
Plan
Cool stuff

▪ Expectation-Maximization algorithm

▪ Gaussian mixture models for clustering

▪ Kernels

▪ Linear regression

▪ Support vector machines

▪ Duality

▪ Support vector machines



Course Update

Current Plan (updated)

▪ HW 8 (online)

▪ Mini-project proposal

▪ HW 9 (online)

▪ HW 10 (written/prog)

▪ Midterm 2

▪ Mini-project
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Sun Mon Tue Wed Thu Fri Sat

2 3 4 5
HW8
Proj

6 7 8

9
HW8

10
HW9
HW10

11 12 13 14 15

16 17
HW9

18 19
Prop

20 21 22
HW10

23 24 25 26
MT2

27 28 29

30 1 2 3 4 5
Proj
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Poll 1
How many people are currently in your mini-project group, including 
yourself?

A. 0  (don’t choose this; it doesn’t make sense)

B. 1  (haven’t started looking)

C. 1  (started looking)

D. 2  (haven’t started looking)

E. 2  (started looking)

F. 3

G. 4

H. 5+



10-315
Introduction to ML

Gaussian Mixture Models 
and Expectation 
Maximization

Instructor: Pat Virtue



(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable

Slide credit: CMU MLD Aarti Singh
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• K-means 

– hard assignment: each object belongs to only one cluster

• Mixture modeling

– soft assignment: probability that an object belongs to a cluster

Generative approach
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Partitioning Algorithms

Slide credit: CMU MLD Aarti Singh



Generative Models: Supervised vs Unsupervised
Discriminant analysis vs Gaussian mixture models



Poll 2
Which of these terms is the likelihood?

Select all that apply

BA C

D

FE G

H

𝑝 𝜃 𝒟 =
𝑝 𝒟 𝜃 𝑝(𝜃)

𝑝(𝒟)
𝑝 𝑦 𝑥 =

𝑝 𝑥 𝑦 𝑝(𝑦)

𝑝(𝑥)



Generative Models: Supervised vs Unsupervised
Discriminant analysis vs Gaussian mixture models



Generative Model: Supervised
MLE: Discriminant analysis 𝑌 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝜋1, 𝜋2, 𝜋3

𝑋𝑌=𝑘 ~𝒩(𝜇𝑘 , 𝜎𝑘
2).

𝒟 = 𝑥 𝑖 , 𝑦 𝑖
𝑖=1

𝑁argmax
𝜃

ෑ

𝑖

𝑁

𝑝 𝐱 𝑖 , 𝐲(𝑖) ∣ 𝜃
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𝑘
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Generative Models: Supervised vs Unsupervised
Discriminant analysis vs Gaussian mixture models
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Generative Models: Supervised vs Unsupervised
Discriminant analysis vs Gaussian mixture models
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Gaussian Mixture Model
Mixture of 𝐾 Gaussian distributions (multi-modal distribution)

(for simplicity: fixed covariance, Σ, across all three Gaussians)

𝑝 𝐱 𝑧𝑘 = 1 ~𝒩 𝝁𝑘 , Σ

𝑝 𝐱 = σ𝑘=1
𝐾 𝑝 𝐱 𝑧𝑘 = 1 𝑝 𝑧𝑘 = 1

Mixture
proportion

Mixture
component

𝜇1

𝜇3

𝜇2



Gaussian Mixture Model
Mixture of 𝐾 Gaussian distributions (multi-modal distribution)

(for simplicity: fixed covariance, Σ, across all three Gaussians)

𝑝 𝐱 𝑧𝑘 = 1 ~𝒩 𝝁𝑘 , Σ
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(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable

Slide credit: CMU MLD Aarti Singh



Gaussian Mixture Model
Mixture of 𝐾 Gaussian distributions (multi-modal distribution)

𝑝 𝐱 𝑧𝑘 = 1 ~𝒩 𝛍𝑘 , Σk

𝑝 𝐱 = σ𝑘 𝑝 𝐱 𝑧𝑘 = 1 𝑝 𝑧𝑘 = 1 𝜇1

𝜇3

𝜇2Σ1

Σ3

Σ2



Gaussian Mixture Model
Mixture of 𝐾 Gaussian distributions (multi-modal distribution)

𝜇1

𝜇3

𝜇2Σ1

Σ3

Σ2

▪ There are 𝐾 components

▪ Component 𝑘 generates data 
from a Gaussian with mean 
vector 𝜇𝑘 and covariance matrix 
Σ𝑘

Each data point is generated 
according to the follow recipe:

1) Pick a component at random: 
Choose component 𝑘 with 
probability 𝑝(𝑧𝑘 = 1)

2) Data point 𝐱 ~𝒩 𝜇𝑘 , Σ𝑘



Learning General GMM
Mixture of 𝐾 Gaussian distributions (multi-modal distribution)

𝑥1, … , 𝑥𝑀 ~ 𝑝 𝐱 = ෍

𝑘=1

𝐾

𝑝 𝐱 𝑧𝑘 = 1 𝑝(𝑧𝑘 = 1)

𝜇1

𝜇3

𝜇2Σ1

Σ3

Σ2 Mixture:  𝜋𝑘 ≝ 𝑝 𝑧𝑘 = 1

Gaussian components:

𝑝 𝐱 𝑧𝑘 = 1 ~𝒩 𝝁𝑘 , Σ𝑘
Parameters:

𝜃 ≝ 𝜋𝑘 , 𝜇𝑘 , Σ𝑘 𝑘=1
𝐾

How to estimate parameters? Can we do MLE even without labels 𝐳?



Learning General GMM
Maximize marginal likelihood:

= argmax
𝜃
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𝑖

𝑁

෍
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(𝑖)

= 1
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𝜃

ෑ
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𝑁

෍
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𝐾
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−
1
2 𝑒−

1
2 𝐱(𝑖)−𝝁𝑘

𝑇
Σ𝑘
−1 𝐱(𝑖)−𝝁𝑘
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𝜃

ෑ

𝑖

𝑁

𝑝 𝐱(𝑖) ∣ 𝜃



Learning General GMM
Maximize marginal likelihood:

= argmax
𝜃

ෑ

𝑖

𝑁

෍

𝑘=1

𝐾

𝜋𝑘 Σ𝑘
−
1
2 𝑒−

1
2 𝐱(𝑖)−𝝁𝑘

𝑇
Σ𝑘
−1 𝐱(𝑖)−𝝁𝑘

argmax
𝜃

ෑ

𝑖

𝑁

𝑝 𝐱(𝑖) ∣ 𝜃

How do we find the 𝜋𝑘 , 𝜇𝑘 , Σ𝑘 which give the max. marginal likelihood?

a) Set 
𝜕

𝜕𝜇𝑘
ℓ(𝜃;𝒟) = 0 and solve for 𝜇𝑘, etc. ? No closed-form solution

b) Use gradient descent? Doable, but complicated, often slow, and 
need to consider constraints on parameters



Log (Marginal) Likelihood for Missing Data

Marginalize over missing data, 𝐳(𝑖)

ℓ 𝜃 𝒟 = log ෑ

𝑖

𝑁

𝑝 𝐱(𝑖) ∣ 𝜃



GMM vs K-means
Maximize marginal likelihood:

argmax
𝜃

ς𝑖=1
𝑁 𝑝 𝐱(𝑖) ∣ 𝜃

= argmax
𝜃

ς𝑖=1
𝑁 σ𝑘=1

𝐾 𝑝 𝑧 𝑖 = 𝑘 𝑝 𝐱 𝑖 ∣ 𝑧 𝑖 = 𝑘

What happens if we assume a hard-assignment?

𝑝 𝑧 𝑖 = 𝑘 = 1 if point 𝑖 belongs to the 𝑘-th cluster

(and assume variances are all the same)

argmax
𝜃

ς𝑖=1
𝑁 σ𝑘=1

𝐾 𝑝 𝑧 𝑖 = 𝑘 𝑝 𝐱 𝑖 ∣ 𝑧 𝑖 = 𝑘

= argmax
𝜃

ς𝑖=1
𝑁 𝑒

−
1

2
𝑥 𝑖 −𝜇

𝑧 𝑖
2

2

= argmin
𝜃

σ𝑖=1
𝑁 𝑥 𝑖 − 𝜇𝑧 𝑖

2

2
Same as K-means!



K-means Optimization
Alternating minimization

a) 𝒛 = argmin
𝒛

σ𝑖=1
𝑁 𝒙(𝑖) − 𝝁𝑧(𝑖) 2

2

b) 𝝁1, … , 𝝁𝐾 = argmin
𝝁1,…,𝝁𝐾

σ𝑖=1
𝑁 𝒙(𝑖) − 𝝁𝑧(𝑖) 2

2



Expectation-Maximization for GMM



Log Likelihood vs Complete Log Likelihood

Log likelihood 𝒟 = 𝐱(𝑖)

ℓ 𝜃 𝒟 = log ς𝑖
𝑁 𝑝 𝐱(𝑖) ∣ 𝜃

Complete Log likelihood 𝒟𝑐 = 𝐱 𝑖 , 𝐳(𝑖)

ℓ𝑐 𝜃 𝒟𝑐 = log ς𝑖
𝑁 𝑝 𝐱 𝑖 , 𝐳(𝑖) ∣ 𝜃



Expected Value of Complete Log Likelihood

Replace know value of z with 

𝐸𝑍∣𝑋,𝜃 ℓ𝑐 𝜃 𝒟𝑐

Complete Log likelihood 𝒟𝑐 = 𝐱 𝑖 , 𝐳(𝑖)

ℓ𝑐 𝜃 𝒟𝑐 = log ς𝑖
𝑁 𝑝 𝐱 𝑖 , 𝐳(𝑖) ∣ 𝜃



Notes on EM

❑ EM is an optimization strategy for objective functions that can be interpreted 
as likelihoods in the presence of missing data.

❑ It is much simpler than gradient methods:
❑ No need to choose step size.

❑ Enforces constraints.

❑ Calls inference and fully observed learning as subroutines.

❑ EM is an Iterative algorithm with two linked steps:
❑ E-step: fill-in hidden values using inference, p(z|x, qt).

❑ M-step: update parameters t+1 using standard MLE/MAP method applied to 
completed data

❑ This procedure monotonically improves (or leaves it unchanged). Thus, it 
always converges to a local optimum of the likelihood.
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EM for GMMS
Initialize parameters

For 𝑡 = 0, 𝜋𝑘
(0)
, 𝝁𝑘

(0)
, Σ𝑘

(0)

E-step

For a fixed set of Gaussian mixture model parameters, 𝜃(𝑡), update the 

probability that each point, 𝒙(𝑖), belongs to cluster 𝑘, 𝑝 𝑧𝑘
𝑖
= 1 𝒙 𝑖 , 𝜃 𝑡

M-step

For a fixed 𝑝 𝑧𝑘
𝑖
= 1 𝒙 𝑖 , 𝜃 𝑡 , update the estimate for each parameter, 

𝜋𝑘
(𝑡+1)

, 𝝁𝑘
(𝑡+1)

, Σ𝑘
(𝑡+1)

Iterate between E and M steps



EM for GMMS
E-step

𝐸𝑍∣𝑋,𝜃(𝑡) 𝑍𝑘
(𝑖)

= 𝑝 𝑧𝑘
𝑖
= 1 𝒙 𝑖 , 𝜃 𝑡

M-step

𝜋𝑘
(𝑡+1)

𝝁𝑘
(𝑡+1)

= argmax𝜃 𝐸𝑍∣𝑋,𝜃(𝑡) ℓ𝑐 𝜃 𝒟𝑐

Σ𝑘
(𝑡+1)

Complete Log likelihood 𝒟 = 𝐱 𝑖 , 𝐳(𝑖)

ℓ𝑐 𝜃 𝒟𝑐 = log ෑ

𝑖

𝑁

𝑝 𝐱 𝑖 , 𝐳(𝑖) ∣ 𝜃



EM for GMMS
E-step

M-step



EM for GMMs: Example

m1

m2

m3
S1

S2 S3

P(𝑧2 = 1 |xj,m1,m2,m3,S1,S2,S3,𝜋1, 𝜋2, 𝜋3)



After 1st iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



Gaussian Mixture Model
Mixture of 𝐾 Gaussian distributions (multi-modal distribution)

𝑝 𝐱 𝑧𝑘 = 1 ~𝒩 𝛍𝑘 , Σk

𝑝 𝐱 = σ𝑘 𝑝 𝐱 𝑧𝑘 = 1 𝑝 𝑧𝑘 = 1 𝜇1

𝜇3

𝜇2Σ1

Σ3

Σ2

Mixture
proportion

Mixture
component



General EM Algorithm



Theory underlying EM

❑ What are we doing?

❑ Recall that according to MLE, we intend to learn the model parameter that 
would have maximize the likelihood of the data. 

❑ But we do not observe z, so computing 

is difficult!

❑ What shall we do?
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Complete & Incomplete Log Likelihoods

❑ Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s). 

If Z could be observed, then

❑ Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully observed 
models).

❑ Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, 
the parameter for each factor can be estimated separately.

❑ But given that Z is not observed, lc() is a random quantity, cannot be maximized directly.

❑ Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

❑ This objective won't decouple 

© Eric Xing @ CMU, 2006-2012 50

)|,(log),;(
def

qq zxpzxc =l

==
z

c zxpxpx )|,(log)|(log);( qqql


	Slide 1: Plan
	Slide 2: Course Update
	Slide 3: Poll 1
	Slide 4:   10-315 Introduction to ML  Gaussian Mixture Models and Expectation Maximization
	Slide 5: (One) bad case for K-means
	Slide 6: (One) bad case for K-means
	Slide 7
	Slide 8: Generative Models: Supervised vs Unsupervised
	Slide 9: Poll 2
	Slide 10: Generative Models: Supervised vs Unsupervised
	Slide 11: Generative Model: Supervised
	Slide 12: Generative Model: Supervised
	Slide 13: Generative Models: Supervised vs Unsupervised
	Slide 14: Generative Models: Supervised vs Unsupervised
	Slide 15: Generative Models: Supervised vs Unsupervised
	Slide 16: Gaussian Mixture Model
	Slide 17: Gaussian Mixture Model
	Slide 18: (One) bad case for K-means
	Slide 19: Gaussian Mixture Model
	Slide 20: Gaussian Mixture Model
	Slide 21: Learning General GMM
	Slide 22: Learning General GMM
	Slide 23: Learning General GMM
	Slide 24: Log (Marginal) Likelihood for Missing Data
	Slide 28: GMM vs K-means
	Slide 29: K-means Optimization
	Slide 30: Expectation-Maximization for GMM
	Slide 31: Log Likelihood vs Complete Log Likelihood
	Slide 33: Expected Value of Complete Log Likelihood
	Slide 35: Notes on EM
	Slide 36: EM for GMMS
	Slide 37: EM for GMMS
	Slide 38: EM for GMMS
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Gaussian Mixture Model
	Slide 48: General EM Algorithm
	Slide 49: Theory underlying EM
	Slide 50: Complete & Incomplete Log Likelihoods

