

10-315 Introduction to ML

Nearest Neighbor and Model Selection

Instructor: Pat Virtue

Decision Trees with Continuous Features

Consider input features $x \in \mathbb{R}^2$.

Draw a reasonable decision tree.

Decision Trees with Continuous Features

Consider input features $x \in \mathbb{R}^2$.

Draw a reasonable decision tree.

Poll 1

Decision tree generalization

Which of the following generalize best to unseen examples?

- A. Small tree with low training accuracy
- B. Large tree with low training accuracy
- C. Small tree with high training accuracy
- D. Large tree with high training accuracy

Poll 1

Decision tree generalization

Which of the following generalize best to unseen examples?

- A. Small tree with low training accuracy
- B. Large tree with low training accuracy
- C. Small tree with high training accuracy
- D. Large tree with high training accuracy

True or False:

For any dataset, you can find a decision tree that can perfectly classify the training data?

Nearest Neighbor Classifier

Nearest Neighbor Classifier

Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^N, y \in \{1, \dots, C\}, x \in \mathbb{R}^M$

and a test input x_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to x_{test} $n = \underset{n}{\operatorname{argmin}} d(x_{test}, x^{(n)})$
- 2) Return the class label of that closest point $\hat{y}_{test} = y^{(n)}$

Need distance function! What should d(x, z) be?

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Deleted two of the
0	4.3	3.0	four features, so that
0	4.9	3.6	input space is 2D
0	5.3	3.7	
1	4.9	2.4	L L
1	5.7	2.8	
1	6.3	3.3	
1	6.7	3.0	

Full dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set

Nearest Neighbor on Fisher Iris Data

Nearest Neighbor on Fisher Iris Data

Poll 3

Which methods can achieve zero training error on this dataset?

- A. Decision trees
- B. 1-Nearest Neighbor
- C. Both
- D. Neither

If zero error, draw the decision boundary.

Otherwise, why not?

Poll 3

Which methods can achieve zero training error on this dataset?

- A. Decision trees
- B. 1-Nearest Neighbor
- C. Both
- D. Neither

If zero error, draw the decision boundary. Otherwise, why not?

Decision Boundaries

Decision Boundaries

Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary

Voronoi Diagram

Poll 4

1-nearest neighbor will likely:

- A. Overfit
- B. Underfit
- C. Neither (it's a great learner!)

Poll 4

1-Nearest neighbor will likely:

- A. Overfit
- B. Underfit
- C. Neither (it's a great learner!)

Nearest Neighbor on Fisher Iris Data

Nearest Neighbor on Gaussian Data

Nearest Neighbor on Gaussian Data

kNN classifier (k=5)

Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^N, y \in \{1, \dots, C\}, x \in \mathbb{R}^M$

and a test input x_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to x_{test} $n = \underset{n}{\operatorname{argmin}} d(x_{test}, x^{(n)})$
- 2) Return the class label of that closest point $\hat{y}_{test} = y^{(n)}$

k-Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, x^{(n)}\}_{n=1}^{N}, y \in \{1, ..., C\}, x \in \mathbb{R}^{M}$ and a test input x_{test} , predict the class label, \hat{y}_{test} :

1) Find the closest k points in the training data to x_{test} . $\mathcal{N}_{k}(x_{test}, \mathcal{D})$

2) Return the class label of that closest point $\hat{y}_{test} = \operatorname{argmax}_{c} p(Y = c \mid \boldsymbol{x}_{test}, \mathcal{D}, k) \\
= \operatorname{argmax}_{c} \frac{1}{k} \sum_{i \in \mathcal{N}_{k}(\boldsymbol{x}_{test}, \mathcal{D})} \mathbb{I}(y^{(i)} = c) \\
= \operatorname{argmax}_{c} \frac{k_{c}}{k},$

where k_c is the number of the k-neighbors with class label c

What is the best k?

How do we choose a learner that is accurate and also generalizes to unseen data?

- Larger $k \rightarrow$ predicted label is more stable
- Smaller k → predicted label is more affected by individual training points

But how to choose k?

Special Case: Nearest Neighbor

Special Case: Majority Vote

Inductive Bias:

- 1. Close points should have similar labels
- 2. All dimensions are created equally!

Inductive Bias:

- 1. Close points should have similar labels
- 2. All dimensions are created equally!

Computational Efficiency:

Poll 5 (train) and Poll 6 (predict)

- A. O(1)
- B. O(log N)
- C. O(log M)
- D. O(log NM)
- E. O(N)
- F. O(M)
- G. O(NM)
- H. O(N^2)
- I. O(N^2M)

Poll 5 (train) and Poll 6 (predict)

- A. O(1)
- B. O(log N)
- C. O(log M)
- D. O(log NM)
- E. O(N)
- F. O(M)
- G. O(NM)
- H. O(N^2)
- I. O(N^2M)

Computational Efficiency:

	Task	Naive	k-d Tree
	Train	O(1)	~O(M N log N)
	Predict (one test example)	O(MN)	~ O(2 ^M log N) on average
Prol	olem: Very fast for s	mall M, but	\checkmark
very slow for large M			
n practice: use stochastic approximations (very fast, and empirically often as good)			

Computational Efficiency:

	Task	Naive	k-d Tree
	Train	O(1)	~O(M N log N)
	Predict (one test example)	O(MN)	~ O(2 ^M log N) on average
Problem: Very fast for small M, but very slow for large M			
n practice: use stochastic approximations (very fast, and empirically often as good)			

MODEL SELECTION

WARNING:

- In some sense, our discussion of model selection is premature.
- The models we have considered thus far are fairly simple.
- The models and the many decisions available to the data scientist wielding them will grow to be much more complex than what we've seen so far.

Statistics

- *Def*: a **model** defines the data generation process (i.e. a set or family of parametric probability distributions)
- *Def*: model parameters are the values that give rise to a particular probability distribution in the model family
- *Def*: **learning** (aka. estimation) is the process of finding the parameters that best fit the data
- *Def*: hyperparameters are the parameters of a prior distribution over parameters

Machine Learning

- *Def*: (loosely) a **model** defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- *Def*: the **learning algorithm** defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- *Def*: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does *not* select

Example: Decision Tree

- model = set of all possible trees, possibly restricted by some hyperparameters (e.g. max depth)
- parameters = structure of a specific decision tree
- learning algorithm = ID3, CART, etc.
- hyperparameters = max-depth, threshold for splitting criterion, etc.

Machine Learning

- Def: (loosely) a **model** defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- *Def*: the **learning algorithm** defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- *Def*: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does *not* select

Example: k-Nearest Neighbors

- model = set of all possible nearest neighbors classifiers
- parameters = none (KNN is an instance-based or non-parametric method)
- learning algorithm = for naïve setting, just storing the data
- hyperparameters = k, the number of neighbors to consider

Machine Learning

- *Def*: (loosely) a **model** defines the hypothesis space over which learning performs its search
- Def: model parameters are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- *Def*: the **learning algorithm** defines the datadriven search over the hypothesis space (i.e. search for good parameters)
- *Def*: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does *not* select

Statistics			Machine Learning	
•	Def: a model defines the data generation		• Def: (loosely) a model defines the hypothesis	
	rocess (i.e. a set or family If "learning" robability distributions) picking t		is all about which learning performs its ne best	
•	Def: model parameters are parameters	re parameters how		rameters are the numeric
	give rise to a particular prol distribution in the model fa	pick the best hyperparameters?		ructure selected by the learning hat give rise to a hypothesis
•	Def: learning (aka. estimation) is the process			ng algorithm defines the data-
	of finding the parameter hat best fit the		driven sear	ver the hypothesis space (i.e.
	data		search for go	arameters)
•	• Def: hyperparameters are the parameters of		• Def: hyperparameters are the tunable	
	a prior distribution over parameters		aspects of the algorithm does	model, that the learning s not select

- Two very similar definitions:
 - Def: model selection is the process by which we choose the "best" model from among a set of candidates
 - Def: hyperparameter optimization is the process by which we choose the "best" hyperparameters from among a set of candidates (could be called a special case of model selection)
- **Both** assume access to a function capable of measuring the quality of a model
- Both are typically done "outside" the main training algorithm ---typically training is treated as a black box

Experimental Design

	Input	Output	Notes
Training	training datasethyperparameters	best model parameters	We pick the best model parameters by learning on the training dataset for a fixed set of hyperparameters
Hyperparameter Optimization	training datasetvalidation dataset	 best hyperparameters 	We pick the best hyperparameters by learning on the training data and evaluating error on the validation error
Testing	 test dataset hypothesis (i.e. fixed model parameters) 	• test error	We evaluate a hypothesis corresponding to a decision rule with fixed model parameters on a test dataset to obtain test error

Special Cases of k-NN

k=1: Nearest Neighbor

k=N: Majority Vote

Example of Hyperparameter Optimization

Choosing k for k-NN

Example of Hyperparameter Optimization

Choosing k for k-NN

Fisher Iris Data: varying the value of k

Gaussian Data: varying the value of k

Validation

Why do we need validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

How do we split training and validation?

Trade-offs

- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

Cross-validation

K-fold cross-validation

- Create K-fold partition of the dataset.
- Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions Equivalently, train on N-1 samples and validate on only one sample per run for N runs

Cross-validation

Random subsampling

- Randomly subsample a fixed fraction αN (0< α <1) of the dataset for validation.
- Compute validation error with remaining data as training data.
- Repeat K times

Poll 7

Say you are choosing amongst 7 discrete values of a decision tree *mutual information threshold,* and you want to do K=5-fold cross-validation.

How many times do I have to train my model?

- A. 1
- B. 5
- C. 7
- D. 12
- E. 35
- F. 5⁷

Poll 7

Say you are choosing amongst 7 discrete values of a decision tree *mutual information threshold,* and you want to do K=5-fold cross-validation.

How many times do I have to train my model?

- A. 1
- B. 5
- C. 7
- D. 12
- E. 35
- F. 5^7

WARNING (again):

- This section is only scratching the surface!
- Lots of methods for hyperparameter optimization: (to talk about later)
 - Grid search
 - Random search
 - Bayesian optimization
 - Graduate-student descent
 - . . .

Main Takeaway:

 Model selection / hyperparameter optimization is just another form of learning