Plan
Cool stuff

=  Expectation-Maximization algorithm
" Gaussian mixture models for clustering

= Kernels

= Linear regression

= Support vector machines
= Duality

= Support vector machines
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Poll 1

How many people are currently in your mini-project group, including
yourself?

A. 0 (don’t choose this; it doesn’t make sense)
B. 1 (haven’t started looking)

C. 1 (started looking)

D. 2 (haven’t started looking)

E. 2 (started looking)
F. 3
G. 4
H. 5+



10-315
Introduction to ML

Gaussian Mixture Models
and Expectation
Maximization

Instructor: Pat Virtue




(One) bad case for K-means

e Clusters may overlap
 Some clusters may be “wider” than others
* Clusters may not be linearly separable



(One) bad case for K-means

e Clusters may overlap

* Some clusters may be “wider” than others

° ©  C(Clusters may not be linearly separable

Slide credit: CMU MLD Aarti Singh



Partitioning Algorithms

e K-means

— hard assignment: each object belongs to only one cluster

* Mixture modeling
— soft assignment: probability that an object belongs to a cluster

Generative approach



Generative Models: Supervised vs Unsupervised

Discriminant analysis vs Gaussian mixture models
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Poll 2

Which of these terms is the likelihood?
Select all that apply

A B C E F G
\ X Y O\ N\ "4
p(eID):p(Dlé’)p(ﬁ) p(ylx):p(xly)p(y)
p(D) p(x)
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Generative Models: Supervised vs Unsupervised

Discriminant analysis vs Gaussian mixture models
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Generative Model: Supervised
MLE: Discriminant analysis Y ~ Categorical(my, ,, 3)
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Generative Model: Supervised
MLE: Discriminant analysis
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Generative Models: Supervised vs Unsupervised
Discriminant analysis vs Gaussian mixture models
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Generative Models: Supervised vs Unsupervised
Discriminant analysis vs Gaussian mixture models
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Generative Models: Supervised vs Unsupervised

Discriminant analysis vs Gaussian mixture models
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Gaussian Mixture Model

Mixture of K Gaussian distributions (multi-modal distribution)

(for simplicity: fixed covariance, X, across all three Gaussians)
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Gaussian Mixture Model

Mixture of K Gaussian distributions (multi-modal distribution)

(for simplicity: fixed covariance, X, across all three Gaussians)

p(xX1zp=1)~N(ug, X)
pX) = 3K p(x 1z = Dplze =1) | (1D

Mixture Mixture @

component  proportion




(One) bad case for K-means

Clusters may overlap
Some clusters may be “wider” than others



Gaussian Mixture Model

Mixture of K Gaussian distributions (multi-modal distribution)

p(x|z,=1)~N(Hg Zx)

p(X) = X p(X 1z =1)p(z, = 1)




Gaussian Mixture Model

Mixture of K Gaussian distributions (multi-modal distribution)
" There are K components

= Component k generates data
from a Gaussian with mean

vector i, and covariance matrix %,
> 2

Each data point is generated
according to the follow recipe:

1) Pick a component at random: @

Choose component k with Ya

probability p(z, = 1)
2) Data point X ~ N (g, Zx)



Learning General GMM

Mixture of K Gaussian distributions (multi-modal distribution)

K
Xy e Xy ~ PO = ) p(X | 2 = Dz = 1)
k=1

5, 2 Mixture: m;, & p(z, = 1)

Gaussian components:
p(x |z =1)~N (g, Zy)

@ Parameters:
>y

23 0 % {1y, i, T tre1

How to estimate parameters? Can we do MLE even without labels z?



Learning General GMM

Maximize marginal likelihood:
N
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Learning General GMM

Maximize marginal likelihood:
N

argmax ‘ ‘ p(x(i) | 9)
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How do we find the my, U, X, which give the max. marginal likelihood?
a) Set—f(@ D) = 0 and solve for u, etc. 7 No closed-form solution

b) Use gradient descent? Doable, but complicated, often slow, and
need to consider constraints on parameters



Log (Marginal) Likelihood for Missing Data

Marginalize over missing data, z(")

N
£01D) = log [ [p(x?10)



GMM vs K-means

Maximize marginal likelihood:
argmax [T, p(x® 1 6)

= argmax [[V, YX_p(zW = k) p(xP | 20 = k)
0

What happens if we assume a hard-assighment?
p(z(‘) = k) = 1 if point i belongs to the k-th cluster &— P( \

(and assume variances are all the same) &—
argmax [, YK_ 1p(z(‘) = k) p(x(l) | z() = k)
6

= argmax le Hx(i)‘ﬂz(i)uz
0

= argmln >N 1”x(‘) — ,uz(l)H Same as K-means!



K-means Optimization
Alternating minimization

a) z = argmin },;._,
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Expectation-Maximization for GMM



Log Likelihood vs Complete Log Likelihood

Log likelihood D = {x(W} Complete Log likelihood D, = {x¥,z(M}
£(61D) = log [INp(x®16) £.(01D.) = log [N p(x¥,2z® | 6)



Expected Value of Complete Log Likelihood

Replace know value of z with Complete Log likelihood D, = {x¥,z(M}
Ezix,0[£c(6 1 D )] £.(61D.) = log [TV p(x,2) | 6)



Notes on EM

o EMis an optimization strategy for objective functions that can be interpreted
as likelihoods in the presence of missing data.

o Itis much simpler than gradient methods:
o No need to choose step size.
o Enforces constraints.
a Calls inference and fully observed learning as subroutines.

o EM is an lterative algorithm with two linked steps:
a E-step: fill-in hidden values using inference, p(z|x, &).
o M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

a This procedure monotonically improves (or leaves it unchanged). Thus, it
always converges to a local optimum of the likelihood. o %



EM for GMMS

Initialize parameters

Fort = 0, n,(co), u,(co), Z,EO)

E-step
For a fixed set of Gaussian mixture model parameters, 8(1), update the
probability that each point, x(), belongs to cluster k, D (Z,gl) =1 x®, 6® )

M-step

For a fixed p (Z,gi) =1|xW,00 ), update the estimate for each parameter,
(t+1) | (E+1) 5 (t+1)

e R &g

Iterate between E and M steps



Complete Log IikeIihoNod D = {xW,z®}

£.(61D,) = log np(x(i),z(i) 160)
i

EM for GMMS

E-step

EZlX,e(t) [Z,Ei)] =p (Z,g) =1 x(i), H(t))

M-step
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EM for GMMS

E-step

M-step
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EM for GMMs: Example -

P(ZZ - 1 |Xj)“l)“21“3121122;23;n—11 7T2) 7T3)
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After 1 iteration




After 2" jteration




After 3" jteration




After 4t jiteration




After 5t jteration




After 6t" iteration




After 20" iteration




Gaussian Mixture Model

Mixture of K Gaussian distributions (multi-modal distribution)

p(x|z,=1)~N(Hg Zx)

p(X) = X p(X 1z =1)p(z, = 1)
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General EM Algorithm



Theory underlying EM

o What are we doing?

o Recall that according to MLE, we intend to learn the model parameter that
would have maximize the likelihood of the data.

o But we do not observe z, so computing
¢(0;D)=log» p(x,z|6)=logD p(z|6,)p(x|z,6,)

s difficult!

o What shall we do?



Complete & Incomplete Log Likelihoods

o Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s).
If Z could be observed, then de

4(9;x,z)ilogp(x,z|9)

o Usually, optimizing () given both z and x is straightforward (c.f. MLE for fully observed
models).

o Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors,
the parameter for each factor can be estimated separately.

o But given that Z is not observed, () is a random quantity, cannot be maximized directly.

o Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

¢ (0;x)=logp(x|6)=log> p(x,z|0)
o This objective won't decouple ’
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