10-315

Introduction to ML Decision Trees

Instructor: Pat Virtue

Today

Decision trees

K-Nearest Neighbor

Model Selection

Decision Tree

Medical Prediction
(Oversimplified example)

Decision Trees

A few tools

Majority vote:

$\hat{y}=\underset{C}{\operatorname{argmax}} \frac{N_{C}}{N}$
Classification error rate:

Species	Sepal Length	Sepal Width	Petal Length	Petal Width	
	0	4.3	3.0	1.1	0.1
	0	4.9	3.6	1.4	0.1
	0	5.3	3.7	1.5	0.2
	1	4.9	2.4	3.3	1.0

ErrorRate $=\frac{1}{N} \sum_{i} \mathbb{I}\left(y^{(i)} \neq \widehat{y}^{(i)}\right)$
What fraction did we predict incorrectly
Expected value

$$
\mathbb{E}[f(X)]=\sum_{x \in x} f(x) P(X=x) \text { or } \mathbb{E}[f(X)]=\int_{x} f(x) p(x) d x
$$

Decision Stumps

Split data based on a single attribute
Majority vote at leaves

Dataset:

Output Y, Attributes A, B, C

Decision Stumps

Split data based on a single attribute
Majority vote at leaves

Dataset:

Output Y, Attributes A, B, C

Poll 1

Splitting on which attribute $\{A, B, C\}$ creates a decision stump with the lowest training error?

Error

$$
\left(\begin{array}{l}
(0) \\
=3 / 8
\end{array}\right.
$$

Dataset:

Output Y, Attributes A, B, C

Y	A	B	C
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Poll 1

Splitting on which attribute $\{A, B, C\}$ creates a decision stump with the lowest training error? Answer: B

Error: ($1+0) / 8$

Dataset:

Output Y, Attributes A, B, C

$$
=1 / 8
$$

Y	A	B	C
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Poll 1

Splitting on which attribute $\{A, B, C\}$ creates a decision stump with the lowest training error?
Answer: B

$$
\begin{aligned}
& \text { C=1 } \\
& \text { 2-, 2+ 1-, 3+ } \\
& \hat{y}=+/-\quad \hat{y}=+ \\
& (2+1) / 8 \\
& =3 / 8
\end{aligned}
$$

Error:

Dataset:

Output Y, Attributes A, B, C

Y	A	B	C
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Problem Formulation

Medical Prediction

Y	X_{1}		X_{2}		X_{3}
Outcome	Fetal Position	Fetal Distress	Previous C-sec		
Natural	Vertex	N	N		
C-section	Breech	N	N		
Natural	Vertex	Y	Y		
C-section	Vertex	N	Y		
Natural	Abnormal	N	N		

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[x_{1}, x_{2}, x_{3}\right]^{T}
$$

$$
\begin{aligned}
& x_{1} \in\{\text { Vertex, Breech, Abn }\} \\
& x_{2} \in\{Y, N\} \\
& x_{3} \in\{Y, N\} \\
& y \in\{\text { Csection, Natural }\} \\
& \hat{y}=h(\boldsymbol{x})
\end{aligned}
$$

Decision Tree

Medical Prediction
(Oversimplified example)

Tree to Predict C-Section Risk

Sims, C.J., Meyn, L., Caruana, R., Rao, R.B., Mitchell, T. and Krohn, M.
American journal of obstetrics and gynecology, 2000

Tree to Predict C-Section Risk

Learned from medical records of 1000 women
Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .1
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```


Building a Decision Tree

Function BuildTree(D,A)

Poll 2

Which of the following trees would be learned by the decision tree learning algorithm using "error rate" as the splitting criterion?
(Assume ties are broken alphabetically.)

Dataset:

Output Y, Attributes A, B, C

Y	A	B	C
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

[^0]
Poll 2

Which of the following trees would be learned by the the decision tree learning algorithm using "error rate" as the splitting criterion?
(Assume ties are broken alphabetically.)

Dataset:

Output Y, Attributes A, B, C

Y	A	B	C
+	0	0	0
+	0	0	1
-	0	1	0
+	0	1	1
-	1	0	0
-	1	0	1
-	1	1	0
+	1	1	1

Poll 3

Which attribute $\{\mathrm{A}, \mathrm{B}\}$ would error rate select for the next split?

1) A
2) B
3) A or B (tie)
4) I don't know

Dataset:

Output Y, Attributes A and B

Y	A	B
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1

Poll 3

Which attribute $\{\mathrm{A}, \mathrm{B}\}$ would error rate select for the next split?

1) A
2) B
3) A or B (tie)
4) I don't know

Dataset:

Output Y, Attributes A and B

Y	A	B
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1

Building a Decision Tree

```
Function BuildTree(D,A)
    # D: dataset at current node, A: current set of attributes
    If empty(A) or all labels in D are the same
    # Leaf node
    class = most common class in D
    else
```



```
    LeftNode = BuildTree(D (a=1), A \ {a})
    RightNode = BuildTree(D(a=0), A \ {a})
                                    Mutual info.
                                    Gini impurity
end

\section*{Entropy}
- Quantifies the amount of uncertainty associated with a specific probability distribution
- The higher the entropy, the less confident we are in the outcome
- Definition
\[
\begin{aligned}
& H(X)=\sum_{x} p(X=x) \log _{2} \frac{1}{p(X=x)} \\
& H(X)=\mho \sum_{x} p(X=x) \log _{2} p(X=x)
\end{aligned}
\]


Claude Shannon (1916-2001), most of the work was done in Bell labs


Mutual Information
Let \(X\) be a random variable with \(X \in \mathcal{X}\).
Let \(Y\) be a random variable with \(Y \in \mathcal{Y}\).
\[
\text { Entropy: } H(Y)=-\sum_{y \in \mathcal{Y}} P(Y=y) \log _{2} P(Y=y)
\]

Specific Conditional Entropy: \(H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x)\)
Conditional Entropy: \(H(Y \mid X)=\sum_{x \in \mathcal{X}} P(X=x) H(Y \mid X=x)\)
Mutual Information: \(I(Y ; X)=H(Y)-H(Y \mid X)\)
\[
\begin{aligned}
& I(Y ; A)=H(Y)-H(Y \mid A) \\
& I(Y ; B)=H(Y)-H(Y \backslash B)
\end{aligned}
\]

\section*{Mutual Information}

Let \(X\) be a random variable with \(X \in \mathcal{X}\).
Let \(Y\) be a random variable with \(Y \in \mathcal{Y}\).
\[
\text { Entropy: } H(Y)=-\sum_{y \in \mathcal{Y}} P(Y=y) \log _{2} P(Y=y)
\]

Specific Conditional Entropy: \(H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x)\)
Conditional Entropy: \(H(Y \mid X)=\sum_{x \in \mathcal{X}} P(X=x) H(Y \mid X=x)\)
Mutual Information: \(I(Y ; X)=H(Y)-H(Y \mid X)\)
- For a decision tree, we can use mutual information of the output class \(Y\) and some attribute \(X\) on which to split as a splitting criterion
- Given a dataset D of training examples, we can estimate the required probabilities as...
\[
P(Y=y)=N_{Y=y} / N
\]
\[
P(X=x)=N_{X=x} / N
\]
\[
P(Y=y \mid X=x)=N_{Y=y, X=x} / N_{X=x}
\]
where \(N_{Y=y}\) is the number of examples for which \(Y=y\) and so on.

\section*{Mutual Information}

Let \(X\) be a random variable with \(X \in \mathcal{X}\).
Let \(Y\) be a random variable with \(Y \in \mathcal{Y}\).
\(\square\)
\[
\text { Entropy: } H(Y)=-\sum_{y \in \mathcal{Y}} P(Y=y) \log _{2} P(Y=y)
\]

Specific Conditional Entropy: \(H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x)\)

\(\square\)
Conditional Entropy: \(H(Y \mid X)=\sum_{x \in \mathcal{X}} P(X=x) H(Y \mid X=x)\)
Mutual Information: \(I(Y ; X)=H(Y)-H(Y \mid X)\)
- Entropy measures the expected \# of bits to code one random draw from X.
- For a decision tree, we want to reduce the entropy of the random variable we are trying to predict!
Conditional entropy is the expected value of specific conditional entropy
\(\mathrm{E}_{\mathrm{P}(\mathrm{X}=\mathrm{x})}[\mathrm{H}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})]\)
Informally, we say that mutual information is a measure of the following: If we know \(X\), how much does this reduce our uncertainty about \(Y\) ?

\section*{Splitting with Mutual Information}

Which attribute \(\{A, B\}\) would mutual information select for the next split?
1) \(A\)
2) \(B\)
3) \(A\) or B (tie)
4) I don't know

\section*{Dataset:}

Output Y, Attributes A and B
\begin{tabular}{|l|l|l|}
\hline\(Y\) & \(A\) & \(B\) \\
\hline- & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 1 \\
\hline
\end{tabular}

\section*{Decision Tree Learning Example}

Entropy: \(H(Y)=-\sum_{y \in \mathcal{Y}} P(Y=y) \log _{2} P(Y=y)\)
Specific Conditional Entropy: \(H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x)\)
\begin{tabular}{|c|c|c|}
\hline Y & A & B \\
\hline- & 1 & 0 \\
\hline- & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 1 \\
\hline
\end{tabular}

Conditional Entropy: \(H(Y \mid X)=\sum_{x \in \mathcal{X}} P(X=x) H(Y \mid X=x)\)
Mutual Information: \(I(Y ; X)=H(Y)-H(Y \mid X)\)

\section*{Decision Tree Learning Example}


\section*{Decision Tree Learning Example}

Entropy: \(H(Y)=-\sum_{y \in \mathcal{Y}} P(Y=y) \log _{2} P(Y=y)\)
Specific Conditional Entropy: \(H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x)\)
\begin{tabular}{|c|c|c|}
\hline\(Y\) & \(A\) & \(B\) \\
\hline- & 1 & 0 \\
\hline- & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 1 \\
\hline
\end{tabular}

Conditional Entropy: \(H(Y \mid X)=\sum_{x \in \mathcal{X}} P(X=x) H(Y \mid X=x)\)
Mutual Information: \(I(Y ; X)=H(Y)-H(Y \mid X)\)

\section*{Decision Tree Learning Example}
\[
\text { Entropy: } H(Y)=-\sum_{y \in \mathcal{Y}} P(Y=y) \log _{2} P(Y=y)
\]

Specific Conditional Entropy: \(H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} P(Y=y \mid X=x) \log _{2} P(Y=y \mid X=x)\)
\begin{tabular}{|c|c|c|}
\hline\(Y\) & \(A\) & \(B\) \\
\hline- & 1 & 0 \\
\hline- & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 0 \\
\hline+ & 1 & 1 \\
\hline
\end{tabular}

Conditional Entropy: \(H(Y \mid X)=\sum_{x \in \mathcal{X}} P(X=x) H(Y \mid X=x)\)
Mutual Information: \(I(Y ; X)=H(Y)-H(Y \mid X)\)
\[
\left.\begin{array}{l}
H(Y)=-\left[\frac{2}{8} \log _{2} \frac{2}{8}+\frac{6}{8} \log _{2} \frac{6}{8}\right] \\
H(Y \mid B=0)=-\left[\frac{2}{4} \log _{2} \frac{2}{4}+\frac{2}{4} \log _{2} \frac{2}{4}\right] \\
H(Y \mid B=1)=-\left[0 \log _{2} 0+1 \log _{2} 1\right]=0 \\
\begin{array}{rl}
H(Y \mid B) & =P(B=0) H(Y \mid B=0)+P(B=1) H(Y \mid B=1) \\
& =\frac{4}{8} H(Y \mid B=0)+\frac{4}{8} \cdot 0
\end{array} \\
I(Y ; B)=H(Y)-H(Y \mid B)>0
\end{array} \quad \begin{array}{ll}
{[2-, 2+]} & {[0-, 4+]}
\end{array}\right]
\]
\[
I(Y ; B) \text { ends up being greater than } I(Y ; A)=0 \text {, so we split on } \mathrm{B}
\]

Mutual Information Notation
We use mutual information in the context of before and after a split, regardless of where that split is in the tree.
\[
y \mid x_{i}
\]
\[
I(Y ; X)=H(Y)-H(Y \mid X)
\]```


[^0]:    Slide credit: CMU MLD Matt Gormley

