Plan

Cool stuff

- Expectation-Maximization algorithm
- Gaussian mixture models for clustering
- Kernels
- Linear regression
- Support vector machines
- Duality
- Support vector machines

10-315

Introduction to ML

Nonparametric Regression and Kernels

Instructor: Pat Virtue

Parametric vs Nonparametric Regression

Parametric vs Nonparametric

Two different definitions

Statistics

A nonparametric model does not follow a specific distribution (thus doesn't have parameters that define that distribution)

Machine learning
The number of parameters in a nonparametric model scales with the number of training data points

Parametric vs Nonparametric

Which models are nonparametric?

Statistics
does not follow a specific distribution
No
N_{0}
Yes
No
N_{0}
Yes
Yes

Linear regression
Logistic regression
Neural nets
Naïve Bayes
Discriminant analysis
K-nearest neighbor

Machine learning
number of parameters scales with training

Decision trees

Poll 1
Are decision trees parametric or non-parametric?
A. Para

Use ML
B. \gg
c. Non-Param

Nonparametric Regression

Decision Trees

Nonparametric Regression

Decision Trees

Nonparametric Regression

Decision Trees

Decision Tree Regression

Poll 1

Are decision trees parametric or non-parametric?
A.
B.
C.

Poll 1

Are decision trees parametric or non-parametric?

It depends :)

- If no limits on depth or reuse of attributes, then non-parametric
- Model complexity will grow with data
- If pruned/limited to fix size
- Parametric
- If attributes only used once
- Parametric; model complexity is limited by number of features

Trade-offs

- Non-parametric methods have very powerful representation capabilities
- But
- Easily overfit
- Can take up memory proportional to training size too

Nonparametric Regression

$$
\hat{y}=h(x)
$$

Nearest Neighbor

Nonparametric Regression
Neural Networks (nonparametric hack)
(a)

Nonparametric Regression
Kernel Regression

$k\left(x, x^{\prime}\right)$

Nonparametric Regression
Kernel Regression
RBF Kernel function

$$
\begin{array}{r}
k\left(x, x^{\prime}\right)=e^{\frac{-\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}} \\
=e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}}
\end{array}
$$

Poll 2

As x and x^{\prime} get closer the RBF function: A. Increases
B. Decreases

> RBF Kernel function $$
\begin{aligned} k\left(x, x^{\prime}\right) & =e^{\frac{-\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}} \\ & =e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}}\end{aligned}
$$

C. Stays the same

Poll 3

As γ increases the RBF function:

A. Gets wider

B. Gets narrower
C. Stays the same

$$
\begin{aligned}
& \text { RBF Kernel function } \\
& \qquad \begin{aligned}
k\left(x, x^{\prime}\right) & =e^{\frac{-\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}} \\
& =e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}}
\end{aligned}
\end{aligned}
$$

$$
\hat{q}_{\gamma}=\frac{1}{2 \sigma^{2}}
$$

Poll 4
As γ increases the max height of the RBF:
A. Increases
B. Decreases
C. Stays the same

RBF Kernel function

$$
\begin{aligned}
k\left(x, x^{\prime}\right) & =e^{\frac{-\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}} \\
& =e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}}
\end{aligned}
$$

$$
\gamma=\frac{1}{2 \sigma^{2}}
$$

Kernel Regression

Kernel Regression

RBF kernel and corresponding hypothesis function

Distance kernel (Gaussian / Radial Basis Function)

- Close to point should be that point
- Far should be zero
- Mini Gaussian window

$$
k\left(x, x^{\prime}\right)=e^{\frac{-\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}}=e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}}
$$

- We control the variance γ

Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
- $\hat{y}=h(x)=\sum_{i} \alpha_{i} k\left(x, x^{(i)}\right)$
- What should α_{i} be?

$$
\alpha_{i}=y_{i}, \alpha=y ?
$$

- Need to account for points that are close together

Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
- $\hat{y}=h(x)=\sum_{i} \alpha_{i} k\left(x, x^{(i)}\right)$
- What should α_{i} be?
- $\alpha_{i}=y_{i}, \alpha=y$?
- Need to account for points that are close together

Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
- $\hat{y}=h(x)=\sum_{i} \alpha_{i} k\left(x, x^{(i)}\right)$
- What should α_{i} be?
$\alpha \alpha_{i}=y_{i}, \alpha=y$?
- Need to account for points that are close together

Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
- $\hat{y}=h(x)=\sum_{i} \alpha_{i} k\left(x, x^{(i)}\right)$
- What should α_{i} be?
- Need to account for points that are close together

Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?

- Weighted sum of these little windows
- $\hat{y}=h(x)=\sum_{i} \alpha_{i} k\left(x, x^{(i)}\right)$
- What should α_{i} be?
- Need to account for points that are close together

$$
\alpha=(K)^{-1} y
$$

$\longrightarrow \alpha=(K+\lambda I)^{-1} y$
where $K_{i j}=k\left(x^{(i)}, x^{(j)}\right)$
and λ is small to help inversion

Kernelized Linear Regression

Reminder: Polynomial Linear Regression
Polynomial feature function

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]} \\
& \underbrace{}_{2} \\
& {\left[1 \times x^{2} x^{3} x^{4}\right]} \\
& \left(x^{\top} x\right)^{-16} x^{\top} y \rightarrow \hat{\theta}
\end{aligned}
$$

Reminder: Polynomial Linear Regression

Polynomial feature function

Least squares formulation

Least squares solution

Reminder: Polynomial Linear Regression

Polynomial feature function

- $x \rightarrow \phi(x)=\left[1, x, x^{2}, x^{3}\right]^{T}$
- $X \rightarrow \Phi 2 \mathbb{R}^{N \times 4}$

Least squares formulation

- $\min _{w}\|y-\Phi w\|_{2}^{2}$

Least squares solution

- $w=\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} y$

Plus L2 regularization

- $\min _{w}\|y-\Phi w\|_{2}^{2}+\lambda\|w\|_{2}^{2}$
- ${ }^{w}=\left(\Phi^{T} \Phi+\lambda \mathrm{I}\right)^{-1} \Phi^{T} y$

Can rewrite as

- $w=\Phi^{T}\left(\Phi \Phi^{T}+\lambda \mathrm{I}\right)^{-1} y$

Kernelized Linear Regression
L2 regularized linear regression (with feature function)

- $\min _{w}\|y-\Phi w\|_{2}^{2} \lambda\|w\|_{2}^{2}$
- $w=\left(\Phi^{T} \Phi+\lambda \mathrm{I}\right)^{-1} \Phi^{T} y$

Can rewrite as

$$
\begin{aligned}
& \text { - } w=\Phi^{T}\left(\Phi \Phi^{T}+\lambda \mathrm{I}\right)^{-1} y
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \hat{y}=h(x)=w^{\mathrm{T}} \mathrm{x}=x^{\top} \omega \\
& \text { f } \quad \text { new } \\
& =\phi(x)^{\top} \omega \\
& =\phi_{N}(x)^{\top} \Phi^{\top} \vec{\alpha} \\
& =\sum_{i=1}^{N} \alpha_{i}^{\phi(x)^{\top} \phi\left(x^{(i)}\right)}=\sum_{i=1}^{N} \alpha_{i} \cdot k\left(x, x^{(i)}\right)
\end{aligned}
$$

Example: Polynomial Kernel

https://www.youtube.com/watch?v=3liCbRZPrZA

Kernels: Motivation

Motivation \#1: Inefficient Features

- Non-linearly separable data requires high dimensional representation
- Might be prohibitively expensive to compute or store

Motivation \#2: Memory-based Methods

- k-Nearest Neighbors (KNN) for facial recognition allows a distance metric between images -- no need to worry about linearity restriction at all

Kernel Methods

Key idea:

1. Rewrite the algorithm so that we only work with dot products $x^{\top} z$ of feature vectors
2. Replace the dot products $x^{\top} z$ with a kernel function $k(x, z)$

The kernel $k(x, z)$ can be any legal definition of a dot product:

$$
k(x, z)=\phi(x)^{\top} \phi(z) \text { for any function } \phi: x \rightarrow \mathbf{R}^{D}
$$

So we only compute the ϕ dot product implicitly

This "kernel trick" can be applied to many algorithms:

- classification: perceptron, SVM, ...
- regression: ridge regression, ...
- clustering: k-means, ...

Kernel Methods

Q: These are just non-linear features, right?
A: Yes, but...
Q: Can't we just compute the feature transformation φ explicitly?
A: That depends...
Q: So, why all the hype about the kernel trick?
A: Because the explicit features might either be prohibitively expensive to compute or infinite length vectors

Example: Polynomial Kernel

$x \in R^{2} \quad \delta=2$ poly
For $n=2, d=2$, the kernel $K(x, z)=(x \cdot z)^{d}$ corresponds to

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \\
& \begin{aligned}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z}) & = \\
= & \left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \cdot\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}\right)
\end{aligned} \\
& =\left(\mathrm{x}_{1} z_{1}+\mathrm{x}_{2} z_{2}\right)^{2}=(\mathrm{x} \cdot \mathrm{z})^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{aligned}
$$

Kernel Examples

Side Note: The feature space might not be unique!

Explicit representation \#1:

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \\
& \begin{aligned}
\phi(\mathrm{x}) \cdot \phi(z) & =\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}\right) \cdot\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}\right) \\
& =\left(\mathrm{x}_{1} z_{1}+\mathrm{x}_{2} z_{2}\right)^{2}=(\mathrm{x} \cdot z)^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{aligned}
\end{aligned}
$$

Explicit representation \#2:

$$
\begin{aligned}
& \phi: \mathrm{R}^{2} \rightarrow \mathrm{R}^{4},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \rightarrow \Phi(\mathrm{x})=\left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{2} \mathrm{x}_{1}\right) \\
& \begin{aligned}
\phi(\mathrm{x}) \cdot \phi(\mathrm{z})= & \left(\mathrm{x}_{1}^{2}, \mathrm{x}_{2}^{2}, \mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{2} \mathrm{x}_{1}\right) \cdot\left(\mathrm{z}_{1}^{2}, \mathrm{z}_{2}^{2}, \mathrm{z}_{1} \mathrm{z}_{2}, \mathrm{z}_{2} \mathrm{z}_{1}\right) \\
& =(\mathrm{x} \cdot \mathrm{z})^{2}=\mathrm{K}(\mathrm{x}, \mathrm{z})
\end{aligned}
\end{aligned}
$$

These two different feature representations correspond to the same kernel function!

Kernel Examples

Name	Kernel Function (implicit dot product)	Feature Space (explicit dot product)		
Linear	$K(\mathbf{x}, \mathbf{z})=\mathbf{x}^{T} \mathbf{z}$	Same as original input space		
Polynomial (v1)	$K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{T} \mathbf{z}\right)^{d}$	All polynomials of degree d		
	$K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{T} \mathbf{z}+1\right)^{d}$	All polynomials up to degree d		
Gaussian (RBF)	$K(\mathbf{x}, \mathbf{z})=\exp \left(-\frac{\\|\mathbf{x}-\mathbf{z}\\|_{2}^{2}}{2 \sigma^{2}}\right)$	Infinite dimensional space		
Hyperbolic Tangent (Sigmoid) Kernel	$K(\mathbf{x}, \mathbf{z})=\tanh \left(\alpha \mathbf{x}^{T} \mathbf{z}+c\right)$	(With SVM, this is equivalent to a 2-layer neural network)		

