10-315
Introduction to ML

Logistic Regression

Instructor: Pat Virtue




Classification Decisions

Predicting one specific class is troubling, especially when we know that
there is some uncertainty in our prediction
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Classification Probability

Constructing a model than can return the probability of the output
being a specific class could be incredibly useful

Iris k-NN (k = 5) Iris Logistic Regression, P(Yspecies =1 | X)
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Classification Probability

Constructing a model than can return the probability of the output
being a specific class could be incredibly useful

Iris Logistic Regression, P(Yspecies =1 | X)
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We can still make decisions, .e.g, 10
argmax P(Y, =1 x)
k
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Loss for Probabilty Disributions

We need a way to compare how good/bad each prediction is

Iris Logistic Regression, P(Yspecies =1 | X)
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Loss for Probabilty Disributions

We need a way to compare how good/bad each prediction is

Iris Logistic Regression, P(Yspecies =1 | X)
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Loss for Probabilty Disributions

Cross-entropy more generally is a way to compare any to probability

distributions®
*when used in logistic regression

1.0 + y is always a one-hot vector

p(y1) q(y1) p(y2) q(¥2) p(¥3) q(¥3)

Cross-entropy loss
H(P,Q) = — Yk=1 (k) log q(vx)



Empirical Risk Minimization

Still doing empirical risk minimization, just with a cross-enropy loss

h* = argmin R(h)
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Prediction for Cancer Diagnhosis

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of two test results, X, and Xp.
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Prediction for Cancer Diagnhosis

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of just one test result, X4.



Building on a Linear Model

Linear vs Thresholded Linear vs Logistic Linear




Building on a Linear Model
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Building on a Linear Model



Logistic Regression
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Logistic Regression

Logistic Regression Distribution
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Logistic Regression Decision Boundary

Classification with Logistic Regression
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Slide credit: CMU MLD Matt Gormley



Optimizing a Model for Cancer Diagnosis

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of two test results, X,, Xg. Note: bias term included in X.
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Binary Logistic Regression
1) Model

2) Objective function

3) Solve for 8



Binary Logistic Regression
Gradient



Solve Logistic Regression

1
1+e— 2

J(8) = =~ %i(yP1log9® + (1 - y®) log(1 - 9©))

1 P
Vol (0) = —ﬁzi(y@ — W) x®

y=9(0"x) g =

No closed form solution ®

Back to iterative methods. Solve with (stochastic) gradient descent,
Newton’s method, or Iteratively Reweighted Least Squares (IRLS)



Logistic Regression Decision Boundary

Classification with Logistic Regression
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Exercise

Interact with the linear_logistic.ipynb posted on the course website
schedule

wo - (O w 0.00
W_magnitude - @, -' 2.00
w_angle - (O " 0.00

—— w=[2.00, 0.00]
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Logistic Regression
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Logistic Regression

Logistic Regression Distribution
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Slide credit:

CMU MLD Matt Gormley

Logistic Regression

Classification with Logistic Regression
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Poll 1

For a point x on the decision boundary of logistic regression,
does g(WwTx+ b) = wi'x + b?

9(2) = 1+e72




Multi-class Logistic Regression



Multi-class Logistic Regression

Desmos Demo:
https://www.desmos.com/calculator/53bautbxjp
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https://www.desmos.com/calculator/53bautbxjp

Multi-class Logistic Regression

Cross-entropy loss
£y, 9) = — Xk=1 Y log Ji

Iris Logistic Regression, P(Yspecies =1 | X)
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Logistic Function

Logistic (sigmoid) function converts value from (—o0,00) — (0, 1)
1 e’

g(Z):1+e‘Z=ez+1

g(z) and 1 — g(z) sum to one

Example 2 - g(2) = 0.88, 1-g(2) =0.12



Softmax Function

Softmax function convert each value in a vector of values
from (—o0,0) — (0, 1), such that they all sum to one.

e
g(Z)] = K Z
k=1

z;- 71 —17 10.00477
z, 072 . 4 0.7008
=T s Example| 1 | —10.0349
| A —2| |0.0017

ZK _eZK '
.31 10.2578.




Multiclass Predicted Probability

Multiclass logistic regression uses the parameters learned across all
K classes to predict the discrete conditional probability distribution

of the output Y given a specific input vector x

(Y =11%,0,,60,,0,)] [e07x

p(Y =21x%x,04,0,,05)|=],0%x _ 1 -
_p(Y = 3 X, 01, 02, 03)_ ee'gx Zk=1e k



Multiclass Predicted Probability

Multiclass logistic regression uses the parameters learned across all
K classes to predict the discrete conditional probability distribution
of the output Y given a specific input vector x
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Logistic Regression with
Polynomial Features



Exercise

Interact with the logistic_quadratic.ipynb posted on the course website
schedule
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Exercise

Interact with the logistic_quadratic.ipynb posted on the course website

schedule
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