

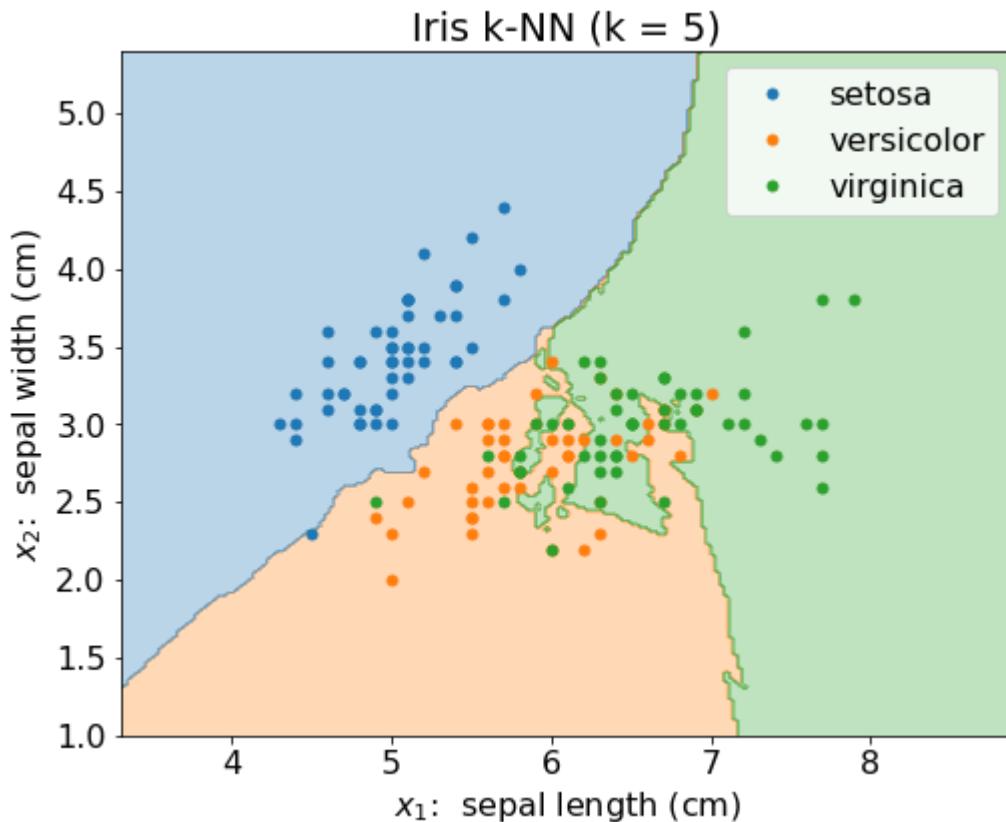
10-315
Introduction to ML

Logistic Regression

Instructor: Pat Virtue

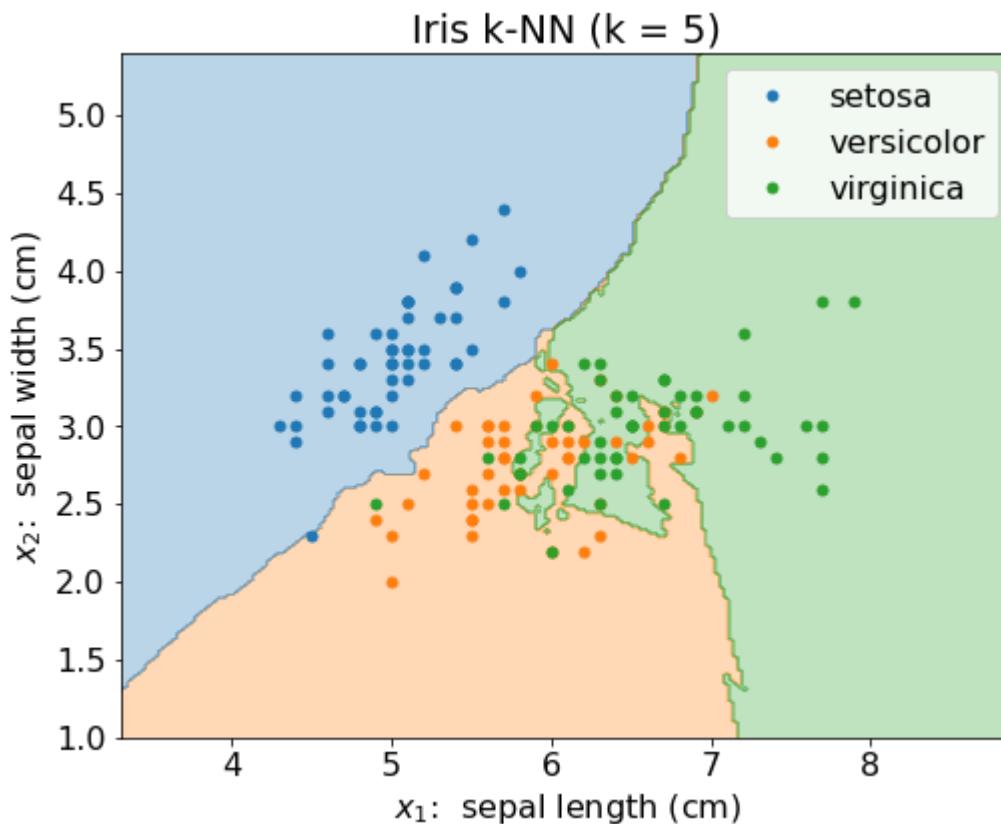
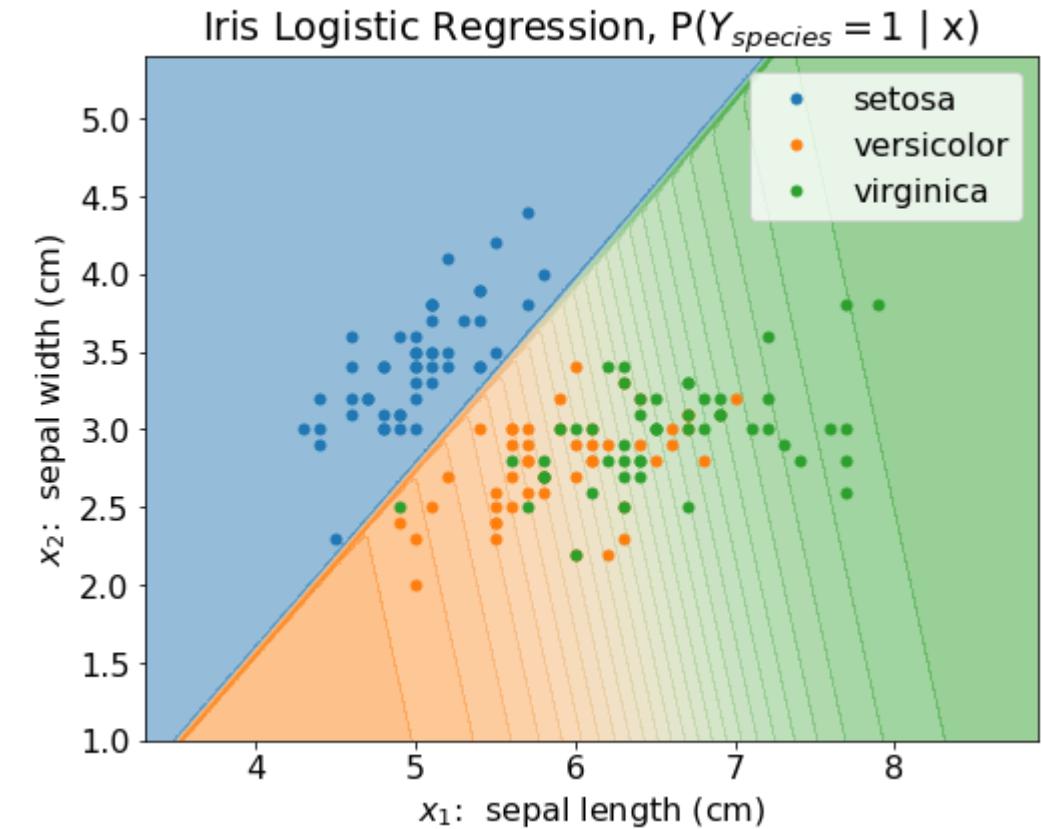
Classification Decisions

Predicting one specific class is troubling, especially when we know that there is some uncertainty in our prediction



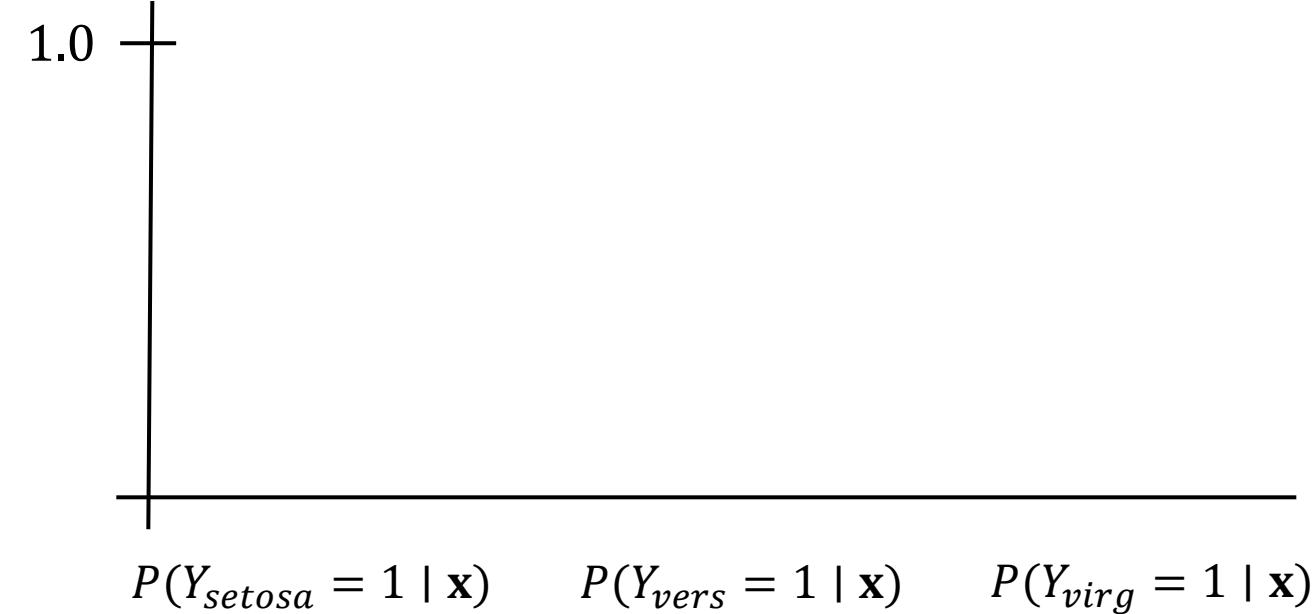
Classification Probability

Constructing a model than can return the probability of the output being a specific class could be incredibly useful

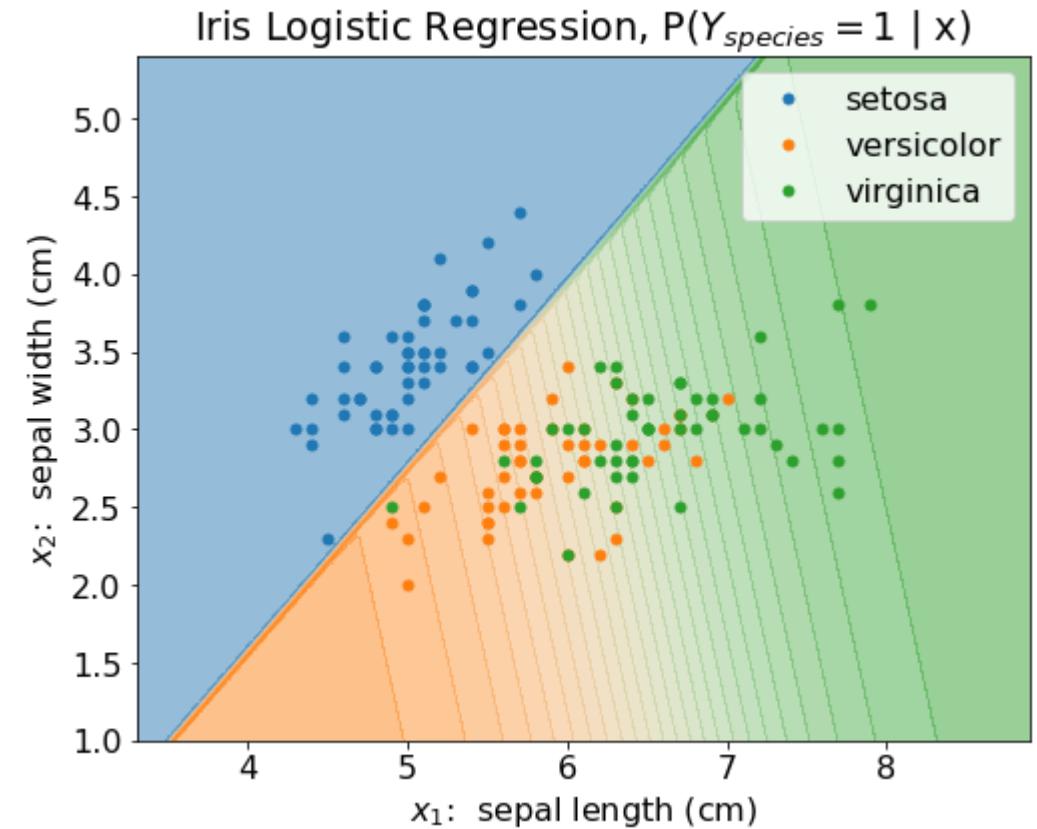


Classification Probability

Constructing a model than can return the probability of the output being a specific class could be incredibly useful

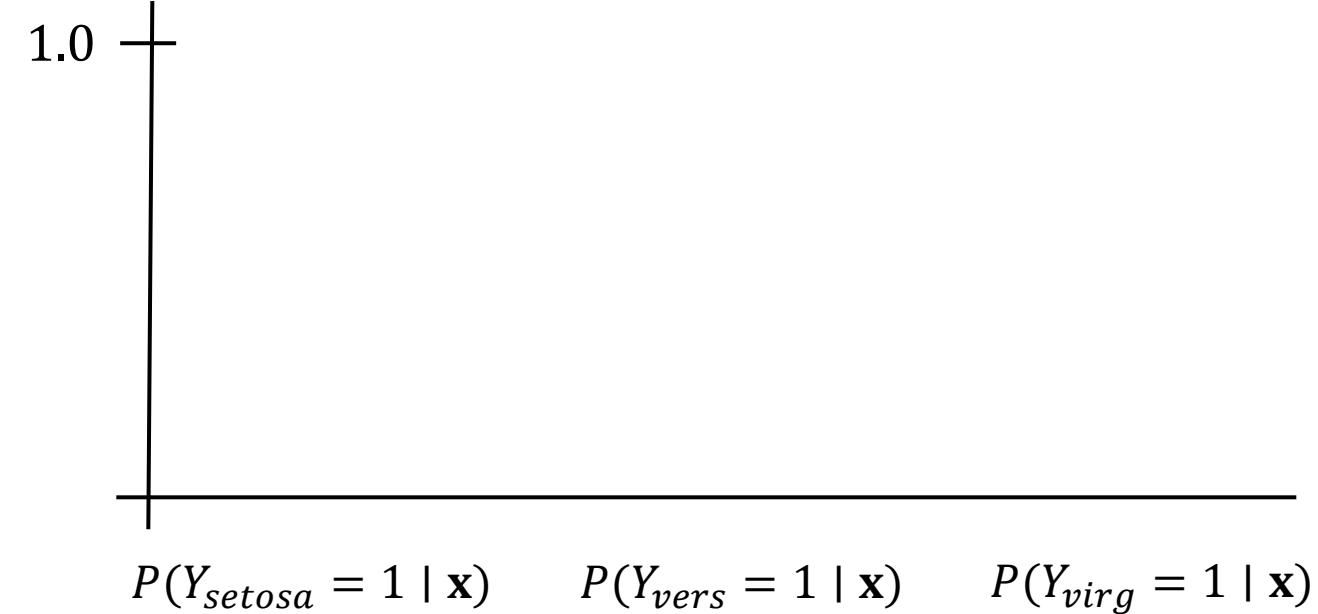


We can still make decisions, .e.g,
$$\operatorname{argmax}_k P(Y_k = 1 | \mathbf{x})$$



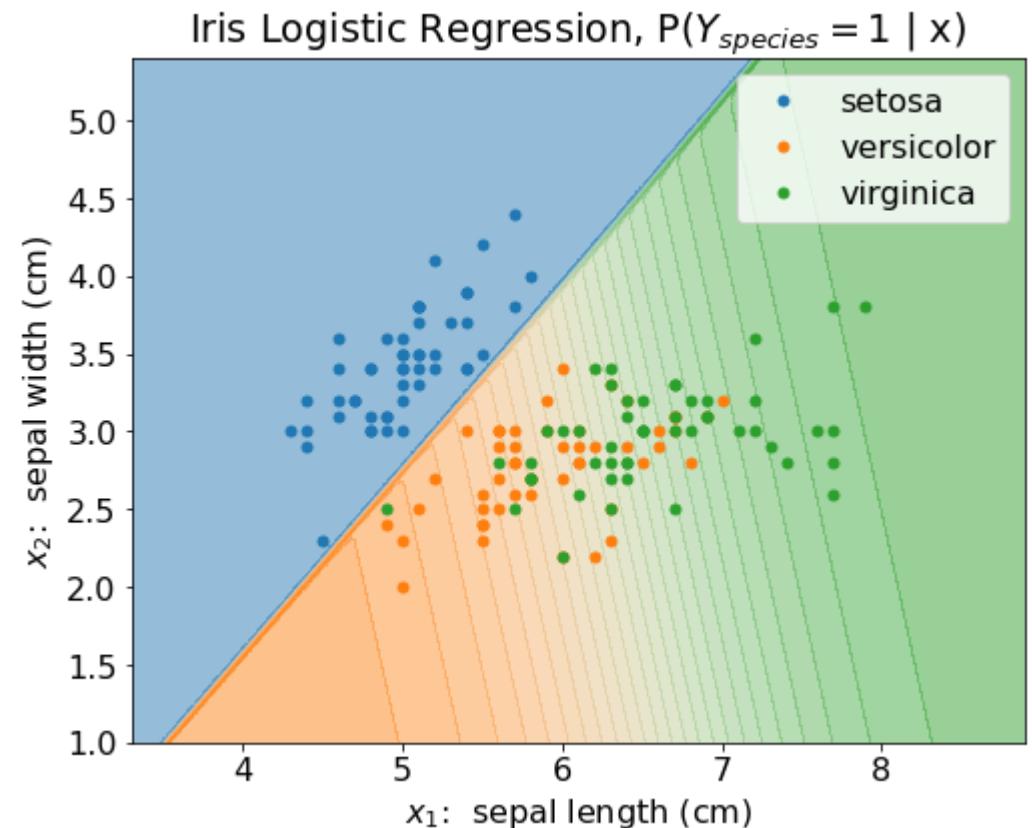
Loss for Probability Distributions

We need a way to compare how good/bad each prediction is



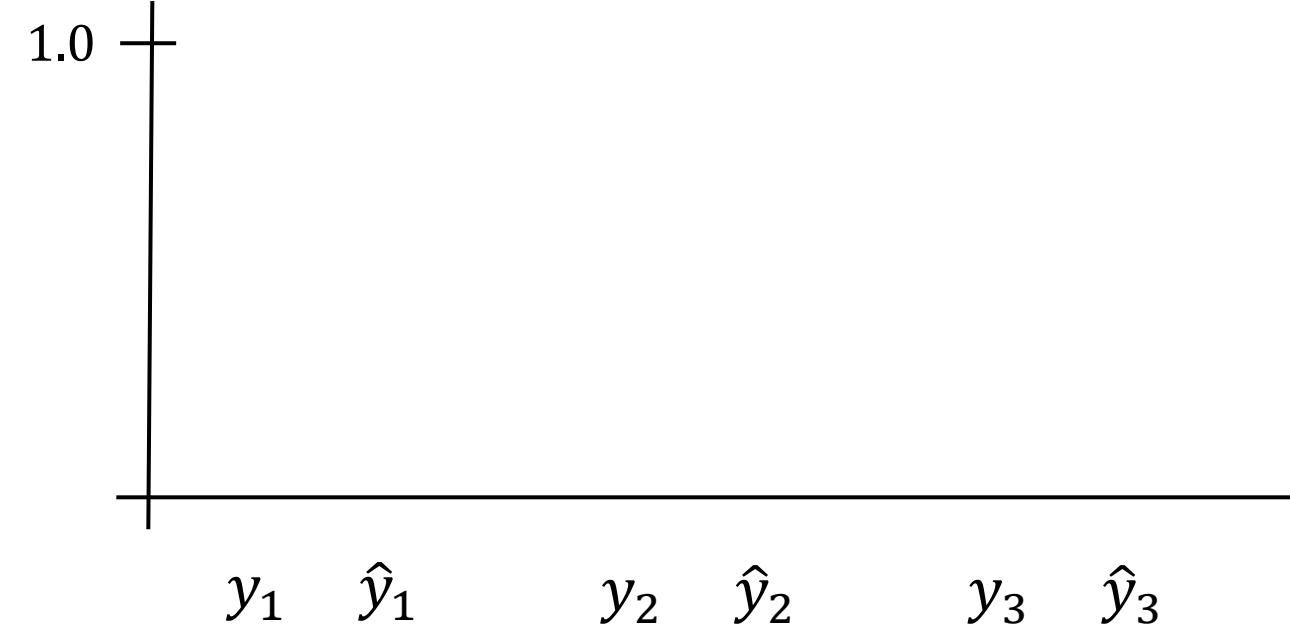
Cross-entropy loss

$$\ell(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{k=1}^K y_k \log \hat{y}_k$$



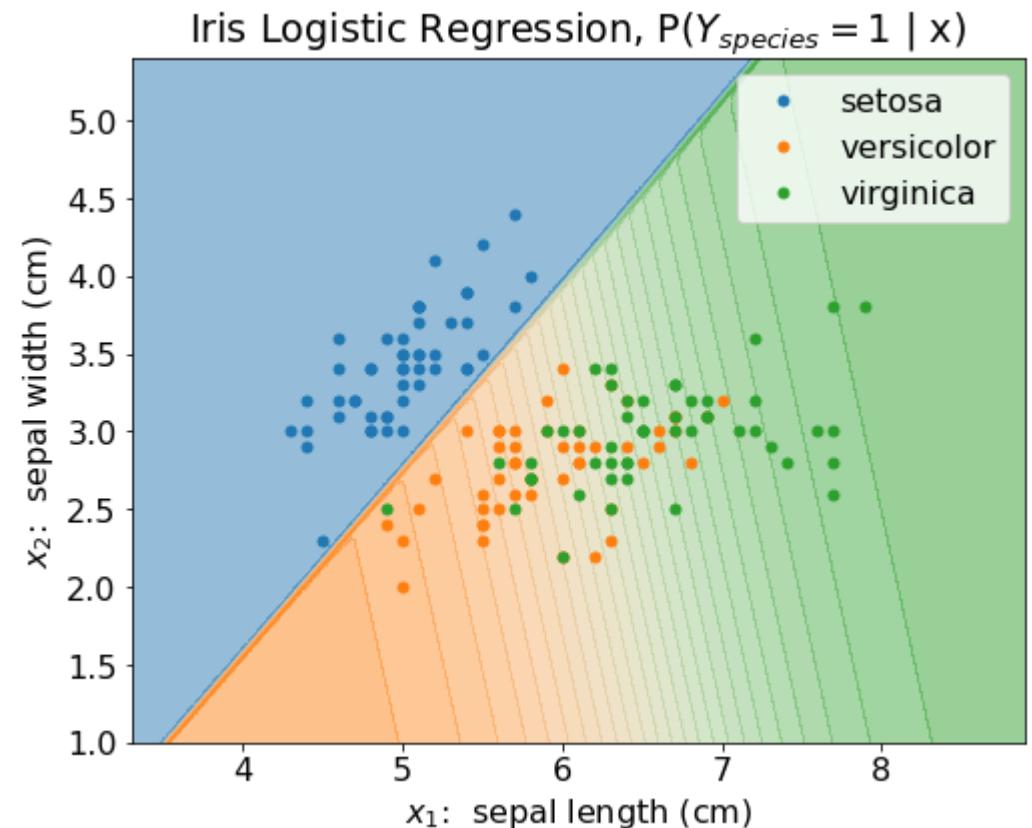
Loss for Probability Distributions

We need a way to compare how good/bad each prediction is



Cross-entropy loss

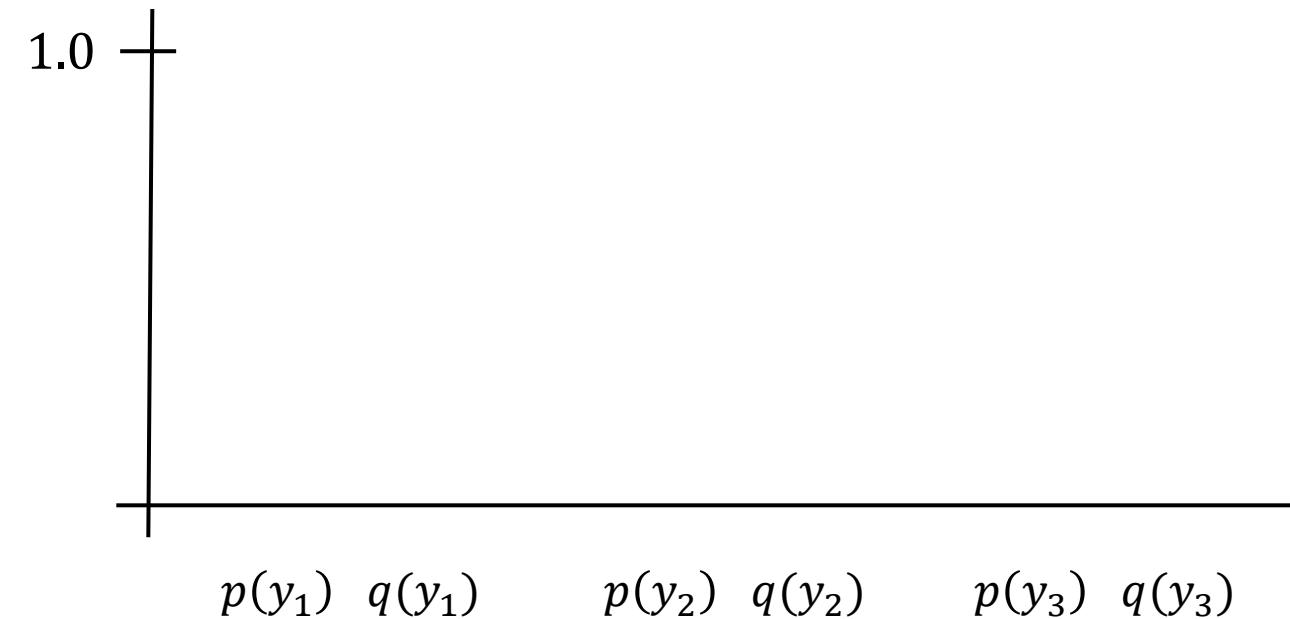
$$\ell(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{k=1}^K y_k \log \hat{y}_k$$



Loss for Probability Distributions

Cross-entropy more generally is a way to compare any two probability distributions*

*when used in logistic regression
 y is always a one-hot vector



Cross-entropy loss

$$H(P, Q) = - \sum_{k=1}^K p(y_k) \log q(y_k)$$

Empirical Risk Minimization

Still doing empirical risk minimization, just with a cross-entropy loss

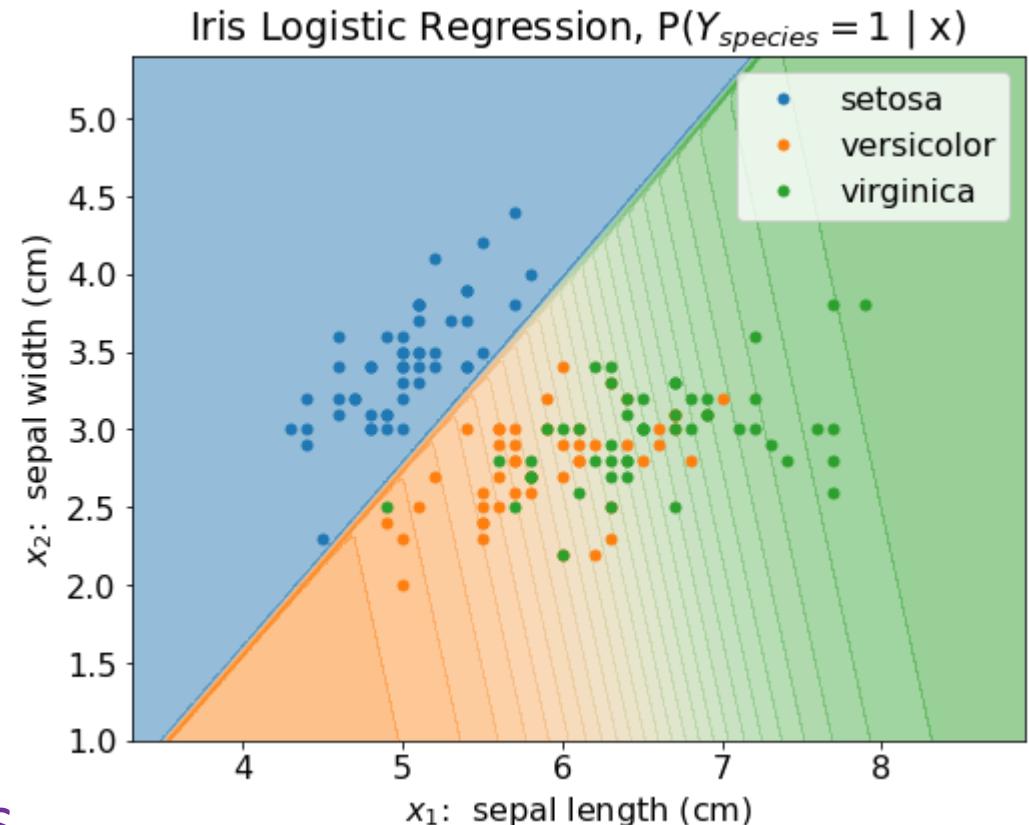
$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)$$

$$\hat{R}(h) = \frac{1}{N} \sum_{i=1}^N \ell \left(y^{(i)}, h \left(x^{(i)} \right) \right)$$

Cross-entropy loss

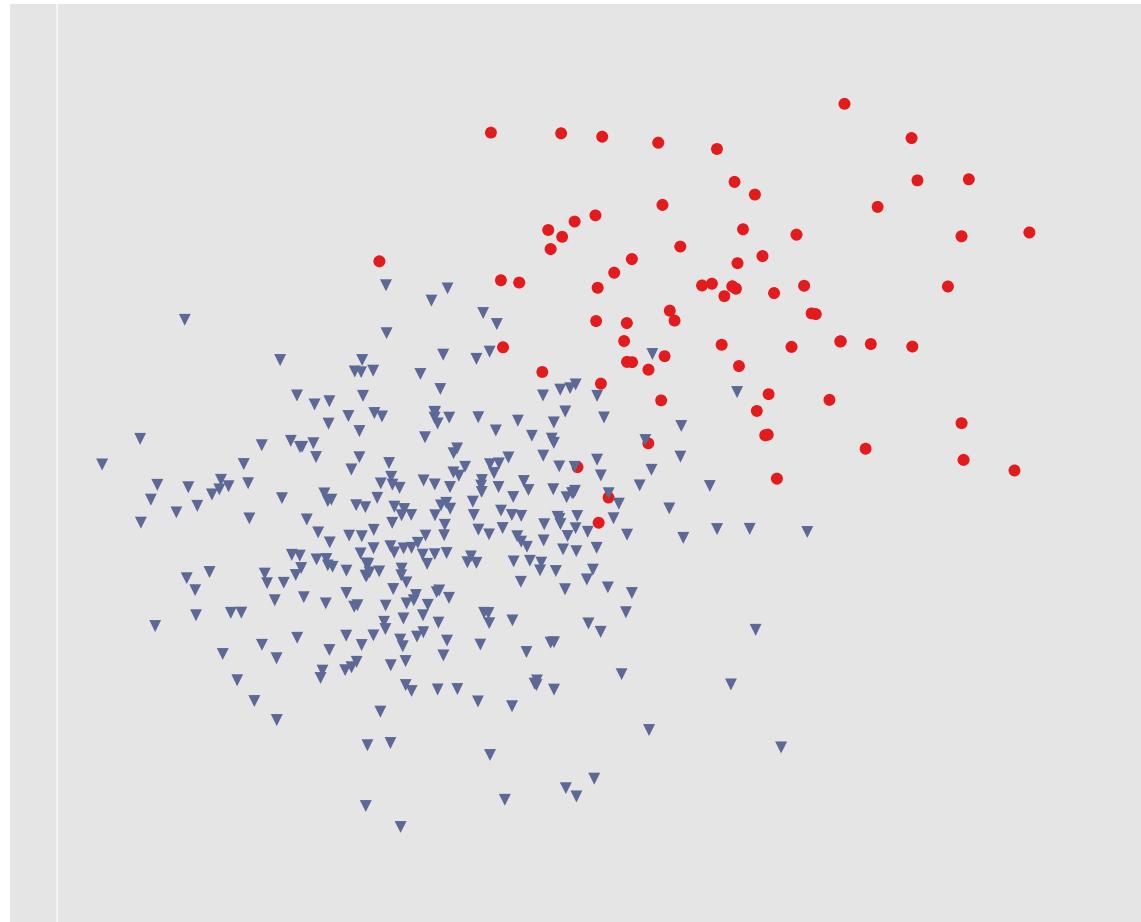
$$\ell(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{k=1}^K y_k \log \hat{y}_k$$

But now we need a model $h_{\theta}(\mathbf{x})$ that returns values that look like probabilities



Prediction for Cancer Diagnosis

Learn to predict if a patient has cancer ($Y = 1$) or not ($Y = 0$) given the input of two test results, X_A and X_B .

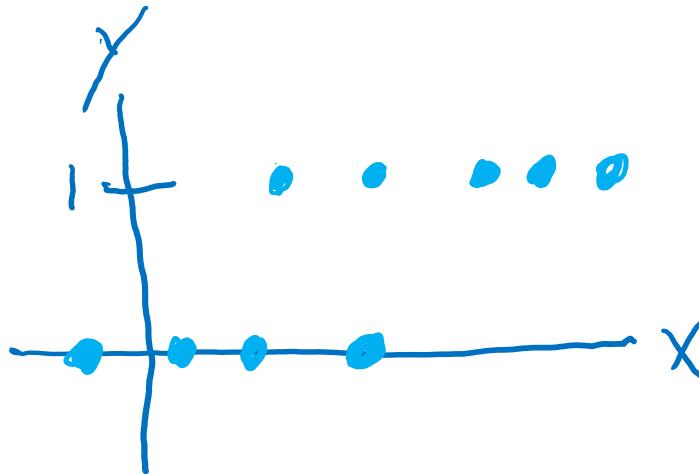
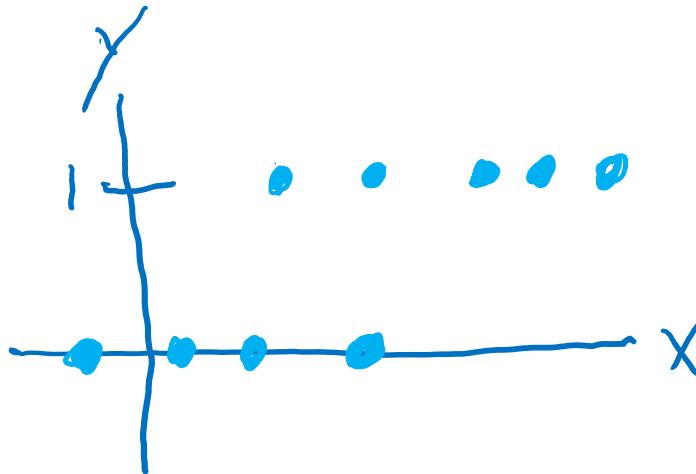
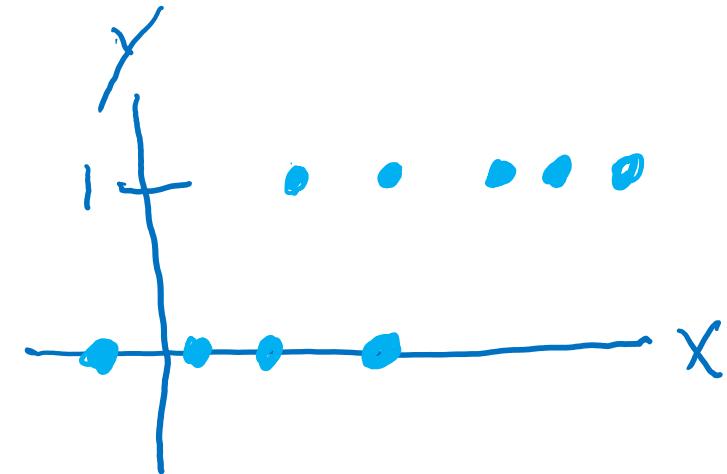


Prediction for Cancer Diagnosis

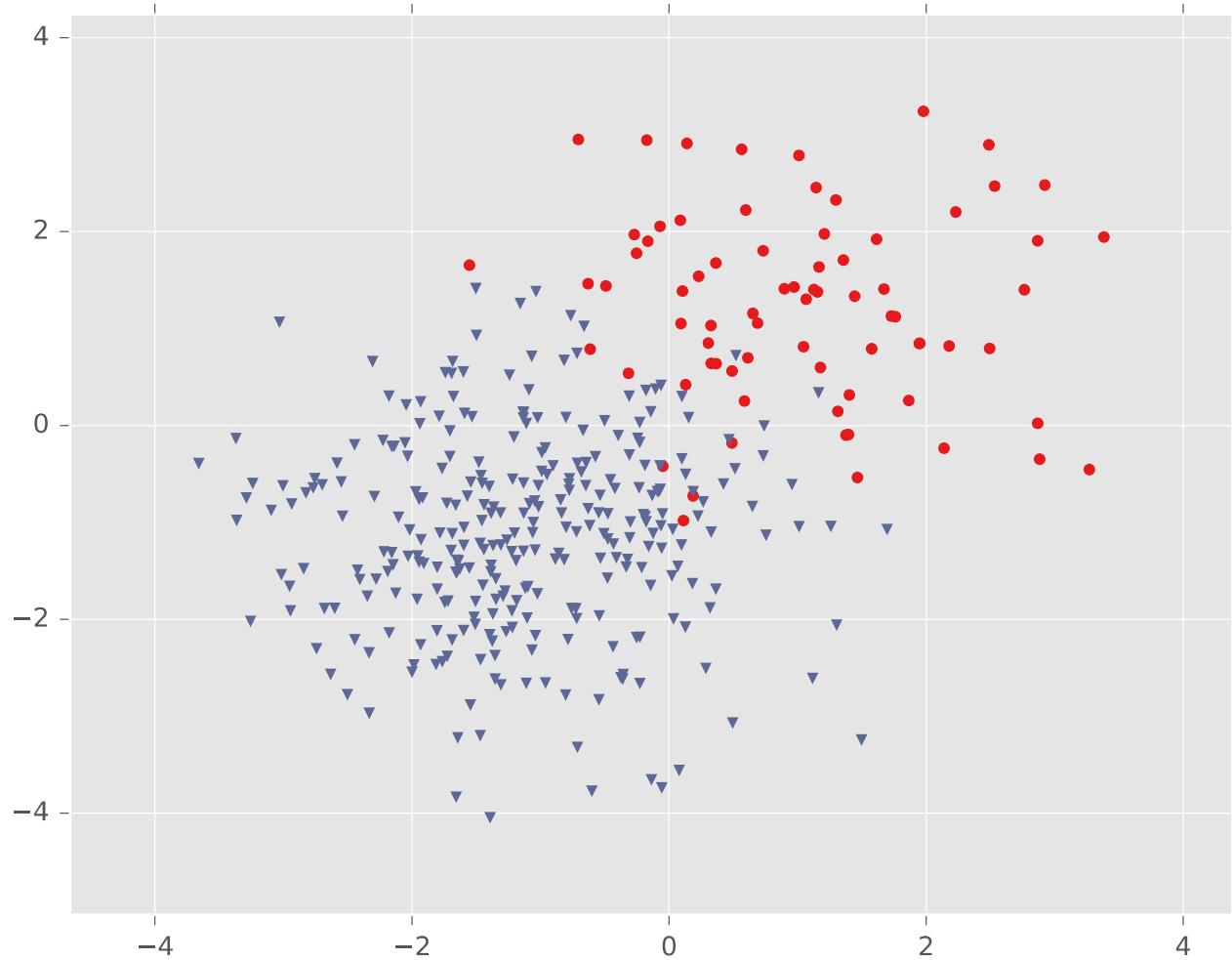
Learn to predict if a patient has cancer ($Y = 1$) or not ($Y = 0$) given the input of just one test result, X_A .

Building on a Linear Model

Linear vs Thresholded Linear vs Logistic Linear

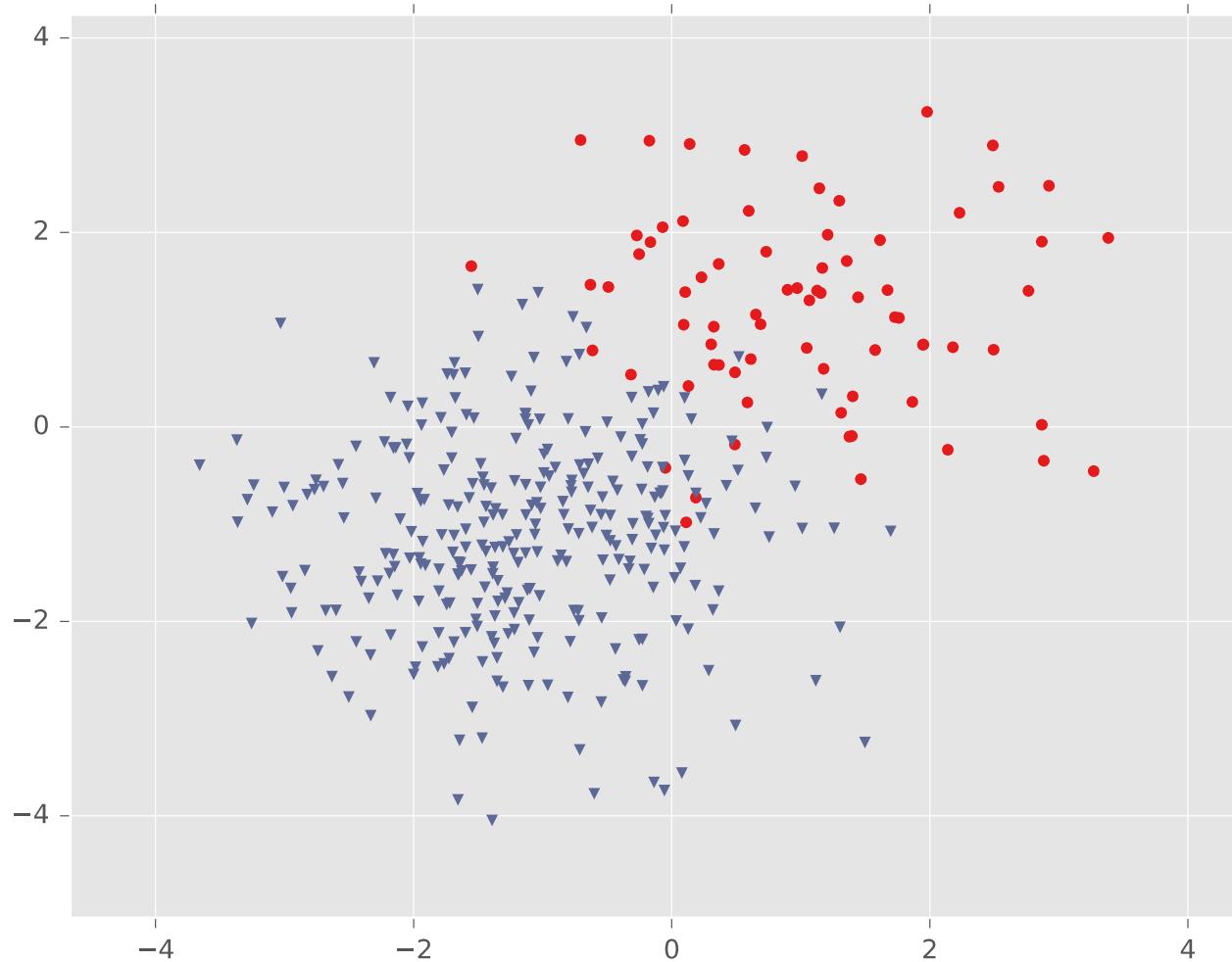


Building on a Linear Model

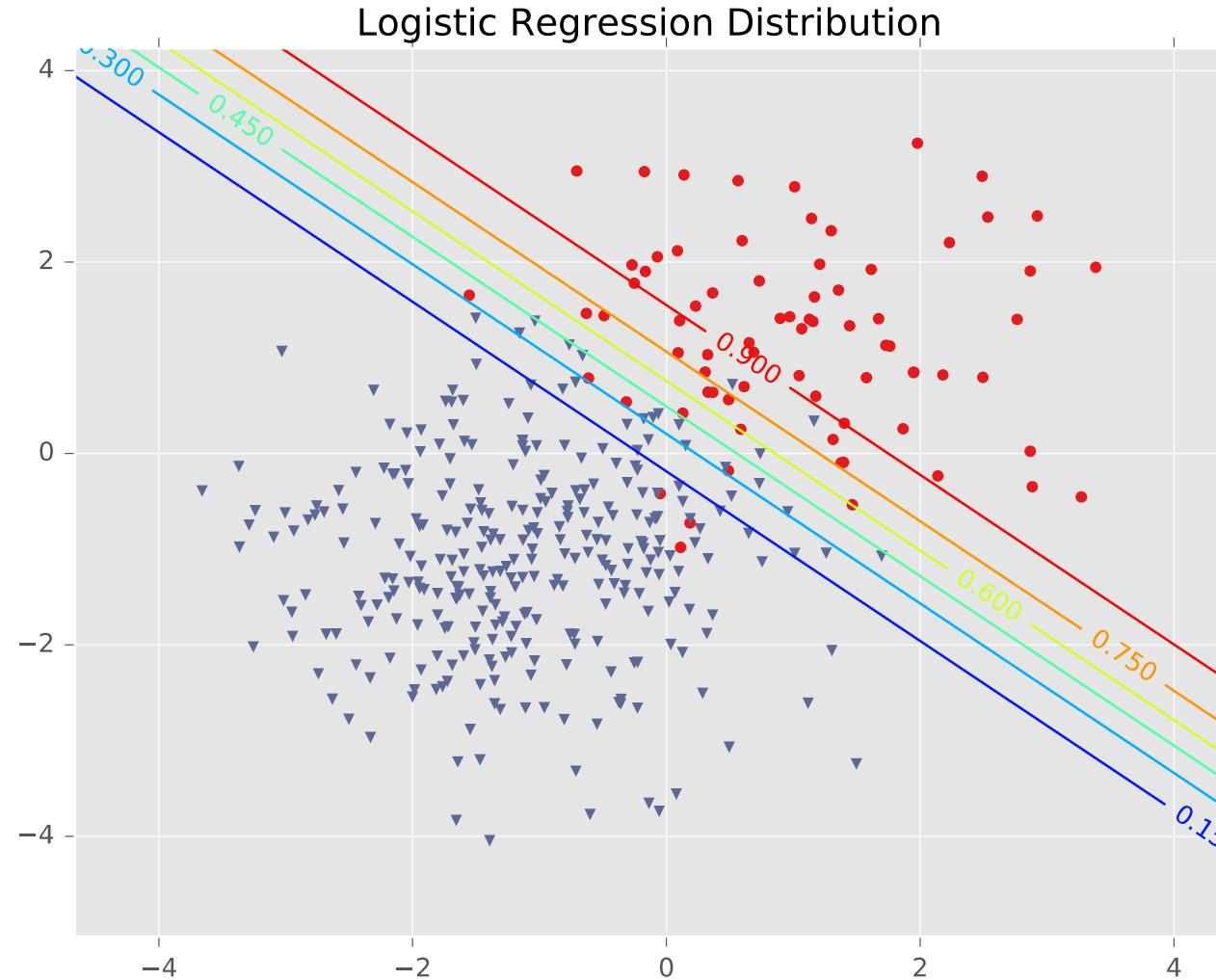


Building on a Linear Model

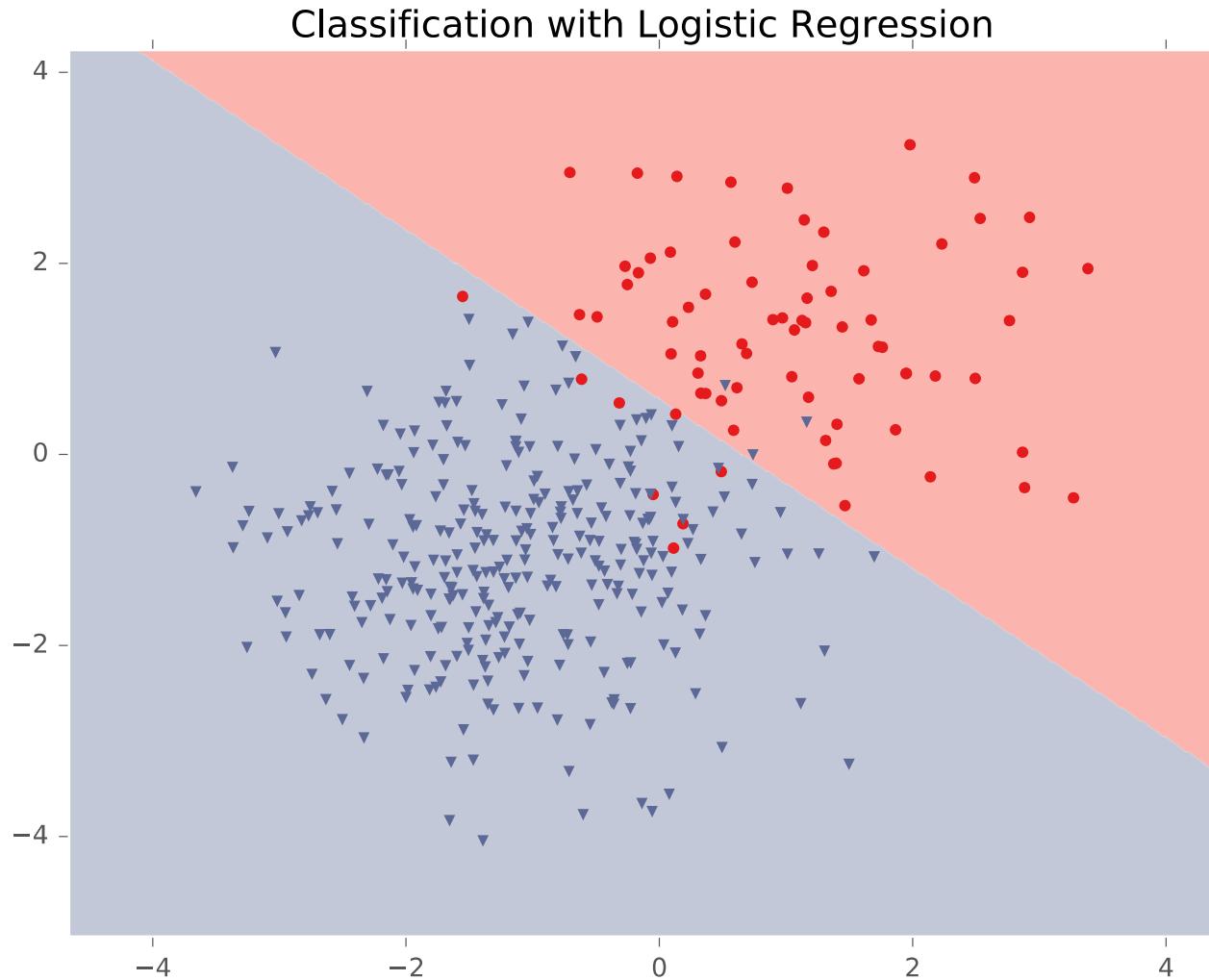
Logistic Regression



Logistic Regression



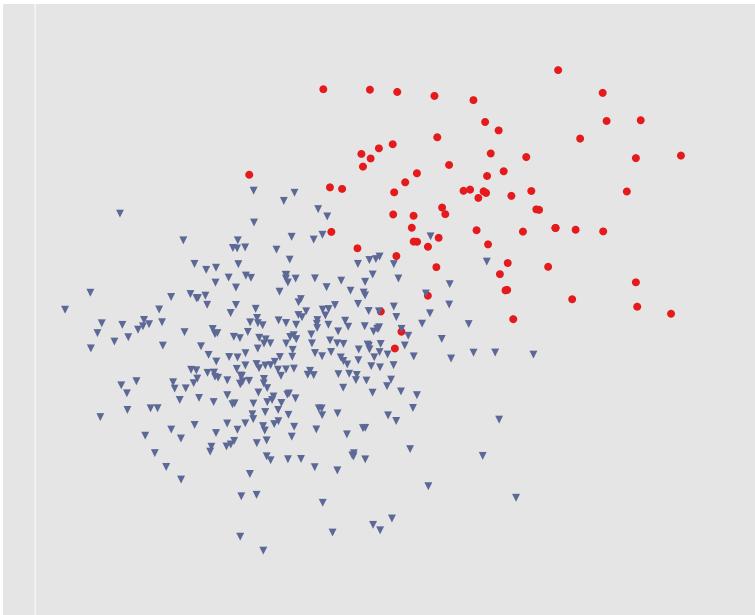
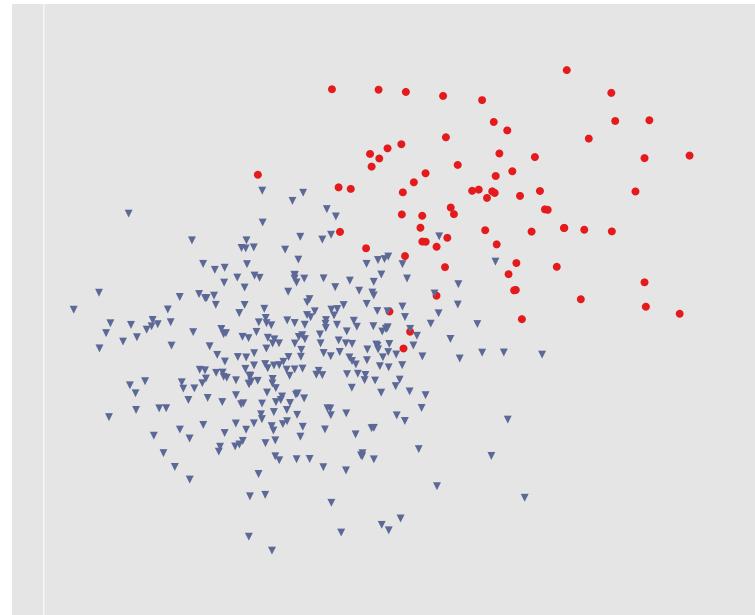
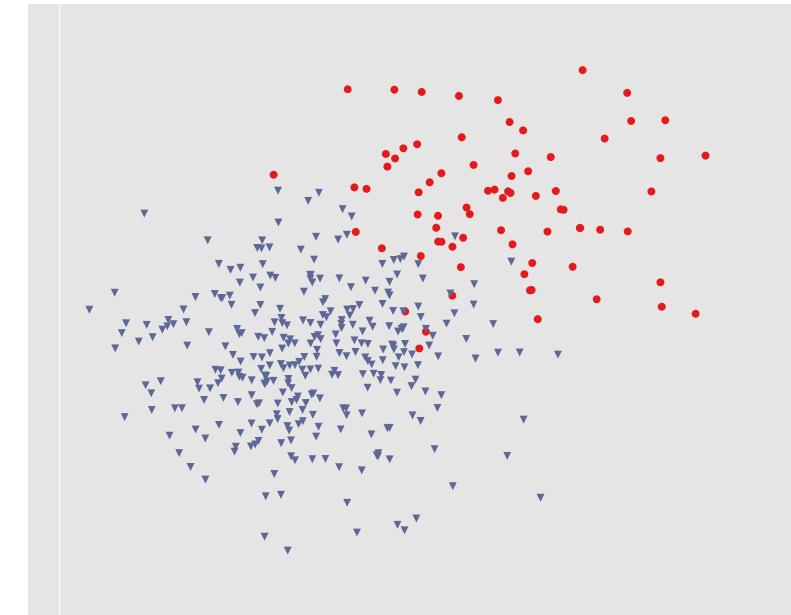
Logistic Regression Decision Boundary



Optimizing a Model for Cancer Diagnosis

Learn to predict if a patient has cancer ($Y = 1$) or not ($Y = 0$) given the input of two test results, X_A, X_B . Note: bias term included in \mathbf{x} .

$$p(Y = 1 | \mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \mathbf{x}}}$$



Binary Logistic Regression

1) Model

2) Objective function

3) Solve for $\hat{\theta}$

Binary Logistic Regression

Gradient

Solve Logistic Regression

$$\hat{y} = g(\boldsymbol{\theta}^T \mathbf{x}) \quad g(z) = \frac{1}{1+e^{-z}}$$

$$J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_i (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$$

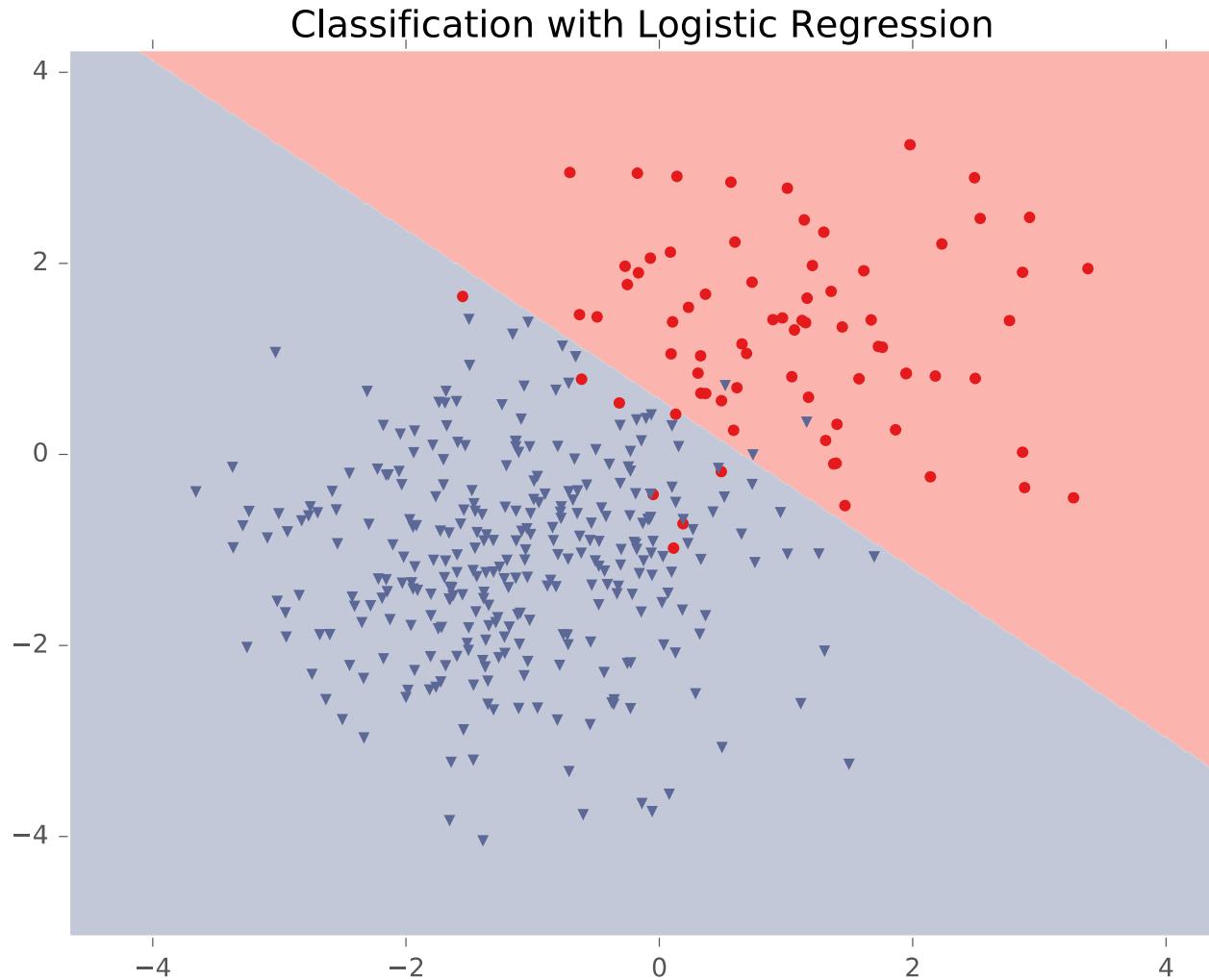
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_i (y^{(i)} - \hat{y}^{(i)}) \mathbf{x}^{(i)}$$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0?$$

No closed form solution ☹

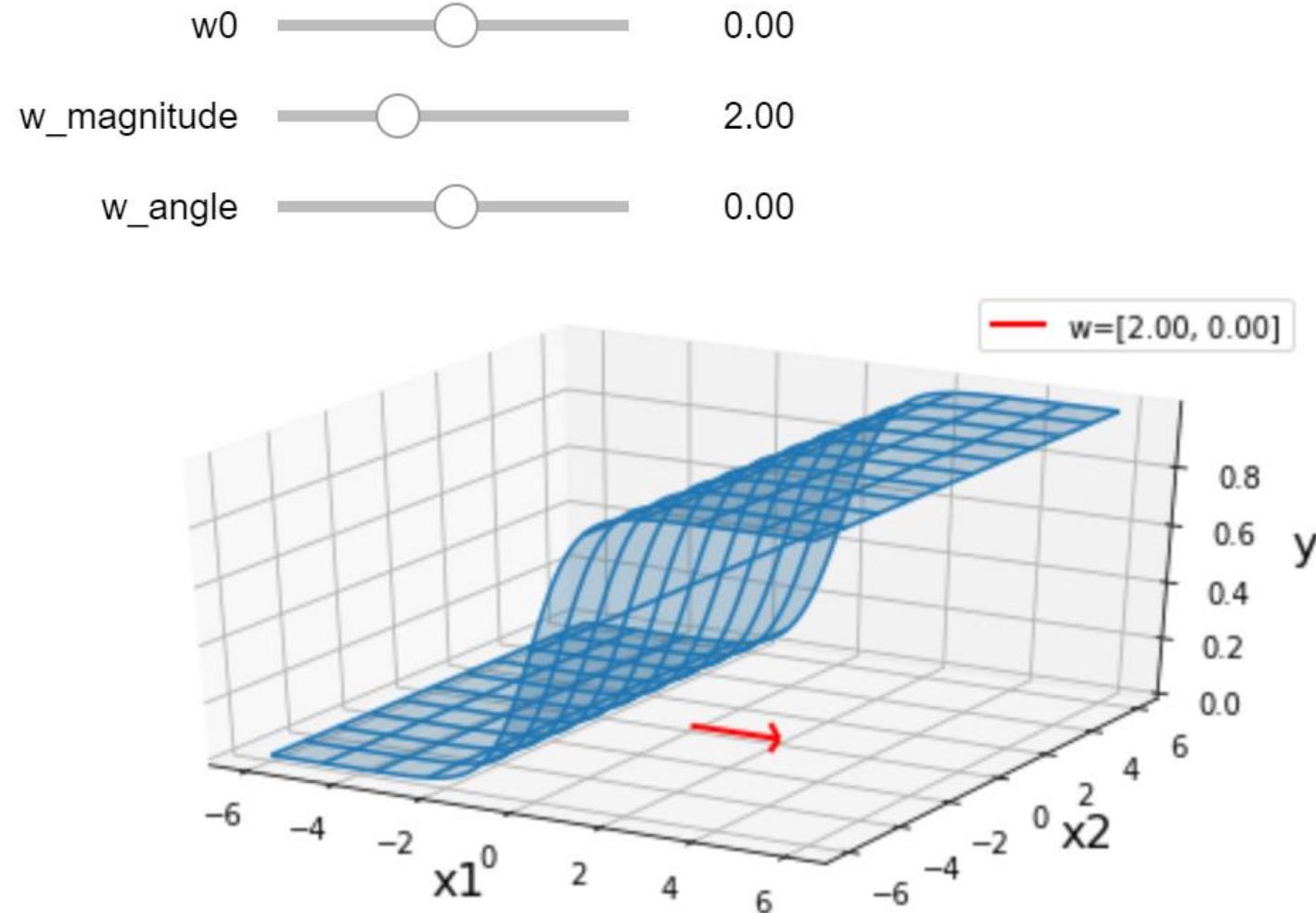
Back to iterative methods. Solve with (stochastic) gradient descent, Newton's method, or Iteratively Reweighted Least Squares (IRLS)

Logistic Regression Decision Boundary



Exercise

Interact with the `linear_logistic.ipynb` posted on the course website schedule



Linear in Higher Dimensions

$$1\text{-D} \quad y = w_0 x + b$$
$$2\text{-D} \quad y = w_0 x_1 + w_1 x_2 + b$$

What are these linear shapes called for 1-D, 2-D, 3-D, M-D input?

$$x \in \mathbb{R}$$

$$x \in \mathbb{R}^2$$

$$x \in \mathbb{R}^3$$

$$x \in \mathbb{R}^M$$

line

plane

hyperplane

hyperplane

point

line

plane

hyperplane

$$w^T x + b = 0$$

$$w^T x + b \geq 0$$

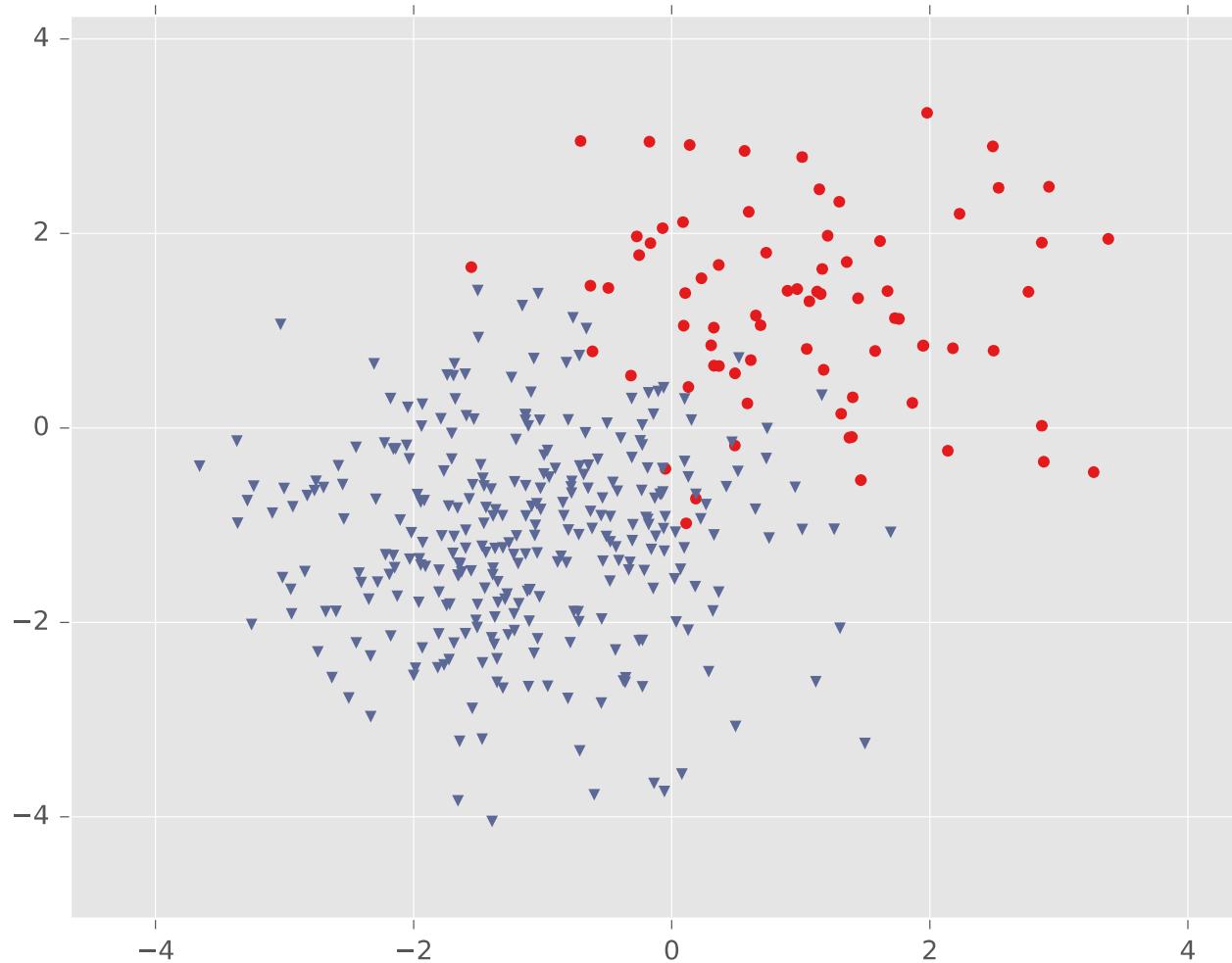
halfline

halfplane

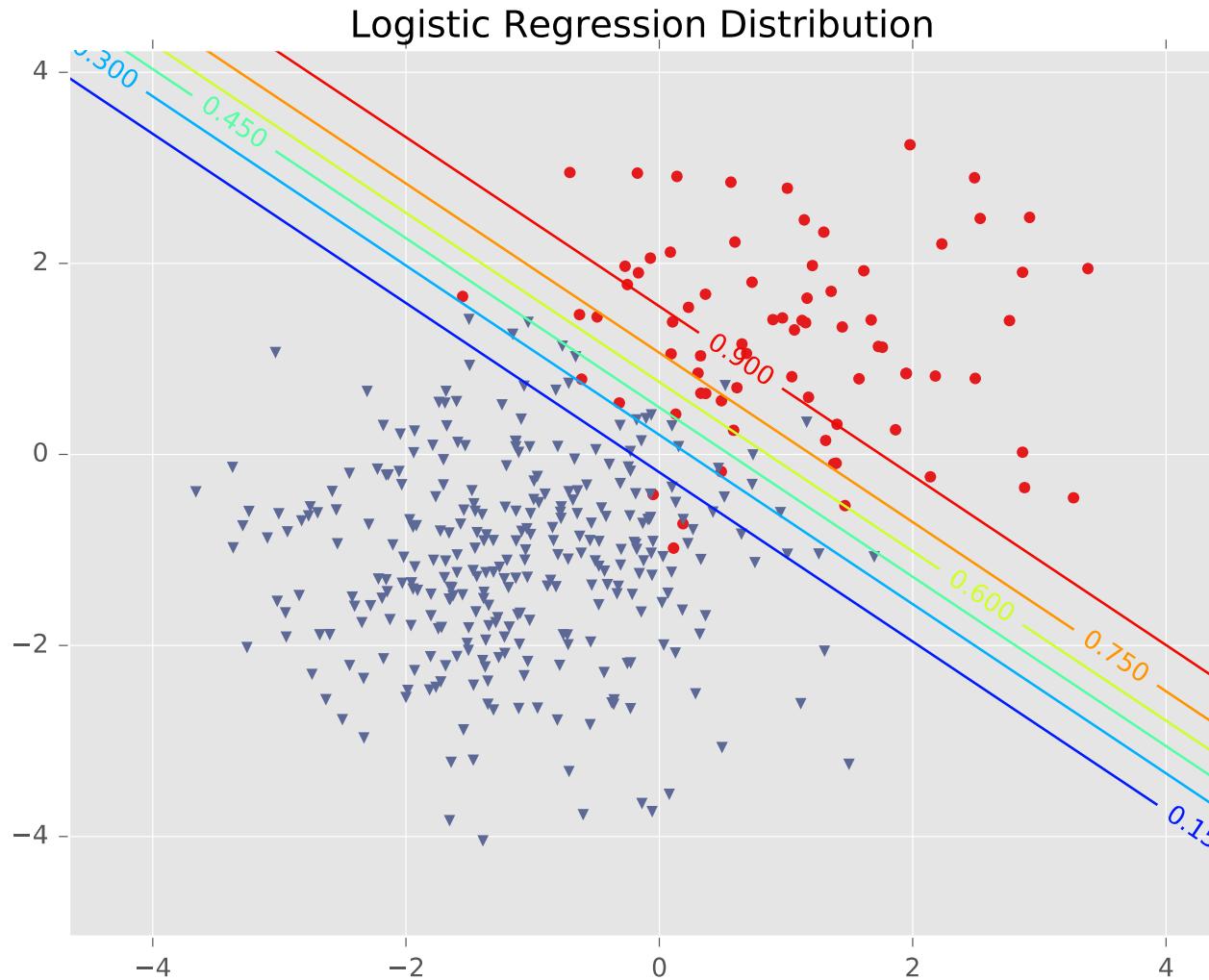
halfspace

halfspace

Logistic Regression

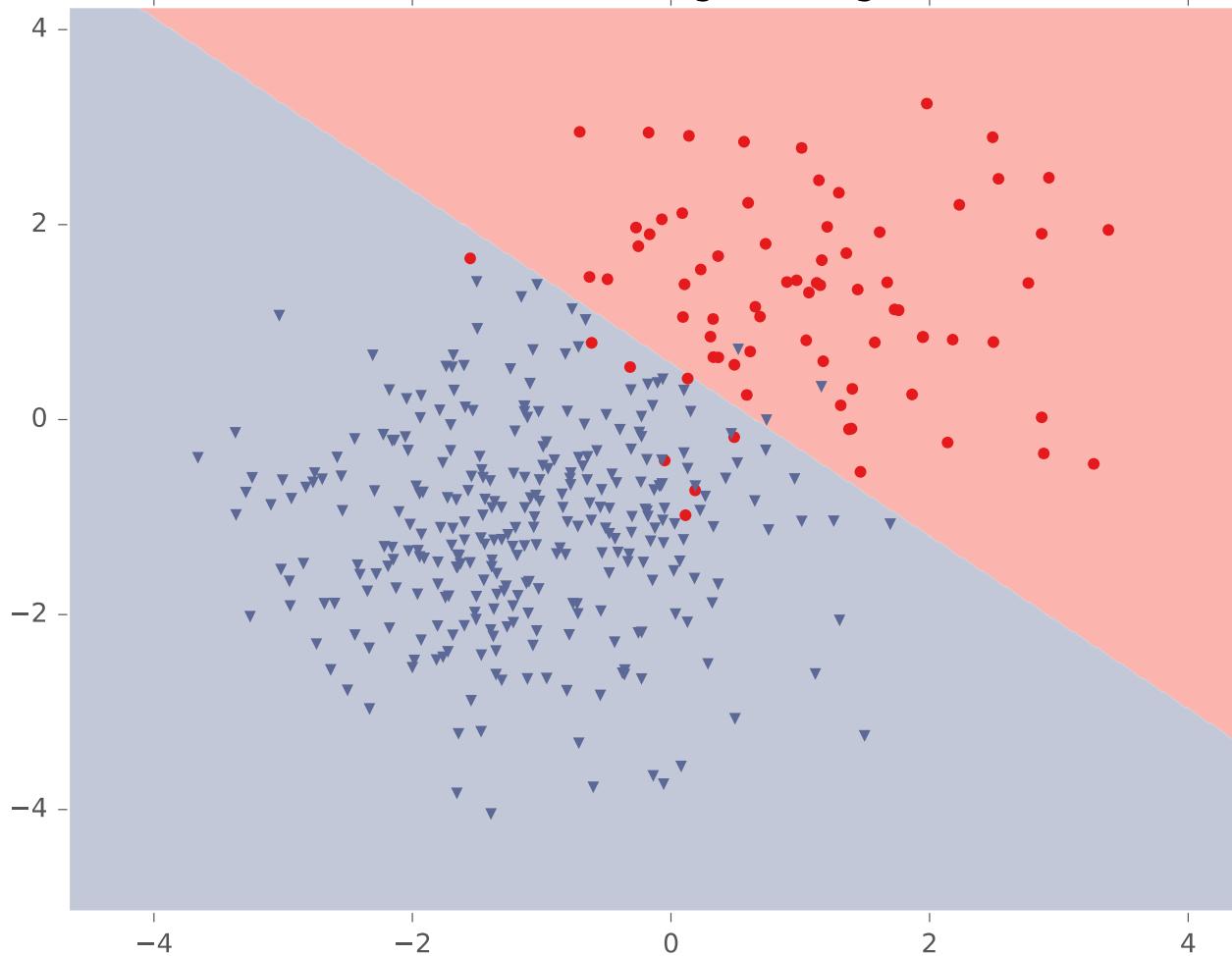


Logistic Regression



Logistic Regression

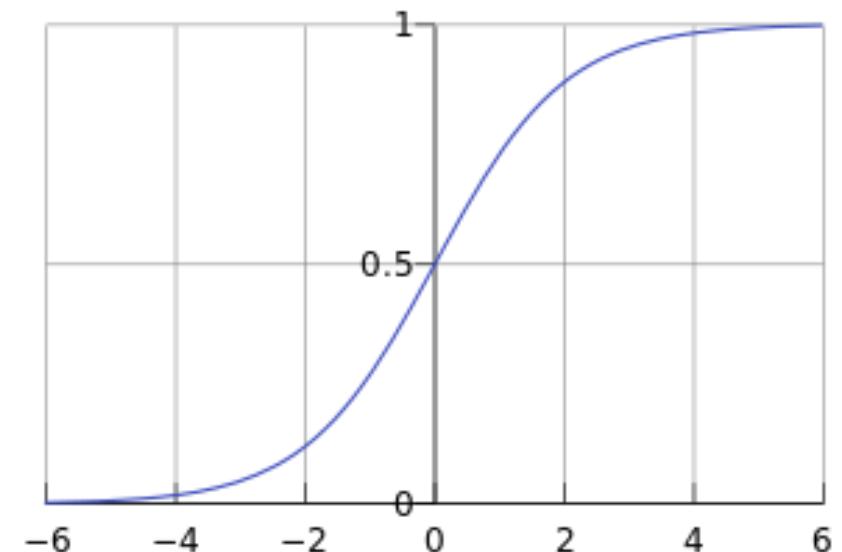
Classification with Logistic Regression



Poll 1

For a point x on the decision boundary of logistic regression,
does $g(\mathbf{w}^T \mathbf{x} + b) = \mathbf{w}^T \mathbf{x} + b$?

$$g(z) = \frac{1}{1 + e^{-z}}$$

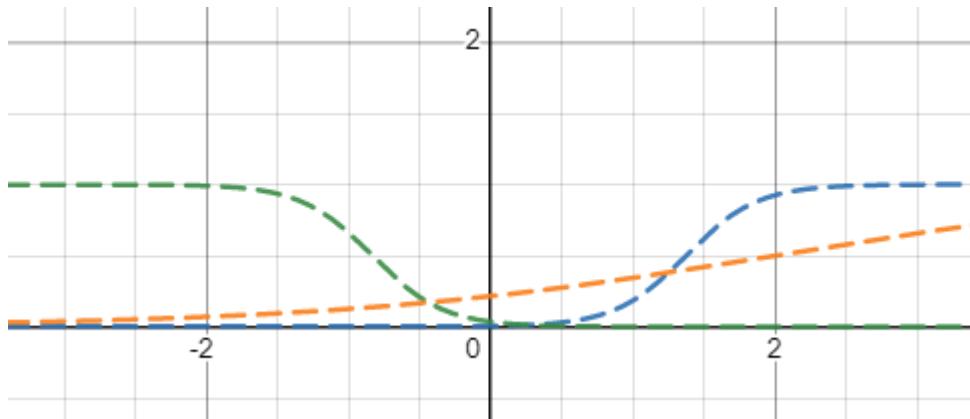
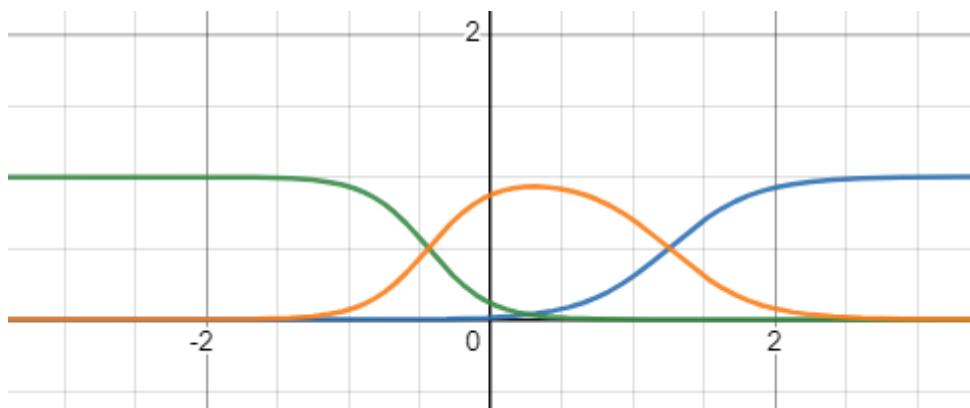


Multi-class Logistic Regression

Multi-class Logistic Regression

Desmos Demo:

<https://www.desmos.com/calculator/53bautbxjp>

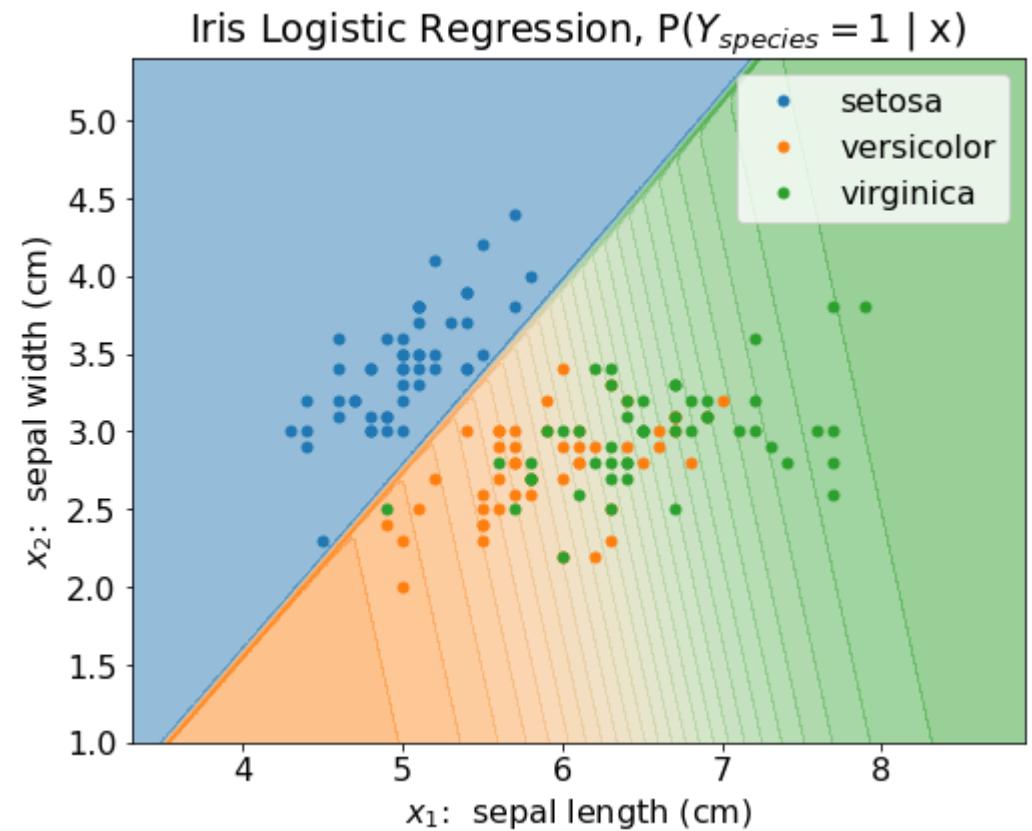


Multi-class Logistic Regression

Cross-entropy loss

$$\ell(y, \hat{y}) = - \sum_{k=1}^K y_k \log \hat{y}_k$$

Model



Logistic Function

Logistic (sigmoid) function converts value from $(-\infty, \infty) \rightarrow (0, 1)$

$$g(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$$

$g(z)$ and $1 - g(z)$ sum to one

Example 2 $\rightarrow g(2) = 0.88, \quad 1-g(2) = 0.12$

Softmax Function

Softmax function convert each value in a vector of values from $(-\infty, \infty) \rightarrow (0, 1)$, such that they all sum to one.

$$g(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

$$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_K \end{bmatrix} \rightarrow \begin{bmatrix} e^{z_1} \\ e^{z_2} \\ \vdots \\ e^{z_K} \end{bmatrix} \cdot \frac{1}{\sum_{k=1}^K e^{z_k}}$$

Example $\begin{bmatrix} -1 \\ 4 \\ 1 \\ -2 \\ 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0.0047 \\ 0.7008 \\ 0.0349 \\ 0.0017 \\ 0.2578 \end{bmatrix}$

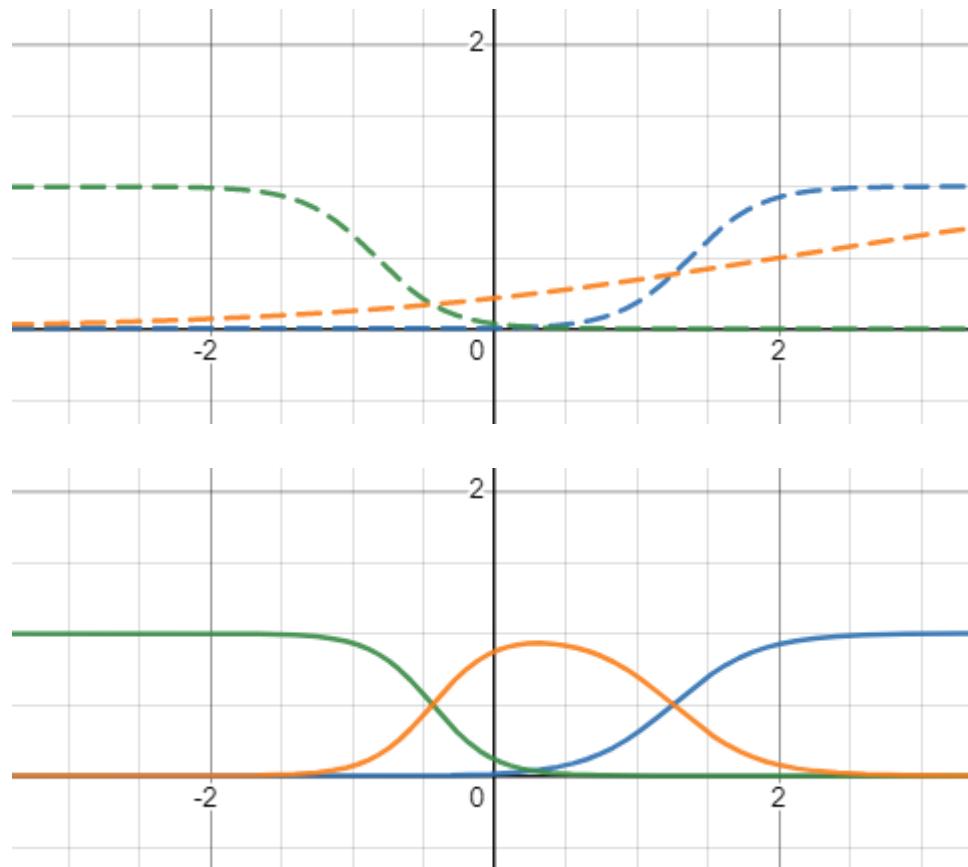
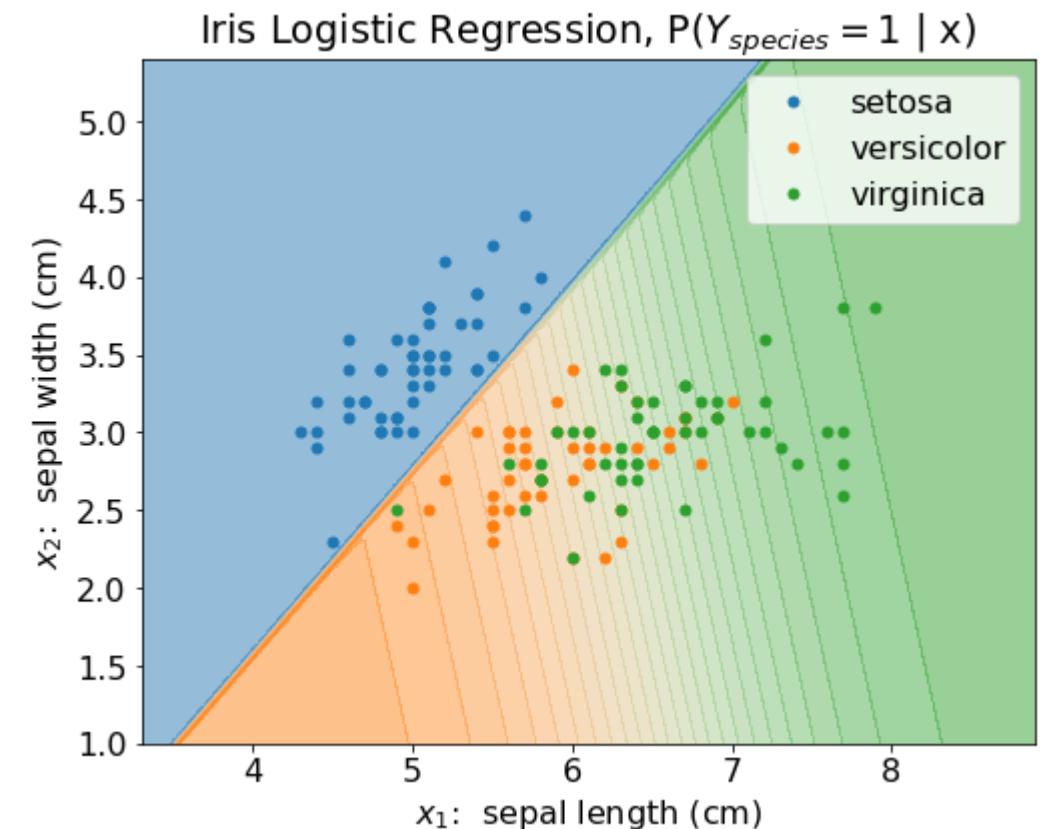
Multiclass Predicted Probability

Multiclass logistic regression uses the parameters learned across all K classes to predict the discrete conditional probability distribution of the output Y given a specific input vector \mathbf{x}

$$\begin{bmatrix} p(Y = 1 \mid \mathbf{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3) \\ p(Y = 2 \mid \mathbf{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3) \\ p(Y = 3 \mid \mathbf{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3) \end{bmatrix} = \begin{bmatrix} e^{\boldsymbol{\theta}_1^T \mathbf{x}} \\ e^{\boldsymbol{\theta}_2^T \mathbf{x}} \\ e^{\boldsymbol{\theta}_3^T \mathbf{x}} \end{bmatrix} \cdot \frac{1}{\sum_{k=1}^K e^{\boldsymbol{\theta}_k^T \mathbf{x}}}$$

Multiclass Predicted Probability

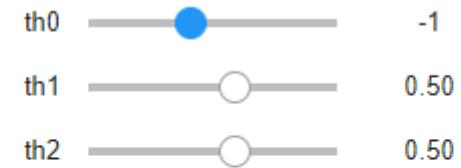
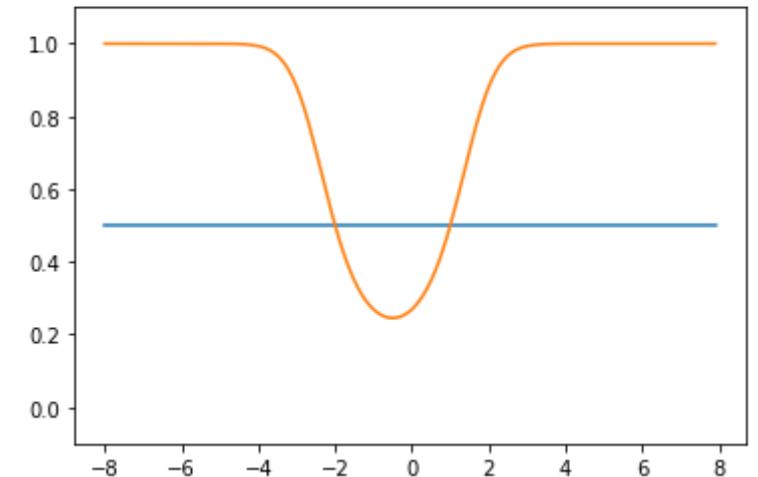
Multiclass logistic regression uses the parameters learned across all K classes to predict the discrete conditional probability distribution of the output Y given a specific input vector \mathbf{x}



Logistic Regression with Polynomial Features

Exercise

Interact with the `logistic_quadratic.ipynb` posted on the course website schedule



Exercise

Interact with the `logistic_quadratic.ipynb` posted on the course website schedule

