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Cool stuff
§ Expectation-Maximization algorithm

§ Gaussian mixture models for clustering
§ Kernels

§ Linear regression
§ Support vector machines

§ Duality
§ Support vector machines
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Introduction to ML

Nonparametric Regression 
and Kernels

Instructor: Pat Virtue
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Parametric vs Nonparametric
Two different definitions

Statistics
A nonparametric model does not follow a specific distribution (thus 
doesn’t have parameters that define that distribution)

Machine learning
The number of parameters in a nonparametric model scales with the 
number of training data points



Parametric vs Nonparametric
Which models are nonparametric?

Machine learning
number of parameters 

scales with training

Statistics
does not follow a 

specific distribution

Linear regression
Logistic regression

Neural nets
Naïve Bayes

Discriminant analysis
K-nearest neighbor

Decision trees



Poll 1
Are decision trees parametric or non-parametric?
A.
B.
C.
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Poll 1
Are decision trees parametric or non-parametric?
It depends :)
§ If no limits on depth or reuse of attributes, then non-parametric
§ Model complexity will grow with data

§ If pruned/limited to fix size
§ Parametric

§ If attributes only used once
§ Parametric; model complexity is limited by number of features

Trade-offs
§ Non-parametric methods have very powerful representation capabilities
§ But
§ Easily overfit
§ Can take up memory proportional to training size too



Nonparametric Regression
Nearest Neighbor
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Nonparametric Regression
Neural Networks (nonparametric hack)



Nonparametric Regression
Kernel Regression
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Nonparametric Regression
Kernel Regression



Nonparametric Regression
Kernel Regression
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Poll 2
As x and x’ get closer the RBF function:
A. Increases
B. Decreases
C. Stays the same

RBF Kernel function
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Poll 3
As 𝛾 increases the RBF function:
A. Gets wider
B. Gets narrower
C. Stays the same

RBF Kernel function
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Poll 4
As 𝛾 increases the max height of the RBF:
A. Increases
B. Decreases
C. Stays the same

RBF Kernel function
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Kernel Regression



Kernel Regression
RBF kernel and corresponding hypothesis function

Distance kernel (Gaussian / Radial Basis Function)
§ Close to point should be that point
§ Far should be zero
§ Mini Gaussian window

𝑘 𝑥, 𝑥′ = 𝑒
! "!"# $

$

$%$ = 𝑒!" #!## $
$

§ We control the variance



Kernel Regression
RBF kernel and corresponding hypothesis function

Prediction?
§ Weighted sum of these little windows
§ (𝑦 = ℎ(𝑥) = ∑$ α$𝑘 𝑥, 𝑥($)

§ What should α$ be?
§ α$ = 𝑦$, α = 𝑦?
§Need to account for points that are          

close together
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Kernel Regression
RBF kernel and corresponding hypothesis function

Prediction?
§ Weighted sum of these little windows
§ (𝑦 = ℎ(𝑥) = ∑$ α$𝑘 𝑥, 𝑥($)

§ What should α$ be?
§Need to account for points that are          

close together
𝛼 = 𝐾 !'𝑦
𝛼 = 𝐾 + 𝜆𝐼 !'𝑦
where 𝐾$( = 𝑘 𝑥 $ , 𝑥 (

and 𝜆 is small to help inversion



Kernelized Linear Regression



Reminder: Polynomial Linear Regression
Polynomial feature function



Reminder: Polynomial Linear Regression
Polynomial feature function

Least squares formulation

Least squares solution



Reminder: Polynomial Linear Regression
Polynomial feature function
§ 𝑥 → 𝜙 𝑥 = 1, 𝑥, 𝑥!, 𝑥" #

§ 𝑋 → Φ
Least squares formulation
§ min$ ‖𝑦 − ‖Φ𝑤 !

!

Least squares solution
§ 𝑤 = Φ#Φ %&Φ#𝑦

Plus L2 regularization
§ min$ ‖𝑦 − ‖Φ𝑤 !

! + 𝜆 𝑤 !
!

§ 𝑤 = Φ#Φ+ λI %&Φ#𝑦
Can rewrite as
§ 𝑤 = Φ# ΦΦ# + λI %&𝑦



Kernelized Linear Regression
L2 regularized linear regression (with feature function)
§ min$ ‖𝑦 − ‖Φ𝑤 !

! + 𝜆 𝑤 !
!

§ 𝑤 = Φ#Φ+ λI %&Φ#𝑦
Can rewrite as
§ 𝑤 = Φ# ΦΦ# + λI %&𝑦

Prediction
§ (𝑦 = ℎ(𝑥) = w)x

Let
𝜶 = ΦΦ# + λI %&𝐲



Example: Polynomial Kernel

35

Example 

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to  

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2) 
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https://www.youtube.com/watch?v=3liCbRZPrZA

Slide credit: CMU MLD Nina Balcan

https://www.youtube.com/watch?v=3liCbRZPrZA


Kernels: Motivation

Motivation #1: Inefficient Features
§ Non-linearly separable data requires high dimensional representation
§ Might be prohibitively expensive to compute or store
Motivation #2: Memory-based Methods
§ k-Nearest Neighbors (KNN) for facial recognition allows a distance 

metric between images -- no need to worry about linearity restriction 
at all

36
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Kernel Methods
Key idea: 

1. Rewrite the algorithm so that we only work with dot products xTz of feature 
vectors

2. Replace the dot products xTz with a kernel function k(x, z)

The kernel k(x,z) can be any legal definition of a dot product: 

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

This “kernel trick” can be applied to many algorithms:
§ classification: perceptron, SVM, …
§ regression: ridge regression, …
§ clustering: k-means, … 37
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Kernel Methods

39

Q: These are just non-linear features, right?
A: Yes, but…

Q: Can’t we just compute the feature 
transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?
A: Because the explicit features might either 

be prohibitively expensive to compute or 
infinite length vectors
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Example: Polynomial Kernel
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Example 

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to  
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Example 
ϕ:R2 → R3, x1, x2 → Φ x = (x12, x22, 2x1x2) 
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ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2) 

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z) 
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ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2) 

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z) 

Slide credit: CMU MLD Nina Balcan



Kernel Examples
Side Note: The feature space might not be unique!
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Example 

Note:  feature space might not be unique. 

ϕ:R2 → R4, x1, x2 → Φ x = (x12, x22, x1x2, x2x1) 

ϕ x ⋅ ϕ 𝑧 = (x12, x22, x1x2, x2x1) ⋅ (z12, z22, z1z2, z2z1) 

= x ⋅ 𝑧 2 = K(x, z) 

ϕ:R2 → R3, x1, x2 → Φ x = (x12, x22, 2x1x2) 

ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2) 

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z) 

Explicit representation #1:

Explicit representation #2:

These two different feature representations correspond to the same 
kernel function!

Slide credit: CMU MLD Nina Balcan



Kernel Examples

42

Name Kernel Function
(implicit dot product)

Feature Space
(explicit dot product)

Linear Same as original input 
space

Polynomial (v1) All polynomials of degree d

Polynomial (v2) All polynomials up to 
degree d

Gaussian (RBF) Infinite dimensional space

Hyperbolic
Tangent 
(Sigmoid) Kernel

(With SVM, this is 
equivalent to a 2-layer 
neural network)
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