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Previous Poll
Linear regression. What is linear about it?
Select all that apply.

A. Always fits a linear (or affine) shape to 
the data

B. Linear objective function with respect to 
the input

C. Linear objective function with respect to 
the parameters

D. None of the above
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Linear Data
Regression on simple linear dataset
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Non-linear Data
Linear regression on polynomial data?
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Non-linear Data
Regression on simple linear dataset

𝑦 𝒙! 𝒙𝟐
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Non-linear Data
Polynomial feature map for linear regression

Input x

O
ut

pu
t y



Non-linear Data
Polynomial feature map 
for linear classification

https://www.youtube.com/watch?v=3liCbRZPrZA

https://www.youtube.com/watch?v=3liCbRZPrZA


Feature Maps
Two ways to think about it



Example: Linear Regression
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Over-fitting

Slide credit: CMU MLD William Cohen



Polynomial Coefficients   

Slide credit: CMU MLD William Cohen



Example: Linear Regression
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Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
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Example: Linear Regression
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Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

• With just N = 10 
points we overfit!

• But with N = 100 
points, the 
overfitting 
(mostly) 
disappears

• Takeaway: more 
data helps 
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How Do We Deal with Real-world Problems
Politician Voting Classification



How Do We Deal with Real-world Problems
SPAM Classification



How Do We Deal with Real-world Problems
SPAM Classification



How Do We Deal with Real-world Problems
Predicting Rating from Written Movie Review



How Do We Deal with Real-world Problems
Images: Handwritten Digits



How Do We Deal with Real-world Problems
Images: Face Recognition



How Do We Deal with Real-world Problems
Images: Animal Classification

Image: ImageNet



How Do We Deal with Real-world Problems
Images: Animal Classification

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html



How Do We Deal with Real-world Problems
Preview: Neural Networks

Image: https://jakevdp.github.io/PythonDataScienceHandbook/05.14-image-features.html
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