10-315
Introduction to ML

Nearest Neighbor

and
Model Selection

Instructor: Pat Virtue




Decision Trees with Continuous Features

Consider input features x € R?.

Draw a reasonable decision tree. ]
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Poll 1

Decision tree generalization
Which of the following generalize best to unseen examples?
A. Small tree with low training accuracy

Large tree with low training accuracy

B
C. Small tree with high training accuracy
D. Large tree with high training accuracy



Poll 1

Decision tree generalization
Which of the following generalize best to unseen examples?

C. Small tree with high training accuracy



Poll 2

True or False:

For any dataset, you can find a decision tree that can perfectly classify
the training data?



Nearest Neighbor Classifier

Test subject

O
@ @ O
O
@ O
@
o O
[ ) v
u ®
¢ ¢ @® Whales
o O
® Seals
() ® Sharks
®




Nearest Neighbor Classifier

Test subject

@
O
@
@

¢ @® Whales
O Seals
® Sharks

®




Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, xe RM

and a test input Xx;.¢¢, predict the class label, V;oq:

1) Find the closest point in the training data to X,
n = argmin d(X;pg , x™)

n
2) Return the class label of that closest point
5} — y(n)
test

Need distance function! What should d(x, z) be?

IxD)= 118 -2,



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from
3 different species: Iris setosa (0), Iris virginica (1), Iris
versicolor (2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from
3 different species: Iris setosa (0), Iris virginica (1), Iris
versicolor (2) collected by Anderson (1936)

RN

Length Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4 ‘
1 5.7 2.8

1 6.3 33

1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Nearest Neighbor on Fisher Iris Data
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Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley
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Poll 3

Which methods can achieve zero training error on this dataset?

A. Decision trees

B. 1-Nearest Neighbor

C. Both

D. Neither

If zero error, draw the decision boundary.
Otherwise, why not?

+
+
+ + -
-+




Poll 3

Which methods can achieve zero training error on this dataset?

C. Both

If zero error, draw the decision boundary.
Otherwise, why not?

+
+
+ + -
-+




Decision Boundaries

Decision tree Nearest neighbor




Decision Boundaries
7
Decision tree Nearest neighbor
p) == X2
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Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary

Voronoi Diagram




Poll 4

1-nearest neighbor will likely:

ve rfit

B. Underfit
C. Neither (it’s a great learner!)



Poll 4

1-Nearest neighbor will likely:
A. Overfit



Nearest Neighbor on Fisher Iris Data

Slide credit: CMU MLD Matt Gormley

21



Nearest Neighbor on Gaussian Data
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Nearest Neighbor on Gaussian Data

Slide credit: CMU MLD Matt Gormley
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kNN classifier (k=5)

Test document
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Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, xe RM

and a test input X;.¢, predict the class label, V;oq:

1) Find the closest point in the training data to X,
n = argmin d(x;pq , xW) =—

n
2) Return the class label of that closest point

ytest — y(n)



k-Nearest Neighbor Classification

Given a training dataset D = {y("),x(")}zzl, y€{1,..,C}, xe RM

and a test input X;.¢, predict the class label, V;oq:

1) Find the closest k points | ining data to X,
Nk (xtest:D)

2) Return the class label of that closest point
Vtest = argmaxp(Y = C | X¢est, D, k)
C

1 .
= argmax - z ]I(y(‘) = c) <&
: { € Ng(Xtest.D)

= argma &
C

where k. is the number of the k-neighbors with class label ¢



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best k?

How do we choose a learner that is accurate and also generalizes to
unseen data?

* Larger k = predicted label is more stable
—> Smaller k = predicted label is more affected by individual training

points

But how to choose k?



k-NN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = ‘uniform’)
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Slide credit: CMU MLD Matt Gormley
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k-NN on Fisher Iris Data

3-Class classification (k = 2, weights

5.0 -
4.5 -
4.0 -
3.5 -
3.0 -
2.5 -
2.0 -
1.5-

1.0 - I I I I

Slide credit: CMU MLD Matt Gormley

= 'uniform’)
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k-NN on Fisher Iris Data

3-Class classification (k = 3, weights = ‘uniform')
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k-NN on Fisher Iris Data

3-Class classification (k = 4, weights = ‘uniform')
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k-NN on Fisher Iris Data

3-Class classification (k = 5, weights = ‘uniform')
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k-NN on Fisher Iris Data

3-Class classification (k = 10,

weights = 'uniform’)

Slide credit: CMU MLD Matt Gormley
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¥ =
k-NN on Fisher Iris Data 150

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)

5.0 -
4.5 -

XZ

3.5 -

3.0 -

NN )
o eo00

RO

2.5 -

[

2.0 -

Slide credit: CMU MLD Matt Gormley
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k-NN: Remarks

Inductive Bias:
1. Close points should have similar labe
2. All dimensions are created equally!

T
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k-NN: Remarks

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!

Slide credit: CMU MLD Matt Gormley
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k-NN: Remarks

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

Slide credit: CMU MLD Matt Gormley
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Poll 5 (train) and Poll 6 (predict)

EE—

Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1
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Poll 5 (train) and Poll 6 (predict)

Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1

A. O(1)

G. O(NM)



k-NN: Remarks

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

Train 0(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) @

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)




k-NN: Remarks

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

Train 0(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) @

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)




MODEL SELECTION



Model Selection

WARNING:

* |n some sense, our discussion of model selection is
premature.

* The models we have considered thus far are fairly simple.

* The models and the many decisions available to the data
scientist wielding them will grow to be much more complex
than what we’ve seen so far.



Model Selection

Statistics

Def: a model defines the data generation
process (i.e. a set or family of parametric
probability distributions)

Def: model parameters are the values that
give rise to a particular probability <
distribution in the model family

Def: learning (aka. estimation) is the process
of finding the parameters that best fit the
data

Def: hyperparameters are the parameters of
a prior distribution over parameters

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

e

_——
Def: hyperparameters are the tunable

aspects of the model, that the learning
algorithm does not select




Model Selection

Example: Decision Tree

model = set of all possible trees, possibly
restricted by some hyperparameters (e.g.
max depth)

parameters = structure of a specific decision
tree

learning algorithm = ID3, CART, etc.

hyperparameters = max-depth, threshold for
splitting criterion, etc.

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Example: k-Nearest Neighbors

model = set of all possible nearest neighbors
classifiers

parameters = none
(KNN is an instance-based or non-parametric
method)

learning algorithm = for naive setting, just
storing the data

hyperparameters = k, the number of
neighbors to consider

Machine Learning

Def: (loosely) a model defines the hypothesis
space over which learning performs its
search

Def: model parameters are the numeric
values or structure selected by the learning
algorithm that give rise to a hypothesis

Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the tunable
aspects of the model, that the learning
algorithm does not select



Model Selection

Statistics Machine Learning

* Def: a model defines the data generation * Def: (loosely) a model defines the hypothesis
process (l.e. a set or.famlly If “learning” is all about hich learning performs its
probability distributions) .

picking the best

* Def: model parameters are] parameters how do we |parameters are the numeric
give rise to a particular prof pick the best ructure selected by the learning
distribution in the model fa = at give rise to a hypothesis

hyperparameters?

* Def: learning (aka. estimati : ing algorithm defines the data-
of finding the paramet at best fit the driven sear& \er the hypothesis space (i.e.
data search for go rameters)

* Def: hyperparameters are the parameters of * Def: hyperparameters are the tunable
a prior distribution over parameters aspects of the model, that the learning
algorithm does not select



Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose the “best”

model from among a set of candidates
— Def: hyperparameter optimization is the process by which we choose
the “best” hyperparameters from among a set of candidates (could be

called a special case of model selection)

* Both assume access to a function capable of measuring the
quality of a model

* Both are typically done “outside” the main training algorithm -
typically training is treated as a black box



Experimental Design

Input Output Notes

training dataset * best model parameters  We pick the best model

hyperparameters parameters by learning on
the training dataset for a

fixed set of
hyperparameters

Hyperparameter training dataset * best hyperparameters We pick the best

Optimization validation dataset hyperparameters by
learning on the training data

and evaluating error on the
' validation error

o=

Testing test dataset * testerror We evaluatg a hypothe_f,i§
hypothesis (i.e. fixed corresponding to a decision

el rule with fixed model
model parameters) parameters on a test

dataset to obtain test error




Special Cases of k-NN 75 3%

=
k=1: Nearest Neighbor k=N: Majority Vote /O O 10 O

3-Class classification (k = 1, weights = 'uniform’) 3-Class classification (k = 150, weights = 'uniform’)
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Slide credit: CMU MLD Matt Gormley 57



Example of Hyperparameter Optimization
Choosing k for k-NN




Example o
Choosing k for k-NN
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Classification with KNN (k = 1, weights = 'uniform') Classification with KNN (k = 144, weights = ‘uniform’)

K-NN: Choosing k

o Train / Test Errors with k-NN N

07- @ train
v validation
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error

0.3 -
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10° 101 102

Fisher Iris Data: varying the value of k
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Classification with KNN (k = 1, weights = 'uniform') Classification with KNN (k = 81, weights = ‘uniform’) |
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Validation

Why do we need validation?

=" Choose hyperparameters
" Choose technique

" Help make any choices beyond our parameters

But now, we have another choice to make!
" How do we split training and validation?

Trade-offs

" More held-out data, better meaning behind validation numbers
= More held-out data, less data to train on!



Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error

on remaining partition (rotating validation partition on each run).
Report average validation error

validation

Total number of examples I:I training

[C

Run 1

Run 2

Run K




Cross-validation

Leave-one-out (LOQO) cross-validation

Special case of K-fold with K=N partitions
Equivalently, train on N-1 samples and validate on only one
sample per run for N runs

|:| training I:Ivalidation
Total number of examples

¢ >

Run 1

Run 2

Run K




Cross-validation

Random subsampling

Randomly subsample a fixed fraction aN (0< a <1) of the dataset

for validation.

Compute validation error with remaining data as training data.

Repeat K times
Report average valid

ation error

Total number of examples

I:I training I:Ivalidation

4

Run 1

Run 2

Run K




Poll 7

Say you are choosing amongst 7 discrete values of a decision tree
mutual information threshold, and you want to do K=5-fold cross-
validation.

How many times do | have to train my model?
A. 1

. 5
.7

m o O w
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Poll 7

Say you are choosing amongst 7 discrete values of a decision tree
mutual information threshold, and you want to do K=5-fold cross-

validation.

How many times do | have to train my model?



Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter optimization: (to talk about

later)
-3

e Grid search

* Random search

* Bayesian optimization

e Graduate-student descent

Main Takeaway:
— Model selection [ hyperparameter optimization is just another
form of learning
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