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Linear Data

Regression on simple linear dataset
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Non-linear Data

Linear regression on polynomial data?
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Non-linear Data

Regression on simple linear dataset
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Non-linear Data

Polynomial feature map for linear regression
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Non-linear Data
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https://www.youtube.com/watch?v=3liCbRZPrZA

Two ways to think about it
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function - Linear Regression (poly=2)
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=3)
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Over-fitting
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Polynomial Coefficients

M=0 M=1 M=3 M =9
B0 0.19 082 031 0.35
0, 127 7.99 232.37
0, -25.43 _5321.83
6 17.37 48568.31
0, -231639.30
05 640042.26
6 ~1061800.52
6, 1042400.18
0 _557682.99

125201.43



Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial
basis function
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Example: Linear Regression

* Withjust N =10
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How Do We Deal with Real-world Problems
Pyt v vote,  vote,

/X X
Dem yes nO

R{P \/65 NP
Rep NO ’y€§

PoI|t|C|an Votl?g Cla55|f|cat|on




How Do We Deal with Real-world Problems
SPAM Classification
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How Do We Deal with Real-world Problems
SPAM Classification
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How Do We Deal with Real-world Problems

Predicting Rating from Written Movie Review ;} _ k(;ﬂ
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How Do We Deal with Real-world Problems

Images: Handwritten Digits
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How Do We Deal with Real-world Problems

Images: Face Recognition




How Do We Deal with Real-world Problems

Images: Animal Classification

Image: ImageNet



How Do We Deal with Real-world Problems

Images: Animal Classification

input image \nsuallzatlon of HOG features
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Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



How Do We Deal with Real-world Problems

Preview: Neural Networks
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Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



How Do We Deal with Real-world Problems

Preview: Neural Networks

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



