10-315
Introduction to ML

Logistic Regression

Instructor: Pat Virtue




Classification Decisions

Predicting one specific class is troubling, especially when we know that
there is some uncertainty in our prediction
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Classification Probability

Constructing a model than can return the probability of the output
being a specific class could be incredibly useful
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Classification Probability

Constructing a model than can return the probability of the output
being a specific class could be incredibly useful

&

O‘Lf 6«6

oD fﬂ

P(Ysetosa = 1 1X) P(Ypers = 11X) P(Yvirg =11x)

Iris Logistic Regression, P(Yspecies =1 | X)

1.0

s setosa
« versicolor
* virginica

ok
o

+=
w

=
o

sepal width (ecm)
W w
o= LN

)
u

Xz
g
o

Lo
u

=
o

We can still make decisions, .e.g,
argmax P(Y;, =1 | x)
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Loss for Probabilty Disributions

We need a way to compare how good/bad each prediction is
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Cross-entropy loss
£y, 9) k=1 Yk log i
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Loss for Probabilty Disributions

We need a way to compare how good/bad each prediction is
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Loss for Probabilty Disributions

Cross-entropy more generally is a way to compare any to probability
distributions™ —

*when used in logistic regression

y is always a one-hot vector
p(y1) a(y1) p(y2) q(v2)  p(y3) a(¥s)

1.0 —

Cross-entropy loss
H(P,Q) = —Yi=1 Pk) log q(¥i)
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Empirical Risk Minimization

Still doing empirical risk minimization, just with a cross-enropy loss

h* = argmin R(h)
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Prediction for Cancer Diagnhosis

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of two test results, X, and Xp.
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Prediction for Cancer Diagnhosis

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of just one test result, X,.
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Building on a Linear Model

Linear vs Thresholded Linear vs Logistic Linear
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Building on a Linear Model

Linear vs Thresholded Linear vs Logistic Linear

5= 5
N N A (‘)966 }1[5'(5"} on o‘/\\y T o
A~ NoT C]Afi((t(’a\“\ol\ (D/ }3 q CQ/)—Z

‘r< 2¢00 deri\IA‘}\'uﬁ



XX\

Building on a Linear Model

\\
X
>

X
P




Building on a Linear Mode| V{ZU( 0-(2)

(

f>\
\‘\‘/
I




Logistic Regression
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Logistic Regression

Logistic Regression Distribution
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Logistic Regression Decision Boundary

Classification with Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Optimizing a Model for Cancer Diagnosis

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the

input of two test results, X4, Xg. Note: bias term included in Xx.
1




Blnary Logistic Regression
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Solve Logistic Regression J(Q\ 5 CsnVE X
1 )

1+e~% /
J(8) = =~ %i(yP1log9® + (1 - y©) log(1 - 9©))

1 . . . é
Vol (0) = —ﬁzi(y@ — W) x®

y=9(0"x) g =

Vo/(6) = 07

No closed form solution ® < -~

Back to iterative methods. Solve with (stochastic) gradient descent,
Newton’s method, or Iteratively Reweighted Least Squares (IRLS)



Logistic Regression Decision Boundary

Classification with Logistic Regression
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Exercise

Interact with the linear_logistic.ipynb posted on the course website
schedule
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Linear in Higher Dimensions ~ 2-D y=VX;+ W, X, *+ b
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Logistic Regression
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Slide credit:

Logistic Regression
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Logistic Regression

Classification with Logistic Regression

Slide credit: CMU MLD Matt Gormley
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Poll 1

For a point x on the decision boundary of logistic regression,
does g(Ww'x+b) = w'x + b?
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Multi-class Logistic Regression



Multi-class Logistic Regression

Desmos Demo:
https://www.desmos.com/calculator/53bautbxjp
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https://www.desmos.com/calculator/53bautbxjp

Multi-class Logistic Regression

Cross-entropy loss
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Logistic Function

Logistic (sigmoid) function converis-rete from (—oo,00) — (0,1)
Z

g9(z)

g(z) and 1 — g(z) sum to one

Example 2 - g(2) = 0.88, 1-g(2) =0.12



Softmax Function

Softmax function convert each value in a vector of values
from (—o0,0) — (0, 1), such that they all sum to one.

e
g(Z)] = K Z
k=1

z;- 71 —17 10.00477
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Multiclass Predicted Probability

Multiclass logistic regression uses the parameters learned across all
K classes to predict the discrete conditional probability distribution

of the output Y given a specific input vector x
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Multiclass Predicted Probability

Multiclass logistic regression uses the parameters learned across all
K classes to predict the discrete conditional probability distribution
of the output Y given a specific input vector x
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Logistic Regression with
Polynomial Features



Exercise

Interact with the logistic_quadratic.ipynb posted on the course website
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Exercise

Interact with the logistic_quadratic.ipynb posted on the course website
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