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Linear Data

Regression on simple linear dataset
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Non-linear Data

Linear regression on polynomial data?
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Non-linear Data

Regression on simple linear dataset
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Non-linear Data
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Two ways to think about it
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function - Linear Regression (poly=2)
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

* Withjust N =10
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How Do We Deal with Real-world Problems
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How Do We Deal with Real-world Problems
SPAM Classification
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How Do We Deal with Real-world Problems
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How Do We Deal with Real-world Problems

Predicting Rating from Written Movie Review ;} _ k(;ﬂ
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How Do We Deal with Real-world Problems

Images: Handwritten Digits
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How Do We Deal with Real-world Problems

Images: Face Recognition




How Do We Deal with Real-world Problems

Images: Animal Classification

Image: ImageNet



How Do We Deal with Real-world Problems

Images: Animal Classification

input image \nsuallzatlon of HOG features
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Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



How Do We Deal with Real-world Problems

Preview: Neural Networks
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How Do We Deal with Real-world Problems

Preview: Neural Networks
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