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Decision Trees with Continuous Features
Consider input features 𝑥 ∈ ℝ2.

Draw a reasonable decision tree.
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Poll 1
Decision tree generalization

Which of the following generalize best to unseen examples?

A. Small tree with low training accuracy

B. Large tree with low training accuracy

C. Small tree with high training accuracy

D. Large tree with high training accuracy
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Poll 2
True or False:

For any dataset, you can find a decision tree that can perfectly classify 
the training data?
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Nearest Neighbor Classification

Given a training dataset 𝒟 = 𝑦 𝑛 , 𝒙 𝑛
𝑛=1

𝑁
, 𝑦 ∈ 1, … , 𝐶 , 𝒙 ∈ ℝ𝑀

and a test input 𝒙𝑡𝑒𝑠𝑡, predict the class label, ො𝑦𝑡𝑒𝑠𝑡:

1) Find the closest point in the training data to 𝒙𝑡𝑒𝑠𝑡
𝑛 = argmin

𝑛
𝑑(𝒙𝑡𝑒𝑠𝑡 , 𝒙

(𝑛))

2) Return the class label of that closest point
ො𝑦𝑡𝑒𝑠𝑡 = 𝑦(𝑛)

Need distance function! What should 𝑑(𝒙, 𝒛) be?



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 
3 different species: Iris setosa (0), Iris virginica (1), Iris 
versicolor (2) collected by Anderson (1936)

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 
3 different species: Iris setosa (0), Iris virginica (1), Iris 
versicolor (2) collected by Anderson (1936)

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



Nearest Neighbor on Fisher Iris Data
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Nearest Neighbor on Fisher Iris Data
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Poll 3
Which methods can achieve zero training error on this dataset?

A. Decision trees

B. 1-Nearest Neighbor

C. Both

D. Neither

If zero error, draw the decision boundary.

Otherwise, why not?

x1

x2
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Decision Boundaries
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Nearest Neighbor Decision Boundary

K = 1

Voronoi Diagram

1-nearest neighbor classifier decision boundary



Poll 4
1-nearest neighbor will likely:

A. Overfit

B. Underfit

C. Neither (it’s a great learner!)
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Nearest Neighbor on Fisher Iris Data

21Slide credit: CMU MLD Matt Gormley



Nearest Neighbor on Gaussian Data
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Nearest Neighbor on Gaussian Data
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kNN classifier (k=5)
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Nearest Neighbor Classification

Given a training dataset 𝒟 = 𝑦 𝑛 , 𝒙 𝑛
𝑛=1

𝑁
, 𝑦 ∈ 1, … , 𝐶 , 𝒙 ∈ ℝ𝑀

and a test input 𝒙𝑡𝑒𝑠𝑡, predict the class label, ො𝑦𝑡𝑒𝑠𝑡:

1) Find the closest point in the training data to 𝒙𝑡𝑒𝑠𝑡
𝑛 = argmin

𝑛
𝑑(𝒙𝑡𝑒𝑠𝑡 , 𝒙

(𝑛))

2) Return the class label of that closest point
ො𝑦𝑡𝑒𝑠𝑡 = 𝑦(𝑛)



k-Nearest Neighbor Classification

Given a training dataset 𝒟 = 𝑦 𝑛 , 𝒙 𝑛
𝑛=1

𝑁
, 𝑦 ∈ 1, … , 𝐶 , 𝒙 ∈ ℝ𝑀

and a test input 𝒙𝑡𝑒𝑠𝑡, predict the class label, ො𝑦𝑡𝑒𝑠𝑡:

1) Find the closest 𝑘 points in the training data to 𝒙𝑡𝑒𝑠𝑡
𝒩𝑘(𝒙𝑡𝑒𝑠𝑡 , 𝒟)

2) Return the class label of that closest point
ො𝑦𝑡𝑒𝑠𝑡 = argmax

𝑐
𝑝 𝑌 = 𝑐 𝒙𝑡𝑒𝑠𝑡 , 𝒟, 𝑘

= argmax
𝑐

1

𝑘
෍

𝑖 ∈ 𝒩𝑘(𝒙𝑡𝑒𝑠𝑡,𝒟)

𝕀 𝑦 𝑖 = 𝑐

= argmax
𝑐

𝑘𝑐

𝑘
, 

where 𝑘𝑐 is the number of the 𝑘-neighbors with class label c



1-Nearest Neighbor (kNN) classifier 
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2-Nearest Neighbor (kNN) classifier 
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3-Nearest Neighbor (kNN) classifier 
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5-Nearest Neighbor (kNN) classifier 
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What is the best k?

How do we choose a learner that is accurate and also generalizes to 
unseen data?

• Larger k → predicted label is more stable 
• Smaller k → predicted label is more affected by individual training 

points

But how to choose 𝑘?



k-NN on Fisher Iris Data
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Special Case: Nearest Neighbor

Slide credit: CMU MLD Matt Gormley



k-NN on Fisher Iris Data
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k-NN on Fisher Iris Data
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k-NN on Fisher Iris Data
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k-NN on Fisher Iris Data
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k-NN on Fisher Iris Data
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k-NN on Fisher Iris Data
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Special Case: Majority Vote

Slide credit: CMU MLD Matt Gormley



k-NN: Remarks

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!

39Slide credit: CMU MLD Matt Gormley



k-NN: Remarks

Inductive Bias:
1. Close points should have similar labels
2. All dimensions are created equally!
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k-NN: Remarks

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

41Slide credit: CMU MLD Matt Gormley



Poll 5 (train) and Poll 6 (predict)
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

A. O(1)

B. O(log N)

C. O(log M)

D. O(log NM)

E. O(N)

F. O(M)

G. O(NM)

H. O(N^2)

I. O(N^2M)
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k-NN: Remarks

Computational Efficiency:
Suppose we have N training examples, and each one has M features
Computational complexity for the special case where k=1:

44Slide credit: CMU MLD Matt Gormley

Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict 
(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but 
very slow for large M

In practice: use stochastic 
approximations (very fast, and 
empirically often as good)
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Task Naive k-d Tree

Train O(1) ~ O(M N log N)

Predict 
(one test example)

O(MN) ~ O(2M log N) on average

Problem: Very fast for small M, but 
very slow for large M

In practice: use stochastic 
approximations (very fast, and 
empirically often as good)



MODEL SELECTION
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Model Selection

WARNING: 
• In some sense, our discussion of model selection is 

premature. 
• The models we have considered thus far are fairly simple.
• The models and the many decisions available to the data 

scientist wielding them will grow to be much more complex 
than what we’ve seen so far.

47Slide credit: CMU MLD Matt Gormley



Model Selection

Statistics
• Def: a model defines the data generation 

process (i.e. a set or family of parametric 
probability distributions)

• Def: model parameters are the values that 
give rise to a particular probability 
distribution in the model family

• Def: learning (aka. estimation) is the process 
of finding the parameters that best fit the 
data

• Def: hyperparameters are the parameters of 
a prior distribution over parameters

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e.
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select

48Slide credit: CMU MLD Matt Gormley



Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)
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aspects of the model, that the learning 
algorithm does not select
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• model = set of all possible trees, possibly 
restricted by some hyperparameters (e.g. 
max depth)

• parameters = structure of a specific decision 
tree

• learning algorithm = ID3, CART, etc.

• hyperparameters = max-depth, threshold for 
splitting criterion, etc.

Example: Decision Tree

Slide credit: CMU MLD Matt Gormley



Model Selection

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select
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• model = set of all possible nearest neighbors 
classifiers

• parameters = none 
(KNN is an instance-based or non-parametric 
method)

• learning algorithm = for naïve setting, just 
storing the data

• hyperparameters = k, the number of 
neighbors to consider

Example: k-Nearest Neighbors

Slide credit: CMU MLD Matt Gormley



Model Selection

Statistics
• Def: a model defines the data generation 

process (i.e. a set or family of parametric 
probability distributions)

• Def: model parameters are the values that 
give rise to a particular probability 
distribution in the model family

• Def: learning (aka. estimation) is the process 
of finding the parameters that best fit the 
data

• Def: hyperparameters are the parameters of 
a prior distribution over parameters

Machine Learning
• Def: (loosely) a model defines the hypothesis 

space over which learning performs its 
search

• Def: model parameters are the numeric 
values or structure selected by the learning 
algorithm that give rise to a hypothesis

• Def: the learning algorithm defines the data-
driven search over the hypothesis space (i.e. 
search for good parameters)

• Def: hyperparameters are the tunable 
aspects of the model, that the learning 
algorithm does not select

51

If “learning” is all about 
picking the best 

parameters how do we 
pick the best 

hyperparameters?

Slide credit: CMU MLD Matt Gormley



Model Selection

• Two very similar definitions:
– Def: model selection is the process by which we choose the “best” 

model from among a set of candidates
– Def: hyperparameter optimization is the process by which we choose 

the “best” hyperparameters from among a set of candidates (could be 
called a special case of model selection) 

• Both assume access to a function capable of measuring the 
quality of a model

• Both are typically done “outside” the main training algorithm ---
typically training is treated as a black box

52Slide credit: CMU MLD Matt Gormley



Experimental Design

53

Input Output Notes

Training • training dataset 
• hyperparameters

• best model parameters We pick the best model 
parameters by learning on 
the training dataset for a 
fixed set of 
hyperparameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best hyperparameters We pick the best 
hyperparameters by 
learning on the training data 
and evaluating error on the 
validation error

Testing • test dataset
• hypothesis (i.e. fixed 

model parameters)

• test error We evaluate a hypothesis 
corresponding to a decision 
rule with fixed model 
parameters on a test 
dataset to obtain test error

Slide credit: CMU MLD Matt Gormley



Special Cases of k-NN

k=1: Nearest Neighbor k=N: Majority Vote

54Slide credit: CMU MLD Matt Gormley



Example of Hyperparameter Optimization
Choosing k for k-NN

Slide credit: CMU MLD Matt Gormley



Example of Hyperparameter Optimization
Choosing k for k-NN

Slide credit: CMU MLD Matt Gormley



k-NN:  Choosing k

Fisher Iris Data: varying the value of k
57Slide credit: CMU MLD Matt Gormley



k-NN:  Choosing k

Gaussian Data: varying the value of k
58Slide credit: CMU MLD Matt Gormley



Validation
Why do we need validation?
▪ Choose hyperparameters

▪ Choose technique

▪ Help make any choices beyond our parameters

But now, we have another choice to make!
▪ How do we split training and validation?

Trade-offs
▪ More held-out data, better meaning behind validation numbers

▪ More held-out data, less data to train on!



Cross-validation
K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error 
on remaining partition (rotating validation partition on each run).
Report average validation error

validation

Run 1

Run 2

Run K

training

Slide credit: CMU MLD Aarti Singh



Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions 
Equivalently, train on N-1 samples and validate on only one 
sample per run for N runs

Run 1

Run 2

Run K

training validation

Slide credit: CMU MLD Aarti Singh



Cross-validation

Random subsampling

Randomly subsample a fixed fraction αN (0< α <1) of the dataset 
for validation.
Compute validation error with remaining data as training data.
Repeat K times
Report average validation error

Run 1

Run 2

Run K

training validation

Slide credit: CMU MLD Aarti Singh



Poll 7
Say you are choosing amongst 7 discrete values of a decision tree 
mutual information threshold, and you want to do K=5-fold cross-
validation.

How many times do I have to train my model?

A. 1

B. 5

C. 7

D. 12

E. 35

F. 57
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Model Selection

WARNING (again):
– This section is only scratching the surface!
– Lots of methods for hyperparameter optimization: (to talk about 

later)
• Grid search
• Random search
• Bayesian optimization
• Graduate-student descent
• …

Main Takeaway: 
– Model selection / hyperparameter optimization is just another 

form of learning

65Slide credit: CMU MLD Matt Gormley
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