

Learning Theory

Aarti Singh
(sub for Pat Virtue)

Machine Learning 10-315
Apr 19, 2023

Slides courtesy: Carlos Guestrin

MACHINE LEARNING DEPARTMENT

Training vs. Test Error

$$\frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2$$

Poll

Training error is no longer a good indicator of test error

Bias-Variance Tradeoff

- Why does test/validation error go down then up with increasing model complexity?

Two sources of error:

e.g. Regression

function learnt on n data

Bias

$$|E[f_n] - f^*|$$

Variance

$$E[|f_n - E[f_n]|^2]$$

Bias-Variance Tradeoff

- Why does test/validation error go up with increasing model complexity?

Mean square test error = Variance + Bias² + Irreducible error $\text{err}(f^*)$

Learning Theory

- We have explored **many** ways of learning from data
- But...
 - Can we certify how good is our classifier, really?
 - How much data do I need to make it “good enough”?

PAC Learnability

Probably Approximately Correct
 δ ε

- True function space, F -
- Model space, H \leftarrow

F is PAC Learnable by a learner using H if

there exists a learning algorithm s.t. for all functions in F , for all distributions over inputs, for all $0 < \varepsilon, \delta < 1$,

with probability $> 1 - \delta$, the algorithm outputs a model $h \in H$ s.t. $\text{error}_{\text{true}}(h) \leq \varepsilon$

in time and samples that are polynomial in $1/\varepsilon, 1/\delta$.

A simple setting

- Classification
 - m i.i.d. data points
 - **Finite** number of possible classifiers in model class (e.g., dec. trees of depth d)
- Lets consider that a learner finds a classifier h that gets zero error in training
 - $\text{error}_{\text{train}}(h) = 0$
- What is the probability that h has more than ε true (= test) error?
 - $\text{error}_{\text{true}}(h) \geq \varepsilon$

Even if h makes zero errors in training data, may make errors in test

How likely is a bad classifier to get m data points right?

$$P(h(x) \neq y)$$

- Consider a bad classifier h i.e. $\underline{\text{error}_{\text{true}}(h) \geq \varepsilon}$
- Probability that h gets one data point right
 $\leq 1 - \varepsilon$
- Probability that h gets m data points right

$$\underline{\leq (1 - \varepsilon)^m}$$

How likely is a learner to pick a bad classifier?

- Usually there are many (say k) bad classifiers in model class h_1, h_2, \dots, h_k s.t. $\text{error}_{\text{true}}(h_i) \geq \varepsilon \quad i = 1, \dots, k$
- Probability that learner picks a bad classifier = Probability that some bad classifier gets 0 training error
Prob(h_1 gets 0 training error OR h_2 gets 0 training error OR ... OR h_k gets 0 training error)
$$\leq \text{Prob}(h_1 \text{ gets 0 training error}) + \text{Prob}(h_2 \text{ gets 0 training error}) + \dots + \text{Prob}(h_k \text{ gets 0 training error})$$
$$\leq k (1-\varepsilon)^m$$

$P(A \cup B) \leq P(A) + P(B)$

Union bound
Loose but works

How likely is a learner to pick a bad classifier?

- Usually there are many many (say k) bad classifiers in the class

$$h_1, h_2, \dots, h_k \quad \text{s.t. } \text{error}_{\text{true}}(h_i) \geq \varepsilon \quad i = 1, \dots, k$$

- Probability that learner picks a bad classifier

$$\leq \underbrace{k}_{\substack{\downarrow \\ \text{Size of model class}}} (1-\varepsilon)^m \leq \underbrace{|H|}_{\substack{\downarrow \\ \text{Size of model class}}} (1-\varepsilon)^m \leq \underbrace{|H|}_{\substack{\downarrow \\ \text{Size of model class}}} e^{-\varepsilon m}$$

$e^{-x} = 1 - x + \frac{x^2}{2} - \dots$
 $e^{-x} \geq 1 - x$

PAC (Probably Approximately Correct) bound

- **Theorem [Haussler'88]:** Model class H finite, dataset D with m i.i.d. samples, $0 < \underline{\epsilon} < 1$: for any learned classifier h that gets 0 training error:

$$P(\text{error}_{\text{true}}(h) \geq \epsilon) \leq |H|e^{-m\underline{\epsilon}} = \delta$$

- Equivalently, with probability $\geq 1 - \delta$

$$\text{error}_{\text{true}}(h) \leq \epsilon$$

Important: PAC bound holds for all h with 0 training error, but doesn't guarantee that algorithm finds best h !!!

Using a PAC bound

$$|H|e^{-m\epsilon} = \delta \quad \text{---} \quad \text{---} \quad \text{---}$$

- Given $\underline{\epsilon}$ and $\underline{\delta}$, yields sample complexity

$$\text{#training data, } \underline{m} = \frac{\ln |H| + \ln \frac{1}{\underline{\delta}}}{\underline{\epsilon}} \quad \text{---} \quad \text{---}$$

- Given \underline{m} and $\underline{\delta}$, yields error bound

$$\text{error, } \underline{\epsilon} = \frac{\ln |H| + \ln \frac{1}{\underline{\delta}}}{\underline{m}} \quad \text{---} \quad \text{---}$$

$$M \bar{e}_\uparrow^m = s$$

Polli

$$\text{error}_{\text{train}} = 0$$

Assume m is the minimum number of training examples sufficient to guarantee that with probability $1 - \delta$ a consistent learner using model class H will output a classifier with true error at worst ε .

Then a second learner that uses model space H' will require $2m$ training examples (to make the same guarantee) if $|H'| = 2|H|$.

If we double the number of training examples to $2m$, the error bound ϵ will be halved.

Limitations of Haussler's bound

- Only consider classifiers with 0 training error

h such that zero error in training, $\text{error}_{\text{train}}(h) = 0$

- Dependence on size of model class $|H|$

$$m = \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon}$$

what if $|H|$ too big or H is continuous (e.g. linear classifiers)?

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with $error_{train}(h) \neq 0$ in training set?
- The error of a classifier is like estimating the parameter of a coin!

$$\rightarrow error_{true}(h) := P(\underbrace{h(X)}_{\text{red arrow}} \neq Y) \equiv P(H=1) =: \theta$$

$$\rightarrow error_{train}(h) := \frac{1}{m} \sum_i \mathbf{1}_{h(X_i) \neq Y_i} \equiv \frac{1}{m} \sum_i \underbrace{Z_i}_{\text{red arrow}} =: \hat{\theta}$$

Hoeffding's bound for a single classifier

- Consider m i.i.d. flips x_1, \dots, x_m , where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \epsilon < 1$:

$$P\left(\left|\theta - \frac{1}{m} \sum_i x_i\right| \geq \epsilon\right) \leq 2e^{-2m\epsilon^2}$$

- Central limit theorem:

$$\frac{1}{m} \sum_i x_i \xrightarrow{m \rightarrow \infty} N\left(\theta, \frac{\sigma^2}{m}\right)$$

x_i mean θ , var σ^2

$$\sqrt{m} \left(\frac{1}{m} \sum_i x_i - \theta \right) \xrightarrow{m \rightarrow \infty} N(0, \sigma^2)$$

Hoeffding's bound for a single classifier

- Consider m i.i.d. flips x_1, \dots, x_m , where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \epsilon < 1$:

$$P \left(\left| \theta - \frac{1}{m} \sum_i x_i \right| \geq \epsilon \right) \leq 2e^{-2m\epsilon^2}$$

- For a single classifier h

$$P (|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \geq \epsilon) \leq 2e^{-2m\epsilon^2}$$

Hoeffding's bound for $|H|$ classifiers

- For each classifier h_i :

$$P(|\text{error}_{\text{true}}(h_i) - \text{error}_{\text{train}}(h_i)| \geq \epsilon) \leq 2e^{-2m\epsilon^2}$$

- What if we are comparing $\underline{|H|}$ classifiers?

Union bound

- Theorem:** Model class H finite, dataset D with m i.i.d. samples, $0 < \epsilon < 1$: for any learned classifier $\underline{h \in H}$:

$$P(|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \geq \epsilon) \leq 2|H|e^{-2m\epsilon^2} \leq \underline{\delta}$$

Important: PAC bound holds for all h , but doesn't guarantee that algorithm finds best h !!!

Summary of PAC bounds for finite model classes

With probability $\geq 1-\delta$,

- 1) For all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,

$$\text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

Haussler's bound

- 2) For all $h \in H$

$$|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$$

Hoeffding's bound

PAC bound and Bias-Variance tradeoff

$$P(|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \geq \epsilon) \leq 2|H|e^{-2m\epsilon^2} \leq \delta$$

- Equivalently, with probability $\geq 1 - \delta$

$$\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$$

- Fixed m

Model class			
complex		small	large
simple		large	small

Training vs. Test Error

With prob $\geq 1 - \delta$, $\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$

What about the size of the model class?

$$2|H|e^{-2m\epsilon^2} \leq \delta$$

- Sample complexity

$$m = \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$$

- How large is the model class?

– Number of binary decision trees of depth $k = 2^{2^k}$

$$m \text{ is exponential in depth } k \quad \ln 2^{2^k} = 2^k$$

BUT given m points, decision tree can't get too big

– Number of binary decision trees with k leaves = 2^k

$$m \text{ is linear in number of leaves } k \quad \ln 2^k = k$$

Number of decision trees of depth k

Recursive solution: *features*

Given n **binary** attributes

$$m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$$

H_k = Number of **binary** decision trees of depth k

✓

$$H_0 = 2$$

✓

$$H_k = (\# \text{choices of root attribute}) * (\# \text{possible left subtrees})$$

$$* (\# \text{possible right subtrees}) = \underbrace{n}_{-} * H_{k-1} * H_{k-1}$$

Write $L_k = \log_2 H_k$

✓ $L_0 = 1$

$$L_k = \log_2 n + 2L_{k-1} = \log_2 n + 2(\log_2 n + 2L_{k-2})$$

$$= \log_2 n + 2\log_2 n + 2^2 \log_2 n + \dots + 2^{k-1}(\log_2 n + 2L_0)$$

So $L_k = \underbrace{(2^{k-1})}_{-} (1 + \log_2 n) + 1$

$$|H_k| \sim 2^{L_k} \sim 2^{2^k}$$

PAC bound for decision trees of depth k

$$m \geq \frac{\ln 2}{2\epsilon^2} \left((2^k - 1) \underbrace{(1 + \log_2 n)}_{\log |\mathcal{H}|} + 1 + \log_2 \frac{2}{\delta} \right)$$

- Bad!!!
 - Number of points is exponential in depth k!
- But, for m data points, decision tree can't get too big...

Number of leaves never more than number data points, so we are over-counting a lot!

Number of decision trees with k leaves

$$m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$$

H_k = Number of binary decision trees with k leaves

$H_1 = 2$

$H_k = (\# \text{choices of } \underline{\text{root attribute}}) *$

$[(\# \text{left subtrees wth 1 leaf}) * (\# \text{right subtrees wth } k-1 \text{ leaves})]$

$+ (\# \text{left subtrees wth 2 leaves}) * (\# \text{right subtrees wth } k-2 \text{ leaves})$

$+ \dots$

$+ (\# \text{left subtrees wth } k-1 \text{ leaves}) * (\# \text{right subtrees wth 1 leaf})]$

$$H_k = n \sum_{i=1}^{k-1} H_i H_{k-i} = n^{k-1} C_{k-1} \quad (C_{k-1} : \text{Catalan Number})$$

Loose bound (using Sterling's approximation):

$$H_k \leq n^{k-1} \underbrace{2^{2k-1}}$$

Number of decision trees

- With k leaves

$$\underline{m} \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$$

$$\log_2 H_k \leq (k - 1) \log_2 n + 2k - 1 \quad \text{linear in } k$$

number of points m is linear in #leaves

- With depth k

$$\log_2 H_k = (2^k - 1)(1 + \log_2 n) + 1 \quad \text{exponential in } k$$

number of points m is exponential in depth

What did we learn from decision trees?

- Moral of the story:

• VC dimension
• Rademacher complexity

Complexity of learning not measured in terms of size of model space, but in maximum *number of points* that can be correctly classified using a model from that space

Next class: Use this idea to define complexity of infinite model spaces e.g. linear classifiers, neural nets, ...