑘

Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Slide from UC Berkeley AI

Neural Network Equations

∑𝑥1 𝑔
𝑧11

𝑥2
𝑧12

𝑥3
𝑧13

𝑤111

𝑤121

𝑤131

𝑧21

∑ 𝑔

𝑤112

𝑧22

∑ 𝑔
w133

𝑤113

𝑤123

𝑧23

∑ 𝑔

𝑤212

𝑧32

𝑤232

∑ 𝑔
𝑤221

𝑤211

𝑧31

𝑤221

𝑧41
∑ 𝑔

𝑤311

𝑤321

ℎ𝑤 𝒙 = 𝑧4,1

𝑧4,1 = 𝑔 ∑𝑖𝑤3,𝑖,1 𝑧3,𝑖

𝑧3,1 = 𝑔 ∑𝑖𝑤2,𝑖,1 𝑧2,𝑖

𝑧𝑑,1 = 𝑔 ∑𝑖𝑤𝑑−1,𝑖,1 𝑧𝑑−1,𝑖

𝑧1,1 = 𝑥1

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖

Optimizing
How do we find the “best” set of weights?

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖

Optimizing
How do we find the “best” set of weights?

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖

Neural Network Equations

∑𝑥1 𝑔
𝑧11

𝑥2
𝑧12

𝑥3
𝑧13

𝑤111

𝑤121

𝑤131

𝑧21

∑ 𝑔

𝑤112

𝑧22

∑ 𝑔
w133

𝑤113

𝑤123

𝑧23

∑ 𝑔

𝑤212

𝑧32

𝑤232

∑ 𝑔
𝑤221

𝑤211

𝑧31

𝑤221

𝑧41
∑ 𝑔

𝑤311

𝑤321

How do we describe this network?

input neuron (node) loss

hidden layer

output layer

Network Optimization Details

Reminder: Calculus Chain Rule (scalar version)

𝑦 = 𝑓 𝑧
𝑧 = 𝑔 𝑥

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑧

𝑑𝑧

𝑑𝑥

Network Optimization

𝐽 𝐰 = 𝑧3
𝑧3 = 𝑓3(𝑤3, 𝑧2)

𝑧2 = 𝑓2 𝑤2, 𝑧1
𝑧1 = 𝑓1 𝑤1, 𝑥

Network Optimization: Forward then Backwards

𝐽 𝐰 = 𝑧3
𝑧3 = 𝑓3(𝑤3, 𝑧2)

𝑧2 = 𝑓2 𝑤2, 𝑧1
𝑧1 = 𝑓1 𝑤1, 𝑥

𝜕𝐽

𝜕𝑤3
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑤3

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑧2

𝜕𝑧2

𝜕𝑤2

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑧2

𝜕𝑧2

𝜕𝑧1

𝜕𝑧1

𝜕𝑤1

Lots of repeated calculations

Network Optimization: Layer Implementation

𝐽 𝐰 = 𝑧3
𝑧3 = 𝑓3(𝑤3, 𝑧2)

𝑧2 = 𝑓2 𝑤2, 𝑧1
𝑧1 = 𝑓1 𝑤1, 𝑥

𝜕𝐽

𝜕𝑤3
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑤3

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑧2

𝜕𝑧2

𝜕𝑤2

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3

𝜕𝑧2

𝜕𝑧2

𝜕𝑧1

𝜕𝑧1

𝜕𝑤1

Lots of repeated calculations

Backpropagation (so-far)
Compute derivatives per layer, utilizing previous derivatives

Objective: 𝐽 𝒘

Arbitrary layer: 𝑦 = 𝑓 𝑥,𝑤

Need:

▪
𝜕𝐽

𝜕𝑥
=

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑥

▪
𝜕𝐽

𝜕𝑤
=

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑤

Layer 𝑦 = 𝑓 𝑥, 𝑤

𝜕𝑦

𝜕𝑥

𝜕𝑦

𝜕𝑤

𝜕𝐽

𝜕𝑦

𝑦

𝜕𝐽

𝜕𝑥

𝑥

𝜕𝐽

𝜕𝑤

𝑤

Previous Exercise

Suppose we have a function that takes in a vector and squares each
element individually, returning another vector, 𝒚 = 𝑓 𝒙 .

𝑓

𝑥1
𝑥2
𝑥3

→

𝑥1
2

𝑥2
2

𝑥3
2

Example: 𝑓
7
3
5

→
49
9
25

What is 𝜕𝒚/𝜕𝒙? (use numerator layout)

38

Exercise

𝑓 𝐯 = 𝐯𝑇𝐴𝐯 𝐯 =
𝑣1
𝑣2

𝐴 =
𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

Prove
𝜕𝑓

𝜕𝐯
= 𝐴𝑇 + 𝐴 𝐯

Hint: Start by expanding 𝐴𝐯 and then expanding 𝐯𝑇𝐴𝐯, i.e., write 𝑓(𝑣1, 𝑣2) in terms of
scalars 𝑣1, 𝑣2, 𝐴1,1, 𝐴1,2, 𝐴2,1, 𝐴2,2

Hint: Write out scalar partial derivatives,
𝜕𝑓

𝜕𝑣1
and

𝜕𝑓

𝜕𝑣2

Hint: Work both top-down and bottom-up, i.e., also expand 𝐴𝑇 + 𝐴 𝐯, so you can see
where you are going.

Prove
𝜕

𝜕𝐯
𝐯𝑇𝐴𝐯 = 𝐴𝑇 + 𝐴 𝐯 for 𝐯 ∈ ℝ2 and 𝐴 ∈ ℝ2×2

Derivatives of Functions with Respect to Vectors

Calculus
Multivariable Chain Rule

Multivariable Chain Rule
𝑔1 𝑥 = 3𝑥

𝑔2 𝑥 = 5𝑥

𝑓 𝑧1, 𝑧2 = 2𝑧1 + 7𝑧2

𝑦 = 𝑓 𝑔1 𝑥 , 𝑔2 𝑥

Exercise: Multivariable Chain Rule
𝑧1 = 𝑔1 𝑥 = sin 𝑥

𝑧2 = 𝑔2 𝑥 = 𝑥3

𝑦 = 𝑓 𝑧1, 𝑧2 = 𝑧1
4𝑒𝑧2 + 5𝑧1 + 7𝑧2

𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝑔1

𝜕𝑔1
𝜕𝑥

+
𝜕𝑓

𝜕𝑔1

𝜕𝑔2
𝜕𝑥

Multivariable Chain Rule
𝑧1 = 𝑔1 𝑥 = sin 𝑥

𝑧2 = 𝑔2 𝑥 = 𝑥3

𝑦 = 𝑓 𝑧1, 𝑧2 = 𝑧1𝑧2

𝑑𝑓

𝑑𝑥
=

𝜕𝑓

𝜕𝑔1

𝜕𝑔1
𝜕𝑥

+
𝜕𝑓

𝜕𝑔1

𝜕𝑔2
𝜕𝑥

Calculus Chain Rule
Scalar:

𝑦 = 𝑓 𝑧

𝑧 = 𝑔 𝑥

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑧

𝑑𝑧

𝑑𝑥

Multivariate:

𝑦 = 𝑓 𝒛

𝒛 = 𝑔 𝑥

𝑑𝑦

𝑑𝑥
= ∑𝑗

𝜕𝑦

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑥

Multivariate:

𝐲 = 𝑓 𝒛

𝒛 = 𝑔 𝐱

𝑑𝑦i

𝑑𝑥k
= ∑𝑗

𝜕𝑦𝑖

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑥k

Multivariable Chain Rule

Poll 4

𝑦 = 𝑓 𝒛 𝑦 ∈ ℝ, 𝒛 ∈ ℝ𝑁 , 𝑥 ∈ ℝ

𝒛 = 𝑔 𝑥

𝜕𝑦

𝜕𝑥
= ⋯

A.
𝜕𝑦

𝜕𝒛

𝜕𝒛

𝜕𝑥

B. 𝜕𝑦

𝜕𝒛

𝑇 𝜕𝒛

𝜕𝑥

C. 𝜕𝑦

𝜕𝒛

𝜕𝒛

𝜕𝑥

𝑇

D. 𝜕𝑦

𝜕𝒛

𝑇 𝜕𝒛

𝜕𝑥

𝑇

E. None of the above

Assume numerator layout:
Num outputs × Num inputs

Poll 5

𝑦 = 𝑓 𝒛

𝒛 = 𝑔 𝒙

𝜕𝑦

𝜕𝒙
= ⋯

A.
𝜕𝑦

𝜕𝒛

𝜕𝒛

𝜕𝒙

B. 𝜕𝑦

𝜕𝒛

𝑇 𝜕𝒛

𝜕𝒙

C. 𝜕𝑦

𝜕𝒛

𝜕𝒛

𝜕𝒙

𝑇

D. 𝜕𝑦

𝜕𝒛

𝑇 𝜕𝒛

𝜕𝒙

𝑇

E. None of the above

Assume numerator layout:
Num outputs × Num inputs

Network Optimization

𝐽 𝒘 = 𝑧4
𝑧4 = 𝑓4 𝑤𝐷, 𝑤𝐸 , 𝑧2, 𝑧3
𝑧3 = 𝑓3 𝑤𝐶 , 𝑧1
𝑧2 = 𝑓2 𝑤𝐵 , 𝑧1
𝑧1 = 𝑓1 𝑤𝐴, 𝑥

Need multivariate chain rule!

Network Optimization

𝐽 𝒘 = 𝑧4
𝑧4 = 𝑓4 𝑤𝐷, 𝑤𝐸 , 𝑧2, 𝑧3
𝑧3 = 𝑓3 𝑤𝐶 , 𝑧1
𝑧2 = 𝑓2 𝑤𝐵 , 𝑧1
𝑧1 = 𝑓1 𝑤𝐴, 𝑥

Need multivariate chain rule!

𝜕𝐽

𝜕𝑤𝐸
=

𝜕𝐽

𝜕𝑧4

𝜕𝑧4
𝜕𝑤𝐸

𝜕𝐽

𝜕𝑤𝐷
=

𝜕𝐽

𝜕𝑧4

𝜕𝑧4
𝜕𝑤𝐷

𝜕𝐽

𝜕𝑧3
=

𝜕𝐽

𝜕𝑧4

𝜕𝑧4
𝜕𝑧3

𝜕𝐽

𝜕𝑧2
=

𝜕𝐽

𝜕𝑧4

𝜕𝑧4
𝜕𝑧2

𝜕𝐽

𝜕𝑤𝐶
=

𝜕𝐽

𝜕𝑧3

𝜕𝑧3
𝜕𝑤𝐶

𝜕𝐽

𝜕𝑤𝐵
=

𝜕𝐽

𝜕𝑧2

𝜕𝑧2
𝜕𝑤𝐵

𝜕𝐽

𝜕𝑧1
=

𝜕𝐽

𝜕𝑧2

𝜕𝑧2
𝜕𝑧1

+
𝜕𝐽

𝜕𝑧3

𝜕𝑧3
𝜕𝑧1

𝜕𝐽

𝜕𝑤𝐴
=

𝜕𝐽

𝜕𝑧1

𝜕𝑧1
𝜕𝑤𝐴

𝑓1

𝑓2

𝑓3

𝑓4
𝑧1

𝑥

𝑧2

𝑧3

𝑧4

Backpropagation (updated)
Compute derivatives per layer, utilizing previous derivatives

Objective: 𝐽 𝒘

Arbitrary layer: 𝑦 = 𝑓 𝑥,𝑤

Init:

▪
𝜕𝐽

𝜕𝑥
= 0

▪
𝜕𝐽

𝜕𝑤
= 0

Compute:

▪
𝜕𝐽

𝜕𝑥
+=

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑥

▪
𝜕𝐽

𝜕𝑤
+=

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑤

Layer 𝑦 = 𝑓 𝑥, 𝑤

𝜕𝑦

𝜕𝑥

𝜕𝑦

𝜕𝑤

𝜕𝐽

𝜕𝑦

𝑦

𝜕𝐽

𝜕𝑥

𝑥

𝜕𝐽

𝜕𝑤

𝑤

Neural Network Implementation

∑𝑥1 𝑔
𝑧11

𝑥2
𝑧12

𝑥3
𝑧13

𝑤111

𝑤121

𝑤131

𝑧21

∑ 𝑔

𝑤112

𝑧22

∑ 𝑔
w133

𝑤113

𝑤123

𝑧23

∑ 𝑔

𝑤212

𝑧32

𝑤232

∑ 𝑔
𝑤221

𝑤211

𝑧31

𝑤221

𝑧41
∑ 𝑔

𝑤311

𝑤321

Which pieces to we treat as functions?

Neural Network Properties

Neural Networks Properties
Practical considerations

▪ Large number of neurons

▪ Danger for overfitting

▪ Modelling assumptions vs data assumptions trade-off

▪ Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

▪ A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

▪ A two-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

Classification Design Challenge
How could you configure three specific
perceptrons to classify this data?

𝑥1

𝑥2

ℎ𝐴 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝐴
𝑇𝒙 + 𝑏𝐴

ℎ𝐵 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝐵
𝑇𝒙 + 𝑏𝐵

ℎ𝐶 𝒙 = 𝑠𝑖𝑔𝑛 𝒘𝐶
𝑇𝒙 + 𝑏𝐶

Network to Approximate Binary Classification
https://playground.tensorflow.org/#activation=sigmoid

https://playground.tensorflow.org/#activation=sigmoid

Network to Approximate Binary Classification
Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification
Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification
Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate a 1-D Function

Network to Approximate a 1-D Function

Objective Function is Not Convex

Objective function for… Convex?
Closed-form

solution?

Linear regression

Logistic regression

Neural networks

Optimization
Linear function

If 𝑓(𝒙) is linear, then:

▪ 𝑓 𝒙 + 𝒛 = 𝑓 𝒙 + 𝑓 𝒛

▪ 𝑓 𝛼𝒙 = 𝛼𝑓 𝒙 ∀𝛼

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 = 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛 ∀𝛼

Optimization
Linear function

If 𝑓(𝒙) is linear, then:

▪ 𝑓 𝒙 + 𝒛 = 𝑓 𝒙 + 𝑓 𝒛

▪ 𝑓 𝛼𝒙 = 𝛼𝑓 𝒙 ∀𝛼

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 = 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛 ∀𝛼

Optimization
Convex function

If 𝑓(𝒙) is convex, then:

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 ≤ 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛 ∀ 0 ≤ 𝛼 ≤ 1

Optimization
Convex function

If 𝑓(𝒙) is convex, then:

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 ≤ 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛
∀ 0 ≤ 𝛼 ≤ 1

Demo on Desmos

https://www.desmos.com/calculator/3zljmwqyel

Optimization
Convex function

If 𝑓(𝒙) is convex, then:

▪ 𝑓 𝛼𝒙 + 1 − 𝛼 𝒛 ≤ 𝛼𝑓 𝒙 + 1 − 𝛼 𝑓 𝒛 ∀ 0 ≤ 𝛼 ≤ 1

Convex optimization

If second derivative is ≥ 0
everywhere then function is
convex

If 𝑓(𝒙) is convex, then:

▪ Every local minimum is also a
global minimum ☺

	Slide 1: 10-315 Introduction to ML Neural Networks
	Slide 2: Poll 1
	Slide 3: Linear Classifiers for Nonlinear Data
	Slide 4: Network to Approximate a 1-D Function
	Slide 5: Network to Approximate a 1-D Function
	Slide 6: Network to Approximate a 1-D Function
	Slide 7: Network to Approximate a 1-D Function
	Slide 8: Network to Approximate a 1-D Function
	Slide 10: Perceptron History
	Slide 11: Exercise
	Slide 12: Poll 2
	Slide 13: Poll 3
	Slide 14: Classification Design Challenge
	Slide 15: Multilayer Perceptrons
	Slide 16: Very Loose Inspiration: Human Neurons
	Slide 17: Simple Model of a Neuron (McCulloch & Pitts, 1943)
	Slide 18: Neural Networks
	Slide 19: Neural Networks
	Slide 20: Neural Networks
	Slide 21: Neural Networks
	Slide 22: Neural Networks
	Slide 23: Single Neuron
	Slide 24: Activation Functions
	Slide 25: Optimizing
	Slide 26: Loss Functions
	Slide 27: Multilayer Perceptrons
	Slide 28: Neural Network Equations
	Slide 29: Optimizing
	Slide 30: Optimizing
	Slide 31: Neural Network Equations
	Slide 32: Network Optimization Details
	Slide 33: Reminder: Calculus Chain Rule (scalar version)
	Slide 34: Network Optimization
	Slide 35: Network Optimization: Forward then Backwards
	Slide 36: Network Optimization: Layer Implementation
	Slide 37: Backpropagation (so-far)
	Slide 38: Previous Exercise
	Slide 39: Exercise
	Slide 40: Derivatives of Functions with Respect to Vectors
	Slide 41: Calculus
	Slide 42: Multivariable Chain Rule
	Slide 43: Exercise: Multivariable Chain Rule
	Slide 44: Multivariable Chain Rule
	Slide 45: Calculus Chain Rule
	Slide 46: Multivariable Chain Rule
	Slide 47: Poll 4
	Slide 48: Poll 5
	Slide 49: Network Optimization
	Slide 50: Network Optimization
	Slide 51: Backpropagation (updated)
	Slide 52: Neural Network Implementation
	Slide 53: Neural Network Properties
	Slide 54: Neural Networks Properties
	Slide 55: Classification Design Challenge
	Slide 56: Network to Approximate Binary Classification
	Slide 57: Network to Approximate Binary Classification
	Slide 58: Network to Approximate Binary Classification
	Slide 59: Network to Approximate Binary Classification
	Slide 60: Network to Approximate a 1-D Function
	Slide 61: Network to Approximate a 1-D Function
	Slide 62: Objective Function is Not Convex
	Slide 63: Optimization
	Slide 64: Optimization
	Slide 65: Optimization
	Slide 66: Optimization
	Slide 67: Optimization

