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Introduction to ML

Decision Trees

Instructor: Pat Virtue
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Decision Stumps

Split data based on a single attribute

Dataset:
Majority vote at leaves Output Y, Attributes A, B, C
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Slide credit: CMU MLD Matt Gormley



Decision Stumps

Split data based on a single attribute
Majority vote at leaves
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Slide credit: CMU MLD Matt Gormley

Dataset:
Output Y, Attributes A, B, C




Poll 1

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

EEENENKN
- 1 0 0

3-, 5+

1 0] 1

A=0 A=1 R I

+ 0 0 1

0-, 1+ 3-, 4+ + 1 1 L

y=+ y=+ + 1 1 1

Error: (0 + 3)/8 N : : 5
=3/8

Slide credit: CMU MLD Matt Gormley



Poll 1

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C
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Poll 1

Splitting on which attribute {A, B, C} creates a Dataset:
decision stump with the lowest training error? Output Y, Attributes A, B, C

Answer: B EEESEEKS
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Problem Formulation

X = lxz] — [xl) xZixB]T

Medical Prediction

x, € {Vertex, Breech, Abn}

m
X9 (S {Y, N}

Natural Vertex
X3 (S {Y, N}
C-section Breech N N
Natural Vertex Y Y .
y € {Csection, Natural}
C-section Vertex N Y
Natural Abnormal N N

y = h(x)



Decision Tree

Fetal
Position

Breech

Fetal - _ - _
Distress -section -section
No
Previous :
C-section C-section

Medical Prediction

Vertex Abnormal

(Oversimplified example)




Tree to Predict C-Section Risk

etal_presentation

[4110.0,980.0]
vertex | breech abnormal lie
fetal distress Kcsec)=0.91 plcsec)=0.79
4040.0,570.0 [21.0,225.01 [49.0,185.0]
no yes 7\ [
moms_age Placental _abruption
3665.0,414.0 [375.0,156.01
20-24 25-29 30-34 35+ no yes
fetal_growth pcsec)=0.10 pleseck=0.04 choricamnionitis plcsec)=0.76
1212,0,113.0 [666.0,74.0] [594.0,22.0] [370.0,139.01 {5.0,17.0}

Sims, C.J., Meyn, L., Caruana, R., Rao, R.B., Mitchell, T. and Krohn, M.
American journal of obstetrics and gynecology, 2000




Tree to Predict C-Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-

| Previous_Csection = 0: [767+,81-] .90+ .10-

| | Primiparous = 0: [399+,13-] .97+ .03-

| | Primiparous = 1: [368+,68-] .84+ .16-

| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-

| Previous_Csection = 1: [565+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-



Building a Decision Tree A

Function BuildTree (D, A)

# D: dataset at current node, A: current set of attributes

1L & ty

‘l

%.

7 sé

# Internal node

PeS ic%tAttrlbute (

LeftNode = BuildTree (D(a=1l), A \ {a})
RightNode = BuildTree (D(a=0), A \ {a})

end 4l\‘-~fkﬂ(7V\d%\\

end




Poll 2

Dataset:
Which of the following trees would be learned by the Output Y, Attributes A, B, C
decision tree learning algorithm using “error rate” as v c
the splitting criterion? -g?!
+
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Poll 2
Dataset:
Which of the following trees would be learned by the Output Y, Attributes A, B, C

« o . . . o 7

the deuqu tree.learnmg algorithm using “error rate n

as the splitting criterion? o 1o | e
+

(Assume ties are broken alphabetically.) NERERE

BA o0 1 o

B
B B + 0] 1 1
AN
+ C _ C - 1 0] 0]
N A
-+ D @ - 1 0 1
- 1 1 (0]

Slide credit: CMU MLD Matt Gormley



Poll 3

Which attribute {A, B} would error rate select
for the next split?

1) A

2) B

3) AorB (tie)
4) |don’t know

Slide credit: CMU MLD Matt Gormley



Poll 3

Which attribute {A, B} would error rate select
for the next split?

3) A or B (tie)

Slide credit: CMU MLD Matt Gormley



Building a Decision Tree

Function BuildTree (D, A)
# D: dataset at current node, A: current set of attributes
If empty(A) or all labels in D are the same
# Leaf node

class = most common class in D
else
s — Mudual /o
<::;§: bestAttribute (D, A) ’
LeftNode = RuildTree (D(a=1), A \ {a}) Q-) Y\: )’MP‘/\[ H\y
RightNode = BuildTree (D(a=0), A \ {a})

end

end



Entropy

* Quantifies the amount of uncertainty associated
with a specific probability distribution

" The higher the entropy, the less confident we are in
the outcome

" Definition |

HOO = ) p(X = x)log,

p(X =x)

~

H(X) =’§z p(X = x)log, p(X = x)

Claude Shannon (1916 — 2001),
most of the work was done in
Bell [abs



Entropy ‘C O\I\i 4 AS U

Definition S \ 7 | =)
HY) = 5, p(¥ = yflogs = 23 30
HY)=-X,p(Y =y)log,p(Y = y)J L Jl A
. I A |
“ ¥ /0 1D



Mutual Information

T (- AHN-HY | A
T (V- BFHD ~ H (A B

*  Slide credit: CMU MLD Matt Gormley



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)logy P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z) = — z PY=y|X=2x)logo PY =y | X =1z)
yey
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
zekX

Mutual Information: I(Y; X) = H(Y) — H(Y|X)

 For adecision tree, we can use
mutual information of the output
class Y and some attribute X on

which to split as a splitting criterion

* Given a dataset D of training
examples, we can estimate the
required probabilities as...

P(Y =y) = Ny—,/N
P(X = z) = Nx_,/N
P(Y — y|X — 'T) — NY:y,Xza:/NX:;E

where Ny _, is the number of examples
forwhichY = yand so on.



Mutual Information

Let X be arandom variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — ) _ P(Y =y)log, P(Y =)
yey

{

Specific Conditional Entropy: H(Y | X =z) = — Z PY=y|X=x)logg P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) = Y P(X =xz)H(Y | X = 1)
TeEX
Mutual Information: I(Y; X) = H(Y) — H(Y|X)

Ul

* Entropy measures the expected # of bits to code one random draw from X.

* For a decision tree, we want to reduce the entropy of the random variable we
are trying to predict!

Conditional entropy is the expected value of specific conditional entropy
EpxolH(Y | X = X)

Informally, we say that mutual information is a measure of the following:
If we know X, how much does this reduce our uncertainty about Y?




Splitting with Mutual Information

Which attribute {A, B} would mutual
information select for the next split?
1) A

2) B

3) AorB (tie)

4) |don’t know




Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy
Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)
v | A B
rEX

_ 1 0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)

1 0]
+ 1 0]
+ 1 0]
+ 1 1
+ 1 1
+ 1 1

28



Decision Tree Learning Example

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yeYy—
Specific Conditional Entropy: H(Y | X =z)=—) P(Y=y|X =z)log, P(Y =y | X =)
yeY
an Conditional Entropy: H(Y | X) =Y P(X =2)H(Y | X =)
TEX
- 1 0 Mutual Information: I(Y; X) = H(Y) — H(Y | X)
1 0 2 2,6 6
H(Y) = - [glogzg + glog2 5]
+ 1 o)
H(Y | A=0)=undefined
+ L 0 2 2 6 6
HYIA=1)=- [glog2§+§log2§] =H(Y)
+ 1 1 —_ -
+ 1 1 H(Y|1A)=PA=0H(Y|A=0)+PA=1DHY |A=1)
= 0 + HYIA=1)
+ 1 1 = H(Y)

I(Y;AD)=HY)—H(Y|A)=0 [0-, O+]
+ 1 1 (¥; 4) (¥) (Y14) P(A=0)=0 P(A=TJ=1
29



n Conditional Entropy: H(Y | X

= H(Y)

+

1

1

1

Decision Tree Learning Example

Entropy: H(Y) =

yey

Specific Conditional Entropy: H(Y | X = x)

0

0

0

Mutual Information: I(Y; X)

=) PX

rCEX

— ) P(Y =y)logy P(Y =)

=Y P(Y=y|X=a)log, P(Y = y | X = 2)

yey
2)H(Y | X = z)

- H(Y|X)

P(B=

[2-, 6+]
B

B:V\le

[2-, 2+] [0-, 4+]
0)=4/8 P(B=1)=4/8




Decision Tree Learning Example

Entropy: H(Y) = — ) P(Y =y)log, P(Y =)
yey
Specific Conditional Entropy: H(Y | X =z)=—) P(Y =y |X =z)log, P(Y =y | X =)
ycy

“ Conditional Entropy: H(Y | X Z P H(Y | X = 3’})
xEX

0 Mutual Information: I(Y; X) = H(Y) — H(Y |X)
0 2 2 6 6

H(Y) = — lglogzg + glng g]
0

2 2 | 2 2

; H(Y | B=0) =~ |2log, 5+ log, 7| 2-, 6+)

H(Y|B=1)=—]|0log, 0+ 1log,1] =0 3
1
1 H(YIB)=P(B=0)H(YIB=0)+P(B=1DHY|B=1) g B=1

=2H(yIB=0)+2%.0
1 8 8
[2-, 2+] [0-, 4+]

1 I(Y;B)=H(Y)—H(Y|B)>0 P(B=0)=4/8 P(B=1)=4/8

[(Y; B) ends up being greater than I/(Y; A) = 0, so we spliton B 31



Mutual Information Notation

We use mutual information in the context of before and after a split,

regardless of where that split is in the tree.
I(V;X)=HY)—-H(Y | X) &

(G ===

| {1%25)
f )X WH(\/ 3% %)

SV N
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