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Decision trees

K-Nearest Neighbor

Model Selection



Decision Tree
Medical Prediction

(Oversimplified example)
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Decision Trees
A few tools

Majority vote:

ො𝑦 = argmax
𝑐

𝑁𝑐

𝑁

Classification error rate:

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
1

𝑁
σ𝑖 𝕀 𝑦(𝑖) ≠ ො𝑦(𝑖)

What fraction did we predict incorrectly

Expected value

𝔼 𝑓(𝑋) = σ𝑥∈𝒳 𝑓 𝑥 𝑃 𝑋 = 𝑥 or 𝔼 𝑓(𝑋) = 𝒳׬ 𝑓 𝑥 𝑝 𝑥 𝑑𝑥

Species
Sepal 

Length
Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

2 5.9 3.0 5.1 1.8



Decision Stumps
Split data based on a single attribute

Majority vote at leaves
Dataset: 
Output Y, Attributes A, B, C

Y A B C

- 1 0 0

- 1 0 1

- 1 0 o

+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1

Slide credit: CMU MLD Matt Gormley
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A

A=0 A=1

3-, 5+

0-, 1+
ො𝑦 = +

3-, 4+
ො𝑦 = +

Error:        (   0        +      3   )  /  8
= 3/8



Poll 1
Splitting on which attribute {A, B, C} creates a 
decision stump with the lowest training error?

Dataset: 
Output Y, Attributes A, B, C
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Poll 1
Splitting on which attribute {A, B, C} creates a 
decision stump with the lowest training error?

Answer: B

Dataset: 
Output Y, Attributes A, B, C

Y A B C
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+ 0 0 1

+ 1 1 0

+ 1 1 1

+ 1 1 0

+ 1 1 1
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3-, 1+
ො𝑦 = −

0-, 4+
ො𝑦 = +

Error:        (   1        +      0   )  /  8
= 1/8



Poll 1
Splitting on which attribute {A, B, C} creates a 
decision stump with the lowest training error?

Answer: B
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C

C=0 C=1

3-, 5+

2-, 2+
ො𝑦 =+/−

1-, 3+
ො𝑦 = +

Error:        (   2        +      1   )  /  8
= 3/8



Problem Formulation
Medical Prediction

Outcome Fetal Position Fetal Distress Previous C-sec

Natural Vertex N N

C-section Breech N N

Natural Vertex Y Y

C-section Vertex N Y

Natural Abnormal N N

𝑌 𝑋1 𝑋2 𝑋3

𝐱 =

𝑥1
𝑥2
𝑥3

= 𝑥1, 𝑥2, 𝑥3
𝑇

𝑥1 ∈ {𝑉𝑒𝑟𝑡𝑒𝑥, 𝐵𝑟𝑒𝑒𝑐ℎ, 𝐴𝑏𝑛}
𝑥2 ∈ {𝑌,𝑁}
𝑥3 ∈ {𝑌,𝑁}

𝑦 ∈ {𝐶𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑁𝑎𝑡𝑢𝑟𝑎𝑙}

ො𝑦 = ℎ(𝒙)



Decision Tree
Medical Prediction

(Oversimplified example)
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Tree to Predict C-Section Risk

Sims, C.J., Meyn, L., Caruana, R., Rao, R.B., Mitchell, T. and Krohn, M.
American journal of obstetrics and gynecology, 2000



Tree to Predict C-Section Risk

16 

Decision Trees 
Suppose X = <X1,… Xn>  

where Xi are boolean-valued variables 

 

 

How would you represent Y = X2 X5 ?     Y = X2 Ú X5 

How would you represent  X2 X5  Ú X3X4(ØX1) 

 

Slide credit: CMU MLD Tom Mitchell



Building a Decision Tree
Function BuildTree(D,A)

# D: dataset at current node, A: current set of attributes

If empty(A) or all labels in D are the same

# Leaf node

class = most common class in D

else

# Internal node

a  bestAttribute(D,A)

LeftNode = BuildTree(D(a=1), A \ {a}) 

RightNode = BuildTree(D(a=0), A \ {a})

end

end



Poll 2
Which of the following trees would be learned by the 
decision tree learning algorithm using “error rate” as 
the splitting criterion?

(Assume ties are broken alphabetically.)

Dataset: 
Output Y, Attributes A, B, C

Y A B C

+ 0 0 0

+ 0 0 1

- 0 1 0

+ 0 1 1

- 1 0 0

- 1 0 1

- 1 1 0

+ 1 1 1

A

+

C C

0 1

0 1 0 1

- - +

A

+

B C

0 1

0 1 0 1

- - +

C

+

B A

0 1

0 1 0 1

- - +

B

+

A C

0 1

0 1 0 1

- - +

1 2

4 5

A

B B

0 1

0 1 0 1

+ C
0 1

- +

C
0 1

-

- +

B

A A

0 1

0 1 0 1

+ -

+

C C
0 1 0 1

- - +

3

6

Slide credit: CMU MLD Matt Gormley
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Poll 3
Which attribute {A, B} would error rate select 
for the next split?

1) A

2) B

3) A or B (tie)

4) I don’t know

Dataset: 
Output Y, Attributes A and B

Slide credit: CMU MLD Matt Gormley
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Building a Decision Tree
Function BuildTree(D,A)

# D: dataset at current node, A: current set of attributes

If empty(A) or all labels in D are the same

# Leaf node

class = most common class in D

else

# Internal node

a  bestAttribute(D,A)

LeftNode = BuildTree(D(a=1), A \ {a}) 

RightNode = BuildTree(D(a=0), A \ {a})

end

end



Entropy
▪ Quantifies the amount of uncertainty associated 

with a specific probability distribution

▪ The higher the entropy, the less confident we are in 
the outcome

▪ Definition

𝐻 𝑋 =෍

𝑥

𝑝 𝑋 = 𝑥 log2
1

𝑝(𝑋 = 𝑥)

𝐻 𝑋 = −෍

𝑥

𝑝 𝑋 = 𝑥 log2 𝑝(𝑋 = 𝑥)

Claude Shannon (1916 – 2001), 

most of the work was done in 

Bell labs



Entropy
Definition
𝐻 𝑌 = σ𝑦 𝑝 𝑌 = 𝑦 log2

1

𝑝(𝑌=𝑦)

𝐻 𝑌 = −σ𝑦 𝑝 𝑌 = 𝑦 log2 𝑝(𝑌 = 𝑦)



Mutual Information
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Mutual Information

25

• For a decision tree, we can use 
mutual information of the output 
class Y and some attribute X on 
which to split as a splitting criterion

• Given a dataset D of training 
examples, we can estimate the 
required probabilities as…
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Mutual Information

26

• For a decision tree, we can use 
mutual information of the output 
class Y and some attribute X on 
which to split as a splitting criterion

• Given a dataset D of training 
examples, we can estimate the 
required probabilities as…

Informally, we say that mutual information is a measure of the following: 
If we know X, how much does this reduce our uncertainty about Y?

• Entropy measures the expected # of bits to code one random draw from X. 
• For a decision tree, we want to reduce the entropy of the random variable we 

are trying to predict!

Conditional entropy is the expected value of specific conditional entropy 
EP(X=x)[H(Y | X = x)]
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Splitting with Mutual Information
Which attribute {A, B} would mutual 
information select for the next split?

1) A

2) B

3) A or B (tie)

4) I don’t know

Dataset: 
Output Y, Attributes A and B



Decision Tree Learning Example

28

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley



Decision Tree Learning Example
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Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley

𝐻 𝑌 = −
2

8
log2

2

8
+

6

8
log2

6

8

𝐻 𝑌 𝐴 = 0 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

𝐻 𝑌 𝐴 = 1 = −
2

8
log2

2

8
+

6

8
log2

6

8
= 𝐻(𝑌)

𝐻 𝑌 𝐴 = 𝑃 𝐴 = 0 𝐻 𝑌 𝐴 = 0 + 𝑃 𝐴 = 1 𝐻(𝑌 ∣ 𝐴 = 1)
= 0 + 𝐻(𝑌 ∣ 𝐴 = 1)
= 𝐻(𝑌)

𝐼 𝑌; 𝐴 = 𝐻 𝑌 − 𝐻 𝑌 𝐴 = 0

A

[2-, 6+]

[0-, 0+]
P(A=0) = 0

[2-, 6+]
P(A=1)=1

A=0 A=1



Decision Tree Learning Example

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley

B

[2-, 6+]

[2-, 2+]
P(B=0)=4/8

[0-, 4+]
P(B=1)=4/8

B=0 B=1



Decision Tree Learning Example
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Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Slide credit: CMU MLD Matt Gormley

𝐻 𝑌 = −
2

8
log2

2

8
+

6

8
log2

6

8

𝐻 𝑌 𝐵 = 0 = −
2

4
log2

2

4
+

2

4
log2

2

4

𝐻 𝑌 𝐵 = 1 = − 0 log2 0 + 1 log2 1 = 0

𝐻 𝑌 𝐵 = 𝑃 𝐵 = 0 𝐻 𝑌 𝐵 = 0 + 𝑃 𝐵 = 1 𝐻(𝑌 ∣ 𝐵 = 1)

=
4

8
𝐻 𝑌 𝐵 = 0 +

4

8
⋅ 0

𝐼 𝑌; 𝐵 = 𝐻 𝑌 − 𝐻 𝑌 𝐵 > 0
𝐼 𝑌; 𝐵 ends up being greater than 𝐼 𝑌; 𝐴 = 0, so we split on B

B

[2-, 6+]

[2-, 2+]
P(B=0)=4/8

[0-, 4+]
P(B=1)=4/8

B=0 B=1



Mutual Information Notation
We use mutual information in the context of before and after a split, 
regardless of where that split is in the tree.

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻(𝑌 ∣ 𝑋)
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