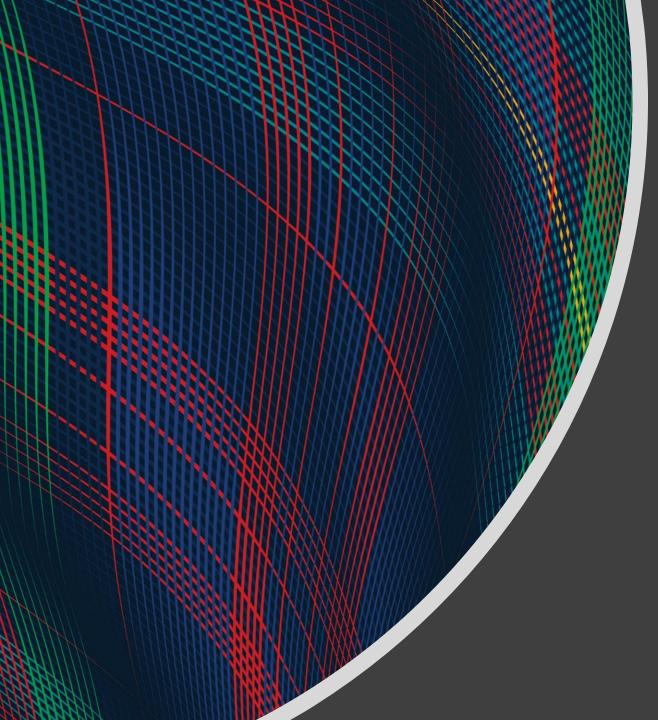
Course Update

Current Plan (updated)

- HW 8 (online)
- Mini-project proposal
- HW 9 (online)
- HW 10 (written/prog)
- Midterm 2
- Mini-project

Sun	Mon	Tue	Wed	Thu	Fri	Sat
2	3	4	5 HW8 Proj	6	7	8
9 HW8	10 HW9 HW10	11	12	13	14	15
16	17 HW9	18	19 Prop	20	21	22 HW10
23	24	25	26 MT2	27	28	29
30	1	2	3	4	5 Proj	6



10-315 Introduction to ML

Clustering: K-means

Instructor: Pat Virtue

Plan

Last time

Unsupervised Learning: Dimensionality Reduction

Today

- Recommender Systems
- Unsupervised Learning: Clustering
 - K-means

Next time

- Unsupervised Learning: Clustering
 - Gaussian mixture models and expectation maximization

Learning Paradigms

Paradigm	Data				
Supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot) \text{ and } y = c^*(\cdot)$				
\hookrightarrow Regression	$y^{(i)} \in \mathbb{R}$				
\hookrightarrow Classification	$y^{(i)} \in \{1, \dots, K\}$				
\hookrightarrow Binary classification	$y^{(i)} \in \{+1, -1\}$				
\hookrightarrow Structured Prediction	$\mathbf{y}^{(i)}$ is a vector				
Unsupervised	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N \qquad \mathbf{x} \sim p^*(\cdot)$				
Semi-supervised	$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}\}_{j=1}^{N_2}$				
Online	$\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), (\mathbf{x}^{(3)}, y^{(3)}), \ldots\}$				
Active Learning	$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ and can query $y^{(i)} = c^*(\cdot)$ at a cost				
Imitation Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}), (s^{(2)}, a^{(2)}), \ldots\}$				
Reinforcement Learning	$\mathcal{D} = \{(s^{(1)}, a^{(1)}, r^{(1)}), (s^{(2)}, a^{(2)}, r^{(2)}), \ldots\}$				

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

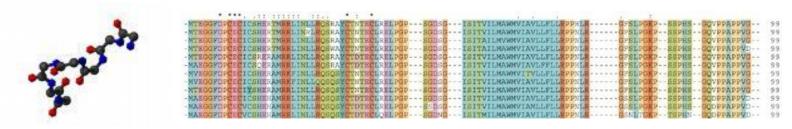
Useful for:

- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).

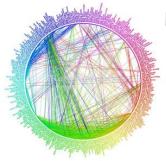
Applications (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.

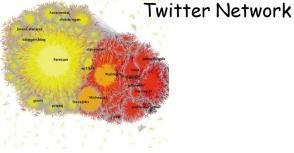
• Cluster protein sequences by function or genes according to expression profile.



• Cluster users of social networks by interest (community detection).



Facebook network



Slide credit: CMU MLD Nina Balcan

Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

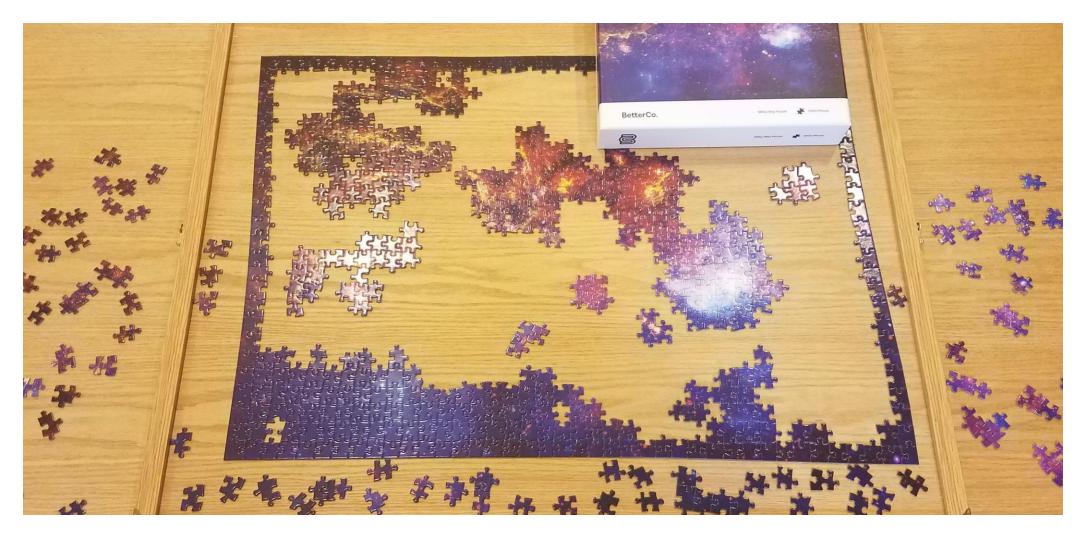
• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications....

Slide credit: CMU MLD Nina Balcan

Clustering Applications

Jigsaw puzzles!



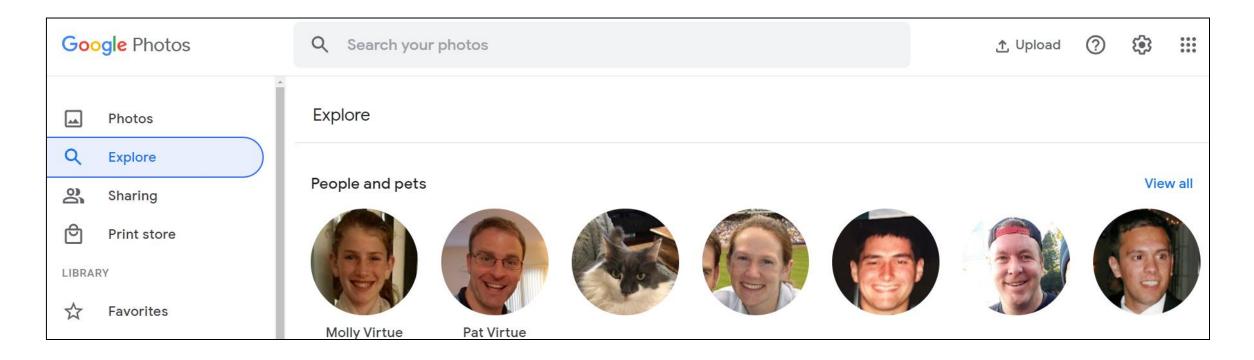
Supervised:

Unsupervised:

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{N}$$

 $\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N}$

Semi-supervised:
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}, y^{(j)}\}_{i=1}^{N_2}$$



Supervised:

U

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{N}$$

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{N}$$

d:
$$\mathcal{D} = \left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$$

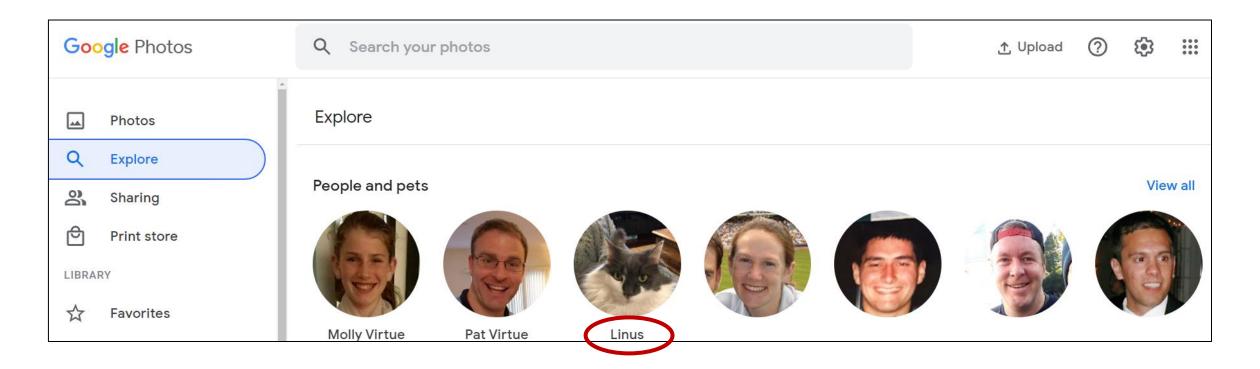
Semi-supervised:
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}, y^{(j)}\}_{j=1}^{N_2}$$

Supervised:

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{N}$$

Unsupervised: $\mathcal{D} = \left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$

Semi-supervised: $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}, y^{(j)}\}_{j=1}^{N_2}$

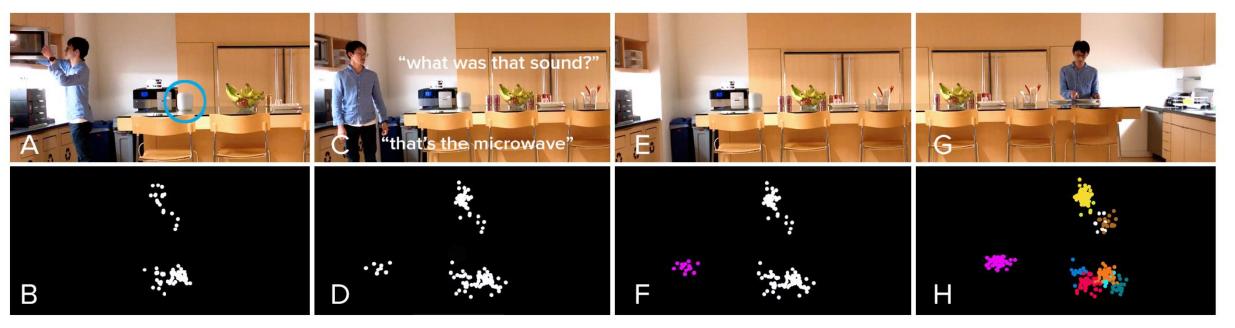


Supervised:

Unsupervised: $\mathcal{D} = \left\{ \mathbf{x}^{(i)} \right\}_{i=1}^{N}$

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{N}$$

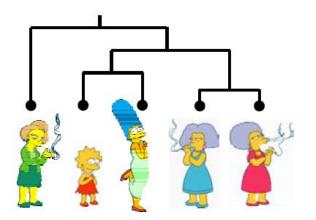
Semi-supervised: $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N_1} \cup \{\mathbf{x}^{(j)}, y^{(j)}\}_{j=1}^{N_2}$

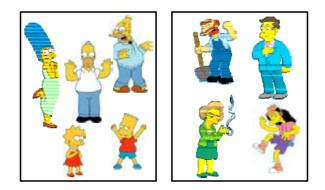


https://chrisharrison.net/index.php/Research/ListenLearner

Clustering Algorithms

- Hierarchical algorithms
 - Bottom-up: Agglomerative Clustering
 - Top-down: Divisive
- Partition algorithms
 - K means clustering
 - Mixture-Model based clustering





Slide credit: CMU MLD Aarti Singh and Eric Xing

Hierarchical Clustering

• Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy - less accurate but simple to implement

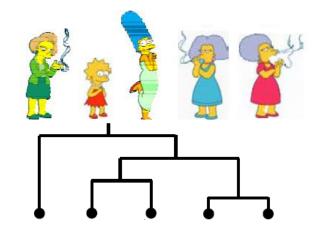
• Top-Down divisive

Starts with all the data in a single cluster, and repeat:

Split each cluster into two using a partition algorithm
Until each object is a separate cluster.

More accurate but complex to implement





Hierarchical Clustering

• Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others
 until there is only one cluster.

Greedy - less accurate but simple to implement

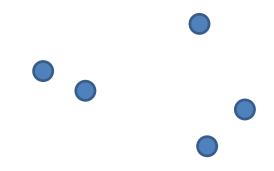
• Top-Down divisive

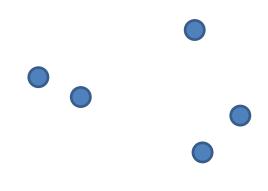
Starts with all the data in a single cluster, and repeat:

Split each cluster into two using a partition algorithm
 Until each object is a separate cluster.

More accurate but complex to implement

Slide credit: CMU MLD Aarti Singh and Eric Xing





Partitioning Algorithms

- Partitioning method: Construct a partition of *N* objects into a set of *K* clusters
- Given: a set of objects and the number *K*
- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

K-Means

Algorithm

Input – Data, $x^{(i)}$, Desired number of clusters, K

Initialize – the K cluster centers (randomly if necessary)

Iterate –

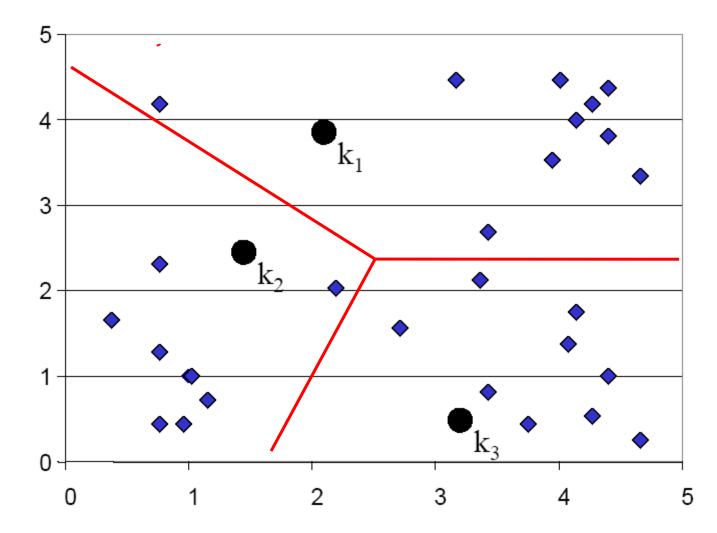
- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *K* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

Termination –

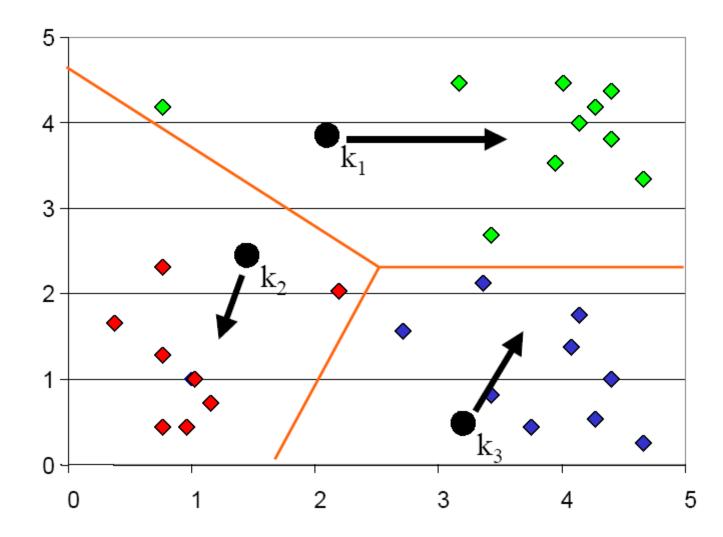
If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

Slide credit: CMU MLD Aarti Singh

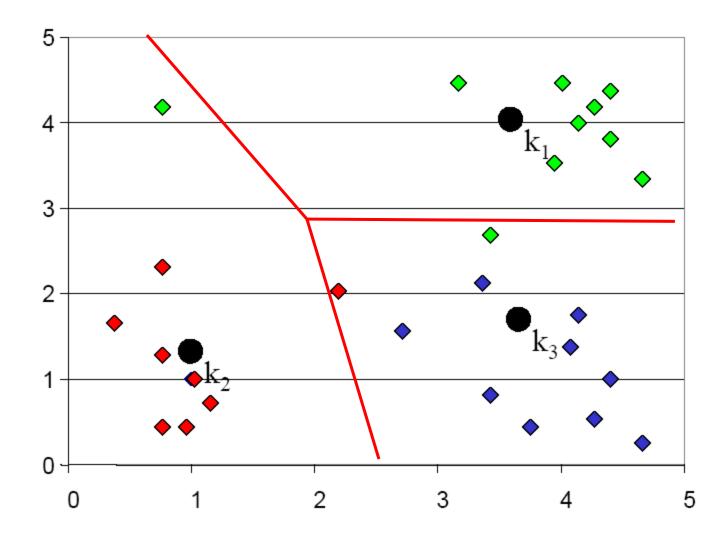
K-means Clustering: Assign points



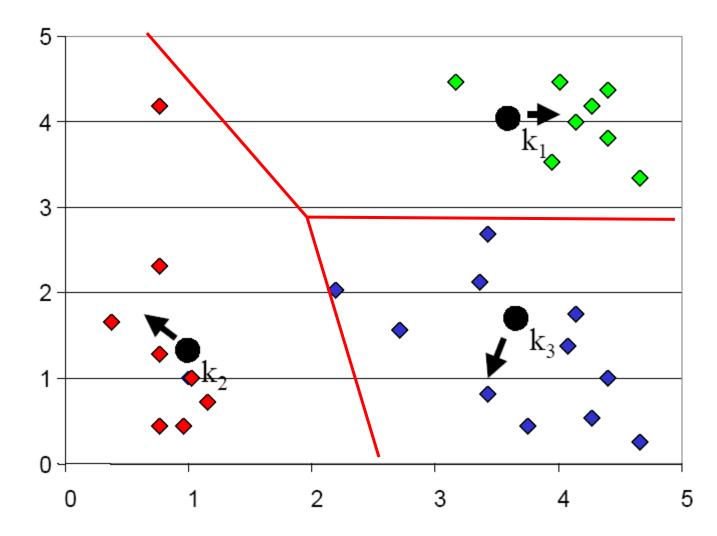
K-means Clustering: Update centers



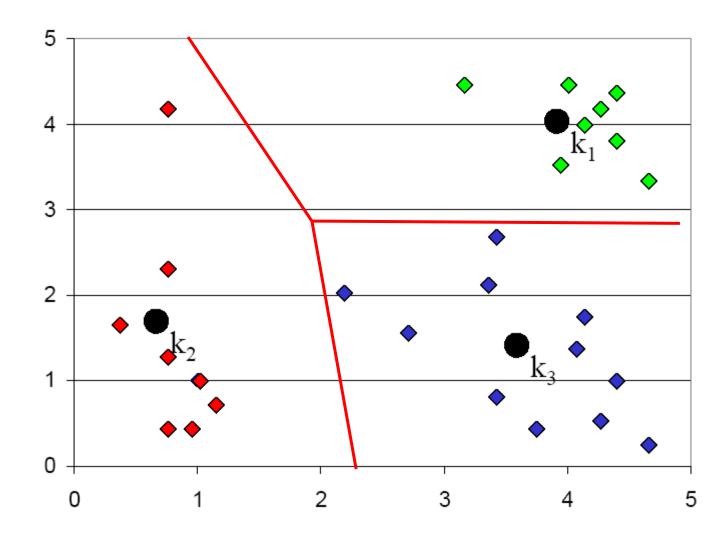
K-means Clustering: Assign points



K-means Clustering: Update centers



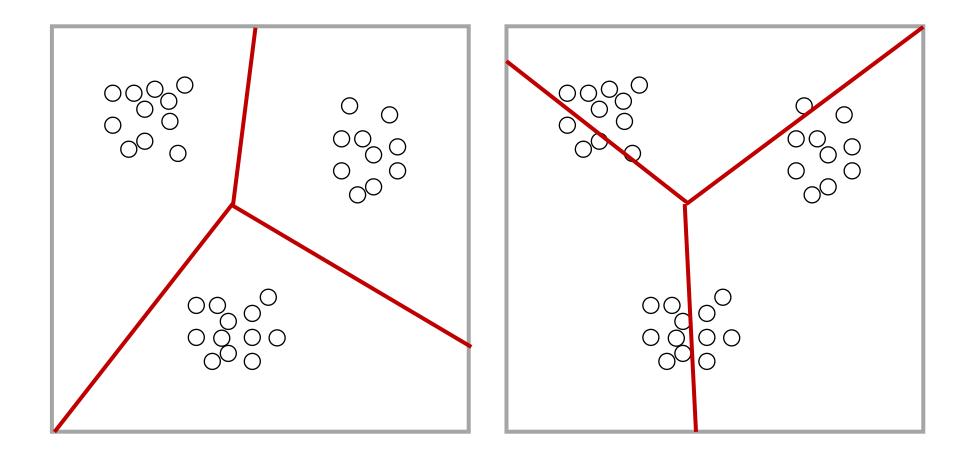
K-means Clustering: Assign points



Optimization recipe

- 1. Formulate objective
- 2. Minimize objective

Question: Which of these partitions is "better"?



Input: *K*, $x^{(1)}, ..., x^{(N)}, x^{(i)} \in \mathbb{R}^{M}$ Output: $z^{(1)}, ..., z^{(N)}, z^{(i)} \in \{1 ... K\}$ Output: $\mu_{1}, ..., \mu_{K}, \mu_{k} \in \mathbb{R}^{M}$

Num clusters, unlabeled data Cluster assignments per point Cluster centers

Computational complexity

$$\mu_1, \dots, \mu_K, z = \underset{\mu_1, \dots, \mu_K, z}{\operatorname{argmin}} \sum_{i=1}^N ||x^{(i)} - \mu_{z^{(i)}}||_2^2$$

Slide credit: CMU MLD Matt Gormley

Alternating minimization

a)
$$z = \underset{z}{\operatorname{argmin}} \sum_{i=1}^{N} ||x^{(i)} - \mu_{z^{(i)}}||_{2}^{2}$$

b) $\mu_{1}, \dots, \mu_{K} = \underset{\mu_{1}, \dots, \mu_{K}}{\operatorname{argmin}} \sum_{i=1}^{N} ||x^{(i)} - \mu_{z^{(i)}}||_{2}^{2}$

Alternating minimization

Coordinate descent

Two different approaches

 $\min_{\theta_1,\theta_2} J(\theta_1,\theta_2)$

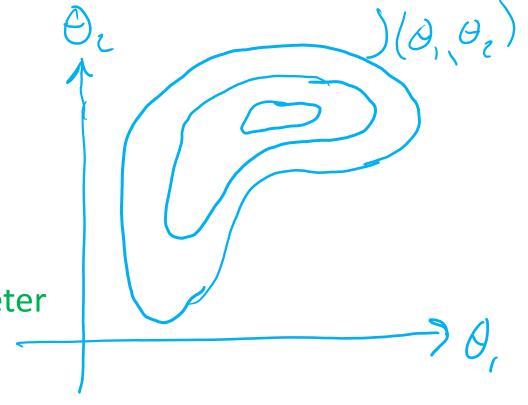
1. Step based on derivative for one parameter

a. $\theta_1 \leftarrow \theta_1 - \eta \ \partial J / \partial \theta_1$ b. $\theta_2 \leftarrow \theta_2 - \eta \ \partial J / \partial \theta_2$

2. Find minimum for one parameter

a.
$$\theta_1 \leftarrow \underset{\theta_1}{\operatorname{argmin}} J(\theta_1, \theta_2)$$

b. $\theta_2 \leftarrow \underset{\theta_2}{\operatorname{argmin}} J(\theta_1, \theta_2)$



Alternating minimization

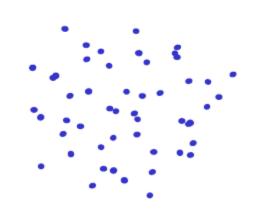
Block coordinate descent

Two different approaches

 $\min_{\boldsymbol{\alpha},\boldsymbol{\beta}} J(\boldsymbol{\alpha},\boldsymbol{\beta})$

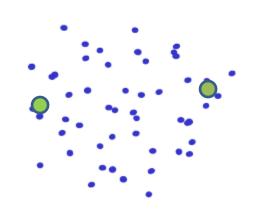
- Step based on gradient for one set of parameters (step size η)
 a. α ← α − η∇_αJ
 b. β ← β − η∇_βJ
- 2. Find minimum for one set of parameter (no hyperparameters!) a. $\alpha \leftarrow \arg \min J(\alpha, \beta)$ b. $\beta \leftarrow \arg \min J(\alpha, \beta)$ β

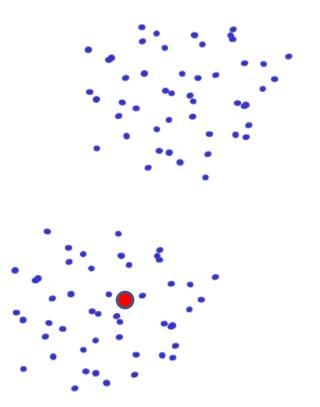
• Results are quite sensitive to seed selection.





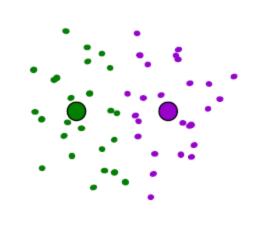
• Results are quite sensitive to seed selection.

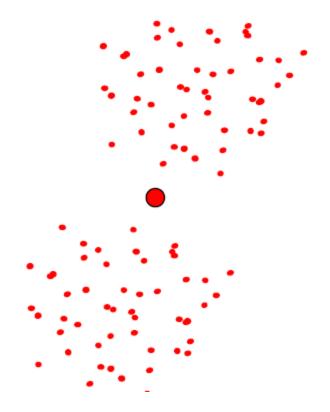


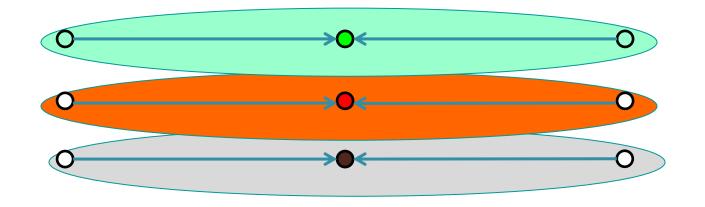


Slide credit: CMU MLD Aarti Singh

• Results are quite sensitive to seed selection.







K-means always converges, but it may converge at a local optimum that is different from the global optimum, and in fact could be arbitrarily worse in terms of its objective.

Slide credit: CMU MLD Nina Balcan

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - k-means ++ algorithm of Arthur and Vassilvitskii
 key idea: choose centers that are far apart
 (probability of picking a point as cluster center ∝
 distance from nearest center picked so far)

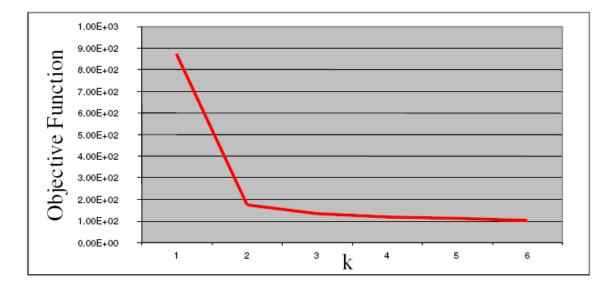
Other Issues

- Number of clusters K
 - Objective function

$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

Look for "Knee" in objective function

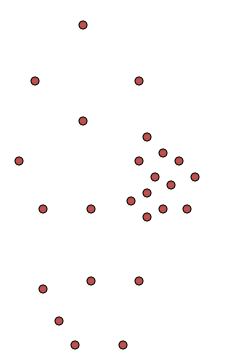
m



– Can you pick K by minimizing the objective over K?

Slide credit: CMU MLD Aarti Singh

(One) bad case for K-means



- Clusters may overlap
- Some clusters may be "wider" than others
- Clusters may not be linearly separable