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Cool stuff

= Expectation-Maximization algorithm
" Gaussian mixture models for clustering

= Kernels

= Linear regression

= Support vector machines
= Duality

= Support vector machines
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Introduction to ML

Nonparametric Regression
and Kernels

Instructor: Pat Virtue
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Parametric vs Nonparametric

Two different definitions

Statistics

A nonparametric model does not follow a specific distribution (thus
doesn’t have parameters that define that distribution)

Machine learning

The number of parameters in a nonparametric model scales with the
number of training data points



Parametric vs Nonparametric

Which models are nonparametric?

Statistics

does not follow a
specific distribution

Nz) Linear regression
NO Logistic regression
\(fj Neural nets
N o Naive Bayes

Discriminant analysis
\/ K-nearest neighbor
€5 Decision trees

Machine learning

number of parameters
scales with training
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Poll 1 Use ML
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Nonparametric Regression

Decision Trees

Output y




Nonparametric Regression

Decision Trees
Decision Tree Regression
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Nonparametric Regression

Decision Trees o _
Decision Tree Regression
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Poll 1

Are decision trees parametric or non-parametric?
A.
B.
C.



Poll 1

Are decision trees parametric or non-parametric?
It depends :)

" |f no limits on depth or reuse of attributes, then non-parametric
" Model complexity will grow with data

= |f pruned/limited to fix size
= Parametric

= |f attributes only used once
" Parametric; model complexity is limited by number of features

Trade-offs

" Non-parametric methods have very powerful representation capabilities
= But

= Easily overfit
= Can take up memory proportional to training size too



Nonparametric Regression
Nearest Neighbor
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Nonparametric Regression

Neural Networks (nonparametric hack)
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Nonparametric Regression

Kernel Regression B |
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Nonparametric Regression

Kernel Regression

Outputy
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RBF Kernel functlon
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Poll 2

s x and x’ get closer the RBF function:
A. Increases

B. Decreases
C. Stays the same
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Poll 3

As y increases the RBF function:
A. Gets wider

ets narrower

C. Stays the same

RBF Kernel function
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Poll 4

As y increases the max height of the RBF:
A. Increases
B. Decreases

tays the same

RBF Kernel function
/ 2
x|l

k(x,x') =e 202
2
_ ol

_
57 20




Kernel Regression
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Kernel Regression

RBF kernel and corresponding hypothesis function

Distance kernel (Gaussian / Radial Basis Function)
= Close to point should be that point
" Far should be zero

" Mini Gaussian window 08 - — Kernel gamma=10
Y 0.7
k(x,x')=e 202 =ce 2 .
= \We control the variance Y 04 |
—/




Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction? /
= Weighted sum of these little windows

¥ = h(x) 5 Zio‘ik(x»x(i))J
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/)rNeed to account for points that are
close together




Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?
" Weighted sum of these little windows

"y = h(x) =) ocik(x,x(i))

* What should o; be? 05|
"o =Y, a=y? o7
= Need to account for points that are N

close together 0s
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Kernel Regression

RBF kernel and corresponding hypothesis function /\

Prediction?
" Weighted sum of these little windows
=9 = h(x) =Y, a;k(x, xD)
* What should o; be? .

><0(i =Yy, a=y? o

" Need to account for points that are
close together
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Kernel Regression

RBF kernel and corresponding hypothesis function

Prediction?

" Weighted sum of these little windows
=9 = h(x) = X; a;k(x, x®)
* What should a; be?

" Need to account for points that are
close together
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Kernel Regression

RBF kernel and corresponding hypothesis function ()

A Y

Prediction?
" Weighted sum of these little windows

"9 = h(x) = T ok (x,xD)
* What should a; be?
" Need to account for points that are

close together
a=(K)ty
S a=K+AD) 'y

() n

where K;; = kgx(i),x(j)l Z

and A is small to help inversion
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Kernelized Linear Regression



Reminder: Polynomial Linear Regression

Polynomial feature function
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Reminder: Polynomial Linear Regression

Polynomial feature function

Least squares formulation

Least squares solution



Reminder: Polynomial Linear Regression

Polynomial feature function
"x - p(x) = lxx x3]T c—
Least squares formulation
= min ||y — dw||3

w

Least squares solution
sy = (dTP) 1pTy

Plus L2 regularization
« min [ly — owll3 + Allwli3

"w = (PTd +AD) 1oy
Can rewrite as
"w = oI (DD + Ay




Kernelized Linear Regression

L2 regularized linear regression (with feature function)
= min ly — dwll5 £ 2llwll3

"= (dTd + A 1pTy

- |
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Example: Polynomial Kernel

https://www.youtube.com/watch?v=3liCbRZPrZA

Original space
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https://www.youtube.com/watch?v=3liCbRZPrZA

Kernels: Motivation

Motivation #1: Inefficient Features
* Non-linearly separable data requires high dimensional representation

=" Might be prohibitively expensive to compute or store

Motivation #2: Memory-based Methods

= k-Nearest Neighbors (KNN) for facial recognition allows a distance
metric between images -- no need to worry about linearity restriction

at all
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Kernel Methods X

Key idea: KC% y Z)

1. Rewrite the algorithm so that we only work with dot products x'z of feature
vectors

2. Replace the dot products x'z with a kernel function k(x, z)

The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) =)d>(x) Td)(‘z;}or any function ¢: X 2 RP

¢

This “kernel trick” can be applied to many algorithms:
= classification: perceptron, SVM, ...

= regression: ridge regression, ...

= clustering: k-means, ...
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Kernel Methods

Q: These are just non-linear features, right?
A: Yes, but...

Q: Can’t we just compute the feature
transformation ¢ explicitly?

A: That depends...

: So, why all the hype about the kernel trick?

Because the explicit features might either
be prohibitively expensive to compute or
infinite length vectors

> 0O
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Example: Polynom|al Kernel
XERE =0 poly /

For n=2, d=2, the kernel K(x,z) = - (x z)4 corresponds to

$:R? = R?, (x1,%;) AP () = (x{,%3, \/_Xlxb
¢(x) - d(2) = (X%;Xz»\/—xﬂiz) ' (Z12» 2;\/—2122)

= (X121 + X225)? £ (x- 2)? = K(x,7)
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Kernel Examples

Side Note: The feature space might not be unique!

Explicit representation #1:
$:R? = R3, (x1,X) = P(x) = (x§,%5,V2x:Xy)

¢x) - d(z) = (X%»X%»\Exﬁz) . (212;222:\/52122)
= (%121 + X227)? = (x- 2)? = K(x,2)
Explicit representation #2:
$:R? = R, (x1,%3) = P(x) = (X{, X5, X1Xp,XX1)
d(X) - d(2) = (X, X5, X1X2, XoX1) * (21,23, 2122, Z221)

= (x-2)? = K(x,2)

Slide credit: CMU MLD Nina Balcan
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Kernel Examples

Linear

Polynomial (v1)

Polynomial (v2)

Gaussian (RBF)

Hyperbolic
Tangent
(Sigmoid) Kernel

Kernel Function

(implicit dot product)

K(x,z) = (x'z+ 1)
12
K(x,z) = exp(— ||X202Z||2

K(x,z) = tanh(ax’z + ¢)

)

Feature Space
(explicit dot product)

Same as original input
space

All polynomials of degree d
All polynomials up to
degree d

Infinite dimensional space
(With SVM, this is

equivalent to a 2-layer
neural network)
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