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Training error is no longer a
good indicator of test error



Bias-Variance Tradeoff

* Why does test/validation error go down then up with
increasing model complexity? J
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Bias-Variance Tradeoff

* Why does test/validation error go up with increasing model
complexity?
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Learning Theory

* We have explored many ways of learning from
data

 But...

— Can we certify how good is our classifier, really?
— How much data do | need to make it “good enough”?



PAC Learnability
?nggﬁ A?P“"i;“’“‘ﬁ Covrech
* True function space, F -

* Model space, H «

Fis PAC Learnable by a learner using H if

there exists a learning algorithm s.t. for all functions in
F, for all distributions over inputs, forall0<¢g,0<1,

with probability > 1-0, the algorithm outputs a model
h € Hs.t. error,.(h) <¢

in time and samples that are polynomial in 1/¢, 1/9.
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A simple setting

e Classification

— mi.i.d. data points

— Finite number of possible classifiers in model class
(e.g., dec. trees of depth d)

* Lets consider that a learner finds a classifier h
that gets zero error in training
— error.i,(h) =0
* What is the probability that h has more than ¢
true (= test) error?
— errory.(h) > ¢ M
0

7
Even if h makes zero errors in training data, may make errors in test



How likely is a bad classifier to get m

data points right?
PRIOEY)

* Consider a bad classifier hi.e. error,.(h) 2 €

—

* Probability that h gets one data point right
<1l-¢

* Probability that h gets m data points right

<(1-¢)m
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How likely is a learner to pick a bad
classifier?

e Usually there are many (say k) bad classifiers in model class
hy, h,, ..., hy s.t. error,(h;))2€ i=1, ..,k

* Probability that learner picks a bad classifier = Probability
that some bad classifier gets O training error

(R
Prob(h, gets O training error OR elA B) < PAYH )
h, gets O training error OR ... OR
h, gets O training error :
8 & ) Union
< Prob(h, gets O training error) + bound
Prob(h, gets O training error) + ... + Loose but
works

Prob(h, gets O training error)
9
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How likely is a learner to pick a bad
classifier?

e Usually there are many many (say k) bad classifiers in the
class

hy, h,, ..., hy s.t. error,(h)2€ i=1, .,k
* Probability that learner picks a bad classifier _ 2
J J g =\-%+%- -
< I;(l—a)m < |H]| (1-9;)”‘3 |H| e®m s 1x

~Ls Size of model class
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PAC (Probably Approximately Correct)
(€8 bound

 Theorem [Haussler’88]: Model class H finite, dataset
D with mi.i.d. samples, 0 < € <1 : for any learned
classifier h that gets O training error:

P(errorgye(h) >¢€) < |Hle" ™ =6

—

* Equivalently, with probability > 1 — 0
erroryrye(h) < e | I

Important: PAC bound hdlﬁﬁ"l’d’i"éh‘h with 0 training error, but |
doesn’t guarantee that algorithm finds best h!!!




Using a PAC bound

| Hlem =5«

* Given Eand_&}, vields sample complexity

1
#training data, y, = n|H|+Ing -

- €

 Given m and 9, yields error bound
In|H| + In 5

m

—
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error,
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£ Poll exteC pgin = 0

Assume m is the minimum number of training exazZples sufficient
to guarantee that with probability 1 — 6 a consistent learner using

———————n

model class H will output a classifier with true error at worst .

Then a second learner that uses model space H’ will require 2m
training examples (to make the same guarantee) if |[H' | =2|H]|.

A. True B. False

If we double the number of training examples to 2m, the error
bound € will be halved. B

C. True D. False
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Limitations of Haussler’s bound

* Only consider classifiers with O training error

h such that zero error in training, error,,,(h) =0

* Dependence on size of model class |H|
g - rgg
In @ + In + -

what if |H| too big or H is continuous (e.g. linear
classifiers)?
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What if our classifier does not have
zero error on the training data?

* Alearner with zero training errors may make
mistakes in test set

* What about a learner with error,,,;,(h) # 0 in training
set?

* The error of a classifier is like estimating the
parameter of a coin!

~> error,. .(h) := P(h(X) 2Y) = P(H=1)=:0

1 1 ~
- error -(h):=_§ 1 v sy E—E Z; =: 0
train m 7; h(Xz)#Yz m i
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Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1:

-

. . —

1 o 2
PQH—ZQ:Z'EG) < 9e—2me
m .
1
L\—%.

e Central limit theorem: X meamd voua

—L,Zx;':); (—f\ /\

9
@(; S -9) ~ N(0,¢)
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Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1:

1 2
P QH—ZQ:Z- > e) < Qe 2me
m <
1

I
* For a single classifier h\
|

P (Ierrortrue(h ) — errortraz’n(h )|2 E) < 26_

2me>
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Hoeffding’s bound for |H| classifiers

* For each classifier h:

—9 2
P (lerrortrue(h@‘) — errortmm(hmz E) < Ve ™me

 What if we are comparing |H| classifiers?

Union bound

e Theorem: Model class H finite, dataset D with mi.i.d.
samples, 0 < € < 1: for any learned classifier h € H:

P (lerroripye(h) — errofiqin(h)| > €) < 2|H|e_2m€ < 5

Important: PAC bound holdsToraith,but doesn’t guaranTee that
algorithm finds best h!!!



Summary of PAC bounds for finite
model classes

With probability > 1-0,
1) Forall h € Hs.t. error,,(h) =0,

error,,.(h) < & = In |[H| 4 1In § Haussler’s bound

m <«

2) Forallh e H

<«
errory,(h) - error,y(h)| < & J

In|H|-|—In%

2m

Hoeffding’s bound
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PAC bound and Bias-Variance tradeoff

2
P qerrortrue(h) — errOrtrain(h)l > 6) < Q‘H’€_2m€ < 0

* Equivalently, with probability > 1 —§

2
N H|+ In%
erroryrye(h) < errory.qin(h) + \ % 2
T N\A N m
e Fixed m l l
Model class
complex small large
simple large small
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With prob> 1 — & €rrorirye(h) < errorqin(h) + \

Training error

Training vs. Test Error

2
In|H|+ In%

2m

\ fixed # training data

Validation error

s

| ————— e » Model

> .
overfitting Complexity

underfitting Bost
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What about the size of the model

class? 2
_ 2|H|e *™e < §
 Sample complexity
- (In]H|—|—In 2’)
m = —— _
_ 2€2 — 0

* How large is the model class?
— Number of binary decision trees of depth k = 22% e

m is exponential in depth k Lty = Qf‘
BUT given m points, decision tree can’t get too big
— Number of binary decision trees with k leaves = 2k &~

| 8
m is linear in number of leaves k Loz =k
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Number of decision trees of depth k

Recursive solution: ; .., m > % (m \H| + In %)
Given n binary attributes ‘

H, = Number of binary decision trees of depth k
~Hy=2

-~ H, = (#choices of root attribute)
*(# possible left subtrees)
*(# possible right subtrees) =n*H,; * H

—_—

k
Write L, = log, H L, 2

~2
s =1 My ~2
L, =log, n+ 2L, _,=log, n+ 2(log, n + 2L,,)

=log, n + 2log, n + 2%log, n + ... +2%(log, n + 2L,)
So L, =(2%1)(1+log, n) +1 23
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PAC bound for decision trees of depth k

bgl\ﬂ
In 2 2

N2/ & 2
> 5 (@ - DA +1092m) + 14 095

N3

—_—
——

e Badl!!!
— Number of points is exponential in depth k!

* But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points, so
we are over-counting a lot!

24



Number of decision trees with k leaves

m > 2%2 (In |H| + In%)
H, = Number of binary decision trees with k leaves
H, =2
H, = (#choices of root attribute) *
[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)
+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)

+ ...
+ (# left subtrees wth k-1 leaves)™*(# right subtrees wth 1 leaf)]

k—1
Hi =n Z H;Hy_; =nk1C, (C,., : Catalan Number)
- 1=1 —

Loose bound (using Sterling’s approximation):

Hk S nk—122k—1 )

;d



Number of decision trees

1 2
e With k leaves M52 ('n H|+In E)

=

logy Hy < (k—1)logyn + 2k — 1 linear in k

=

number of points m is linear in #leaves

* With depth k

log, H, = (2%1)(1+log, n) +1  exponential in k

number of points m is exponential in depth
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What did we learn from decision trees?

, NC dimers® o -
- Mmmlg‘u. o p—“‘ _
 Moral of the story: pornglex’] o 7

Complexity of learning not measured in terms of size
of model space, but in maximum number of points
that can be correctly classified using a model from

that space

Next class: Use this idea to define complexity of infinite
model spaces e.g. linear classifiers, neural nets, ...
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