

Course Update

Out

Current Plan (updated) Due

- HW 8 (online)
- Mini-project proposal
- HW 9 (online)
- HW 10 (written/prog)
- Midterm 2
- Mini-project

Sun	Mon	Tue	Wed	Thu	Fri	Sat
2	3	4	5	6	7	8
			HW8 Proj			
9	10	11	12	13	14	15
HW8	HW9 HW10					
16	17	18	19	20	21	22
	HW9		Prop			HW10
23	24	25	26	27	28	29
			MT2			
30	1	2	3	4	5	6
					Proj	

Plan

Last time

- Unsupervised Learning: Dimensionality Reduction

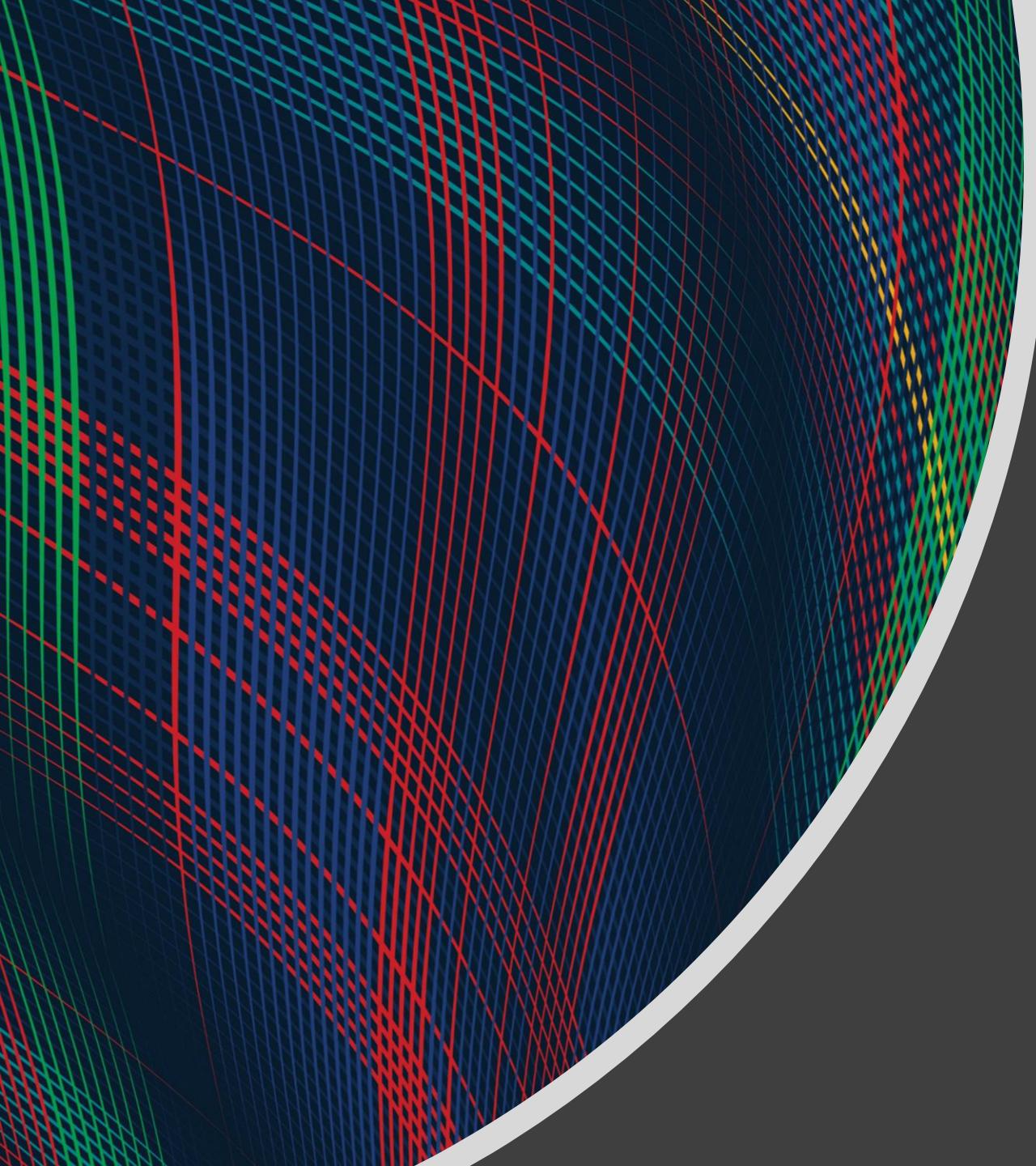
Today

- Recommender Systems
- Unsupervised Learning: Clustering

→ ■ K-means

Next time

- Unsupervised Learning: Clustering
- Gaussian mixture models and expectation maximization



10-315 Introduction to ML

Recommender Systems

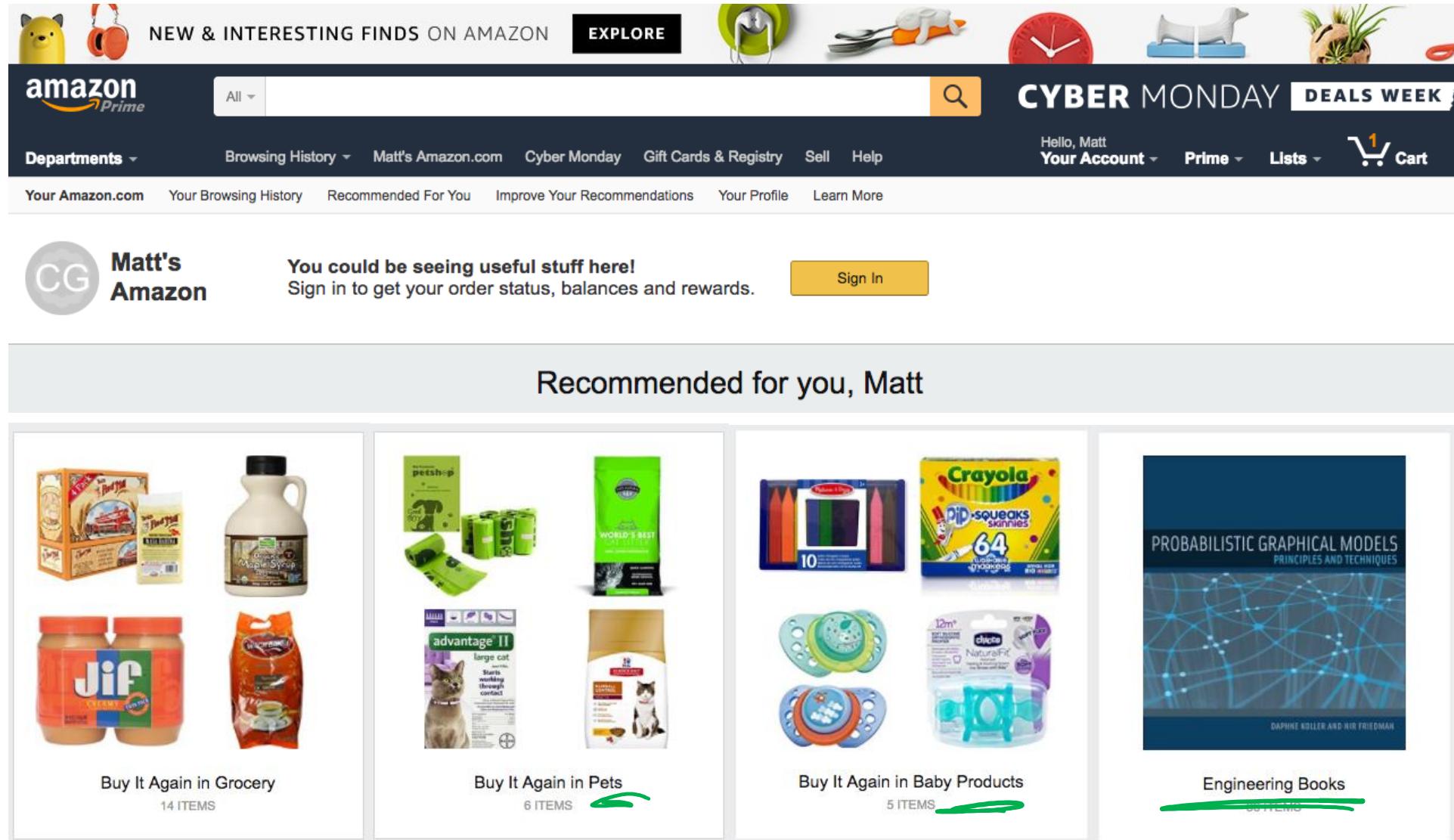
Instructor: Pat Virtue

Recommender Systems

A Common Challenge:

- Assume you're a company selling items of some sort: movies, songs, products, etc.
- Company collects millions of ratings from users of their items
- To maximize profit / user happiness, you want to recommend items that users are likely to want

Recommender Systems



The image shows the homepage of Amazon.com. At the top, there is a banner for "NEW & INTERESTING FINDS ON AMAZON" with an "EXPLORE" button. Below the banner, the Amazon logo and "Prime" are visible. The search bar contains the word "All". To the right of the search bar, there are promotional banners for "CYBER MONDAY" and "DEALS WEEK". The top navigation bar includes links for "Departments", "Browsing History", "Matt's Amazon.com", "Cyber Monday", "Gift Cards & Registry", "Sell", "Help", "Hello, Matt", "Your Account", "Prime", "Lists", and a "Cart" with a "1" icon. Below the navigation, there are links for "Your Amazon.com", "Your Browsing History", "Recommended For You", "Improve Your Recommendations", "Your Profile", and "Learn More".

Matt's Amazon You could be seeing useful stuff here! Sign in to get your order status, balances and rewards. [Sign In](#)

Recommended for you, Matt

Buy It Again in Grocery 14 ITEMS

Buy It Again in Pets 6 ITEMS

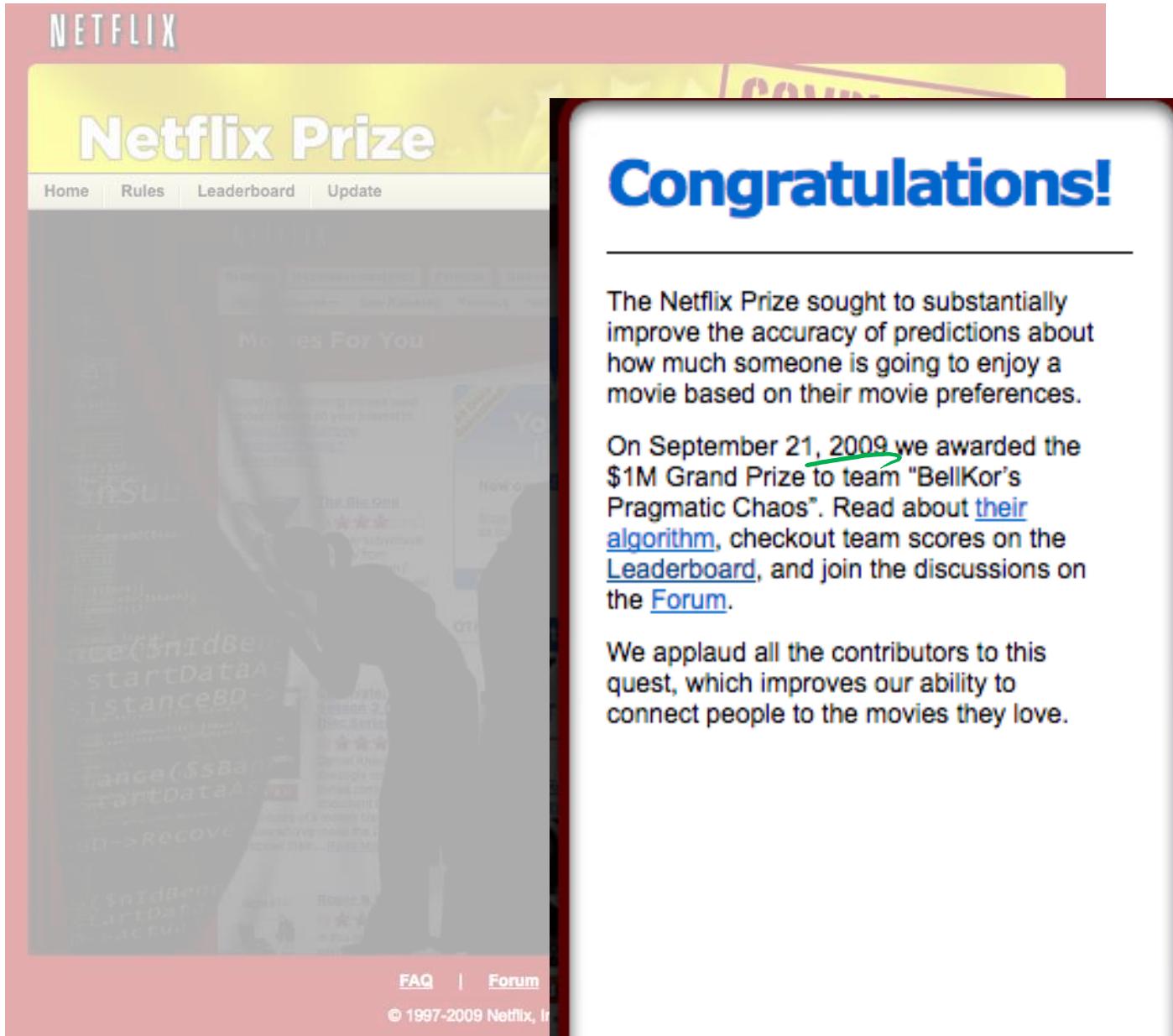
Buy It Again in Baby Products 5 ITEMS

Engineering Books

Recommender Systems



Recommender Systems



NETFLIX

Netflix Prize

Home | Rules | Leaderboard | Update

Congratulations!

The Netflix Prize sought to substantially improve the accuracy of predictions about how much someone is going to enjoy a movie based on their movie preferences.

On September 21, 2009 we awarded the \$1M Grand Prize to team "BellKor's Pragmatic Chaos". Read about [their algorithm](#), checkout team scores on the [Leaderboard](#), and join the discussions on the [Forum](#).

We applaud all the contributors to this quest, which improves our ability to connect people to the movies they love.

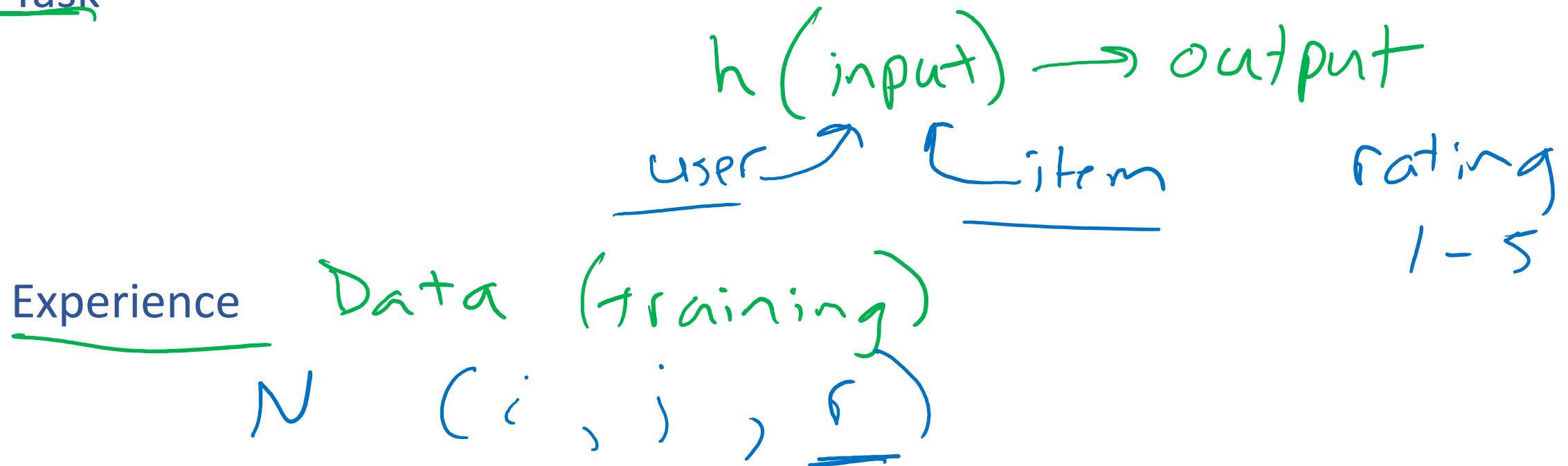
FAQ | Forum

© 1997-2009 Netflix, Inc.

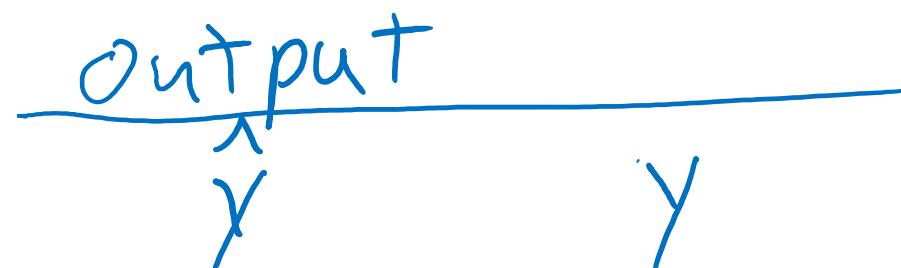
\$1M

AI System Design: Movie Recommendation

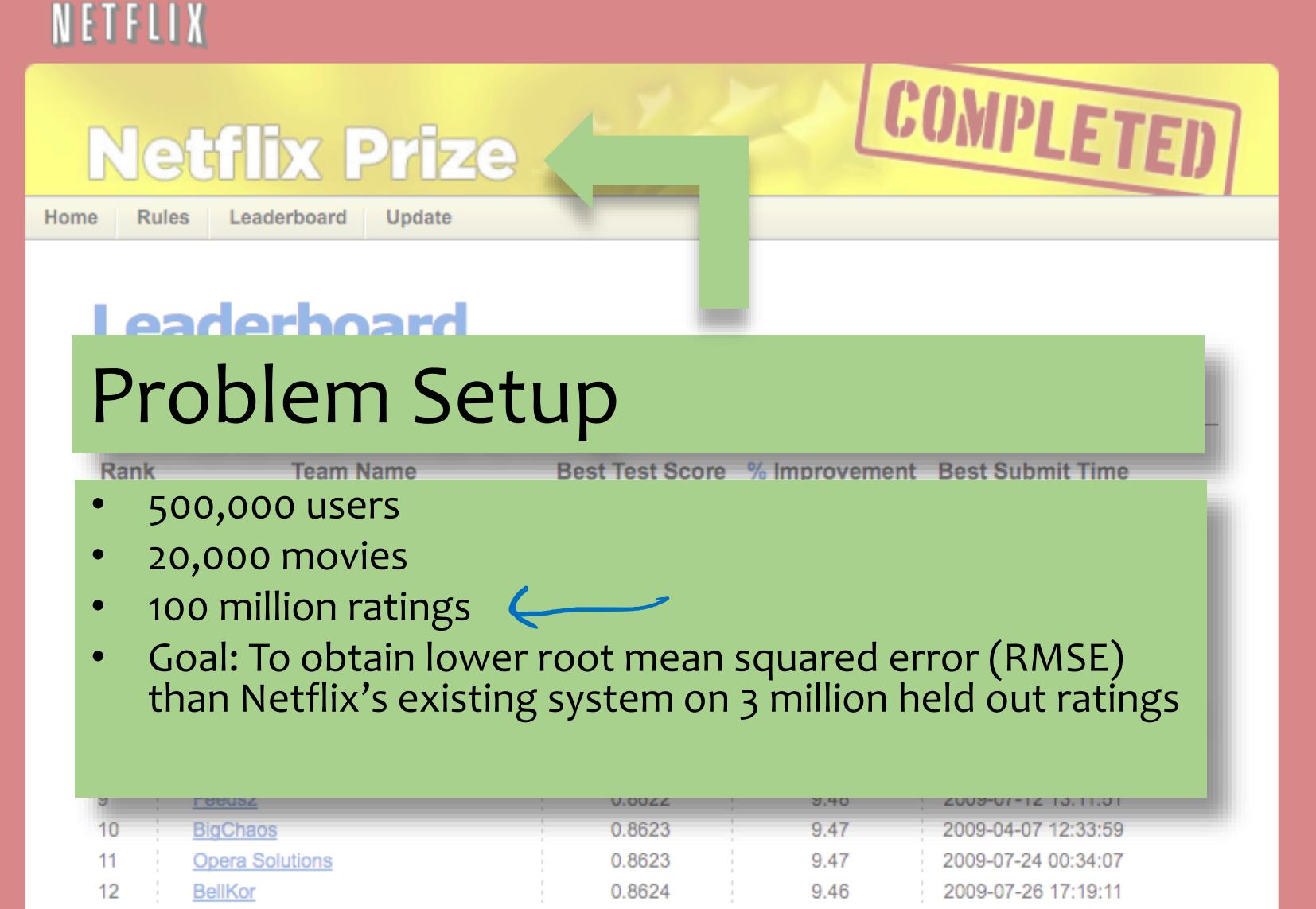
Task



Performance measure



Recommender Systems



The image shows a screenshot of the Netflix Prize website. At the top, the Netflix logo is visible, followed by the text "Netflix Prize" and a large red "COMPLETED" stamp. Below this, a navigation bar includes "Home", "Rules", "Leaderboard", and "Update". The main content area is titled "Leaderboard" and features a large green box with the heading "Problem Setup". Inside this box, there is a bulleted list of requirements:

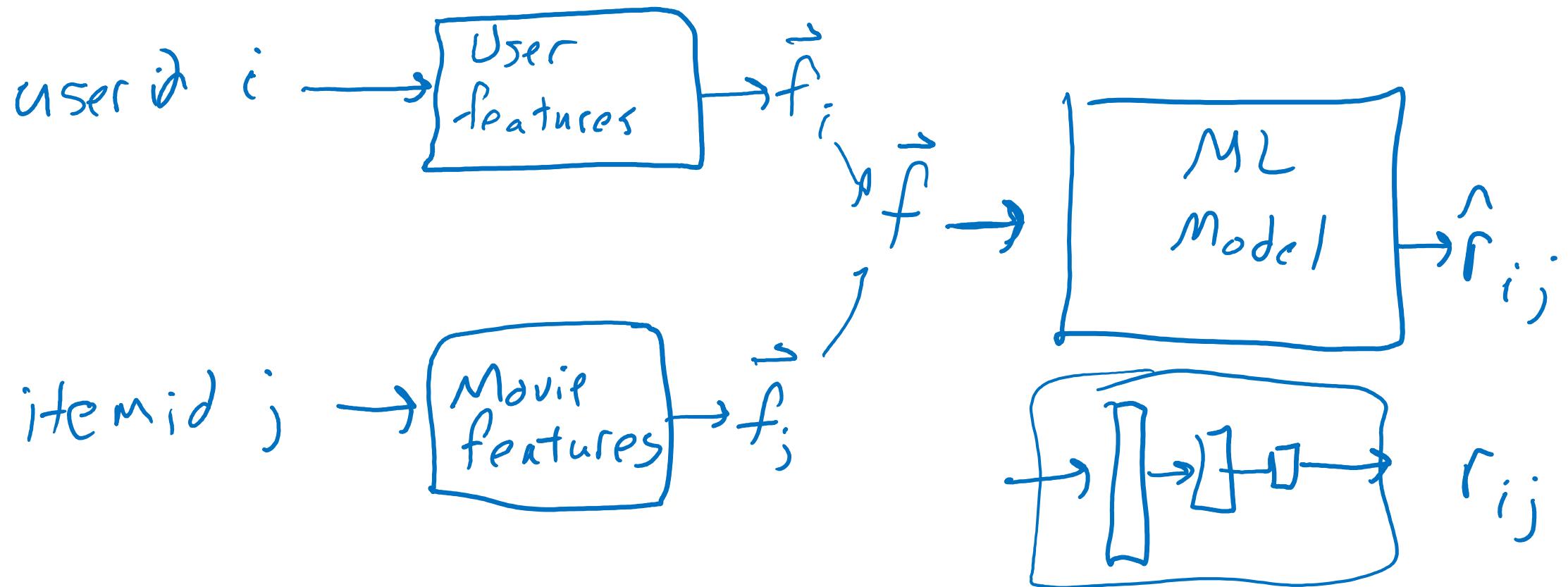
- 500,000 users
- 20,000 movies
- 100 million ratings
- Goal: To obtain lower root mean squared error (RMSE) than Netflix's existing system on 3 million held out ratings

Below the green box, a portion of the leaderboard table is visible, showing the top four entries:

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
9	FreeSuz	0.8622	9.40	2009-07-12 13:11:01
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

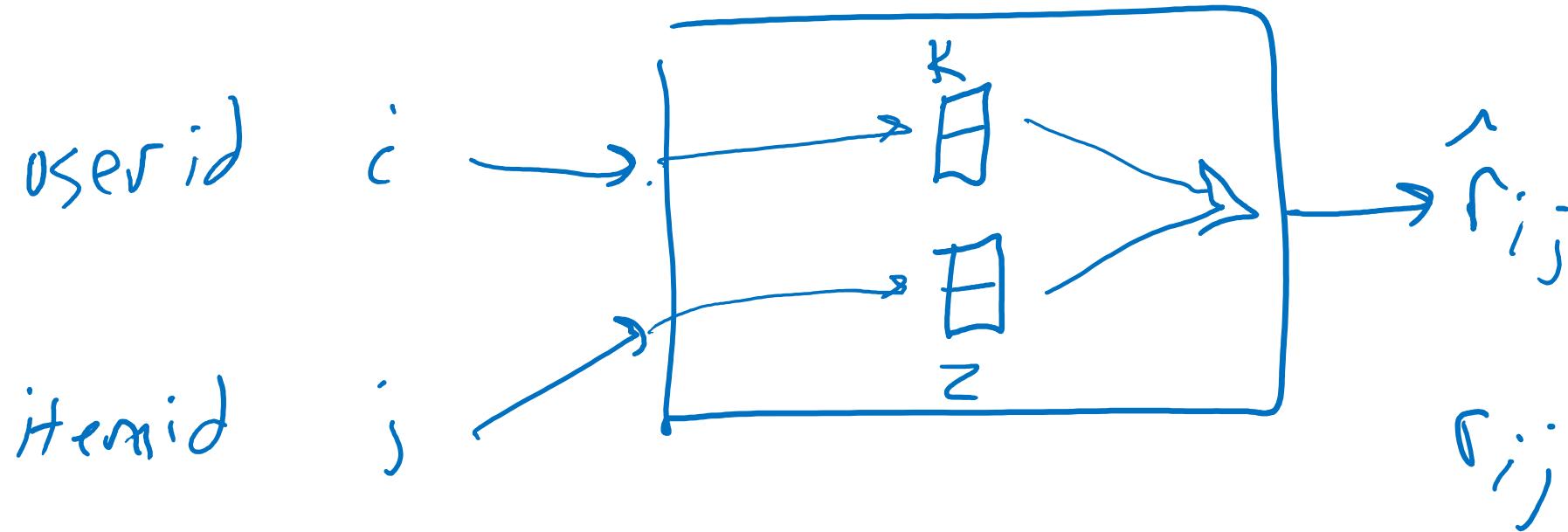
ML System Design: Movie Recommendation

Model



ML System Design: Movie Recommendation

Model



Recommender Systems

Setup:

- Items:
movies, songs, products, etc.
(often many thousands)
- Users:
watchers, listeners, purchasers, etc.
(often many millions)
- Feedback:
5-star ratings, not-clicking 'next', purchases,
etc.

Challenge:

- Users only rate a small number of items
(the user/item rating data is sparse)

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3PO	3	5	2

Pat

Different Approaches

Item-based (*Content filtering*)

- Features about each item
- Given an item, other “close” items have similar values
- e.g. Pandora.com, music genome project

Different Approaches

Item-based (*Content filtering*)

- Features about each item
- Given an item, other “close” items have similar values
- e.g. Pandora.com, music genome project

User-based

- Features about each user
- Given a user, other “close” users have similar preferences
- *Market segmentation*

Learning user-item relationship

- Can be done without features on either user or item
- Collaborative filtering techniques

Collaborative Filtering

Collaborative Filtering

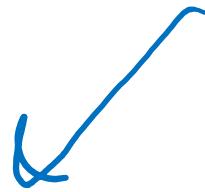
Everyday Examples of Collaborative Filtering...

- Bestseller lists
- Top 40 music lists
- The “recent returns” shelf at the library
- Unmarked but well-used paths thru the woods
- The printer room at work
- “Read any good books lately?”
- ...

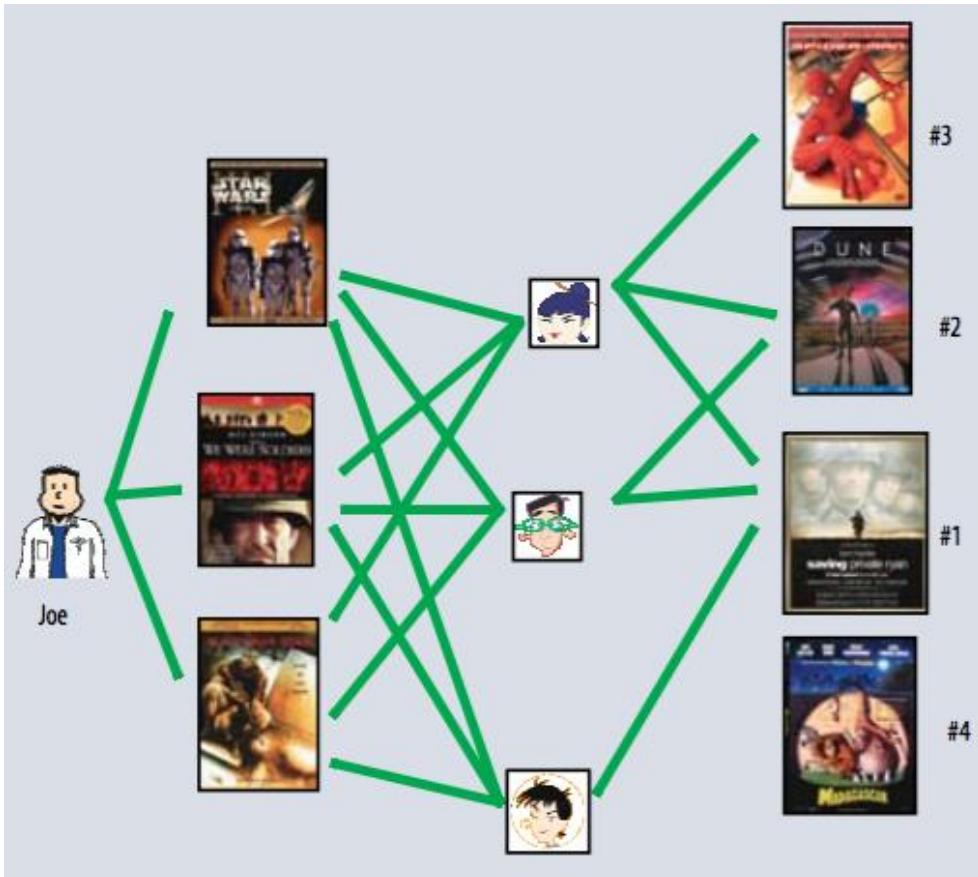
Common insight: personal tastes are correlated

- If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y
- especially (perhaps) if BB-8 knows Alita

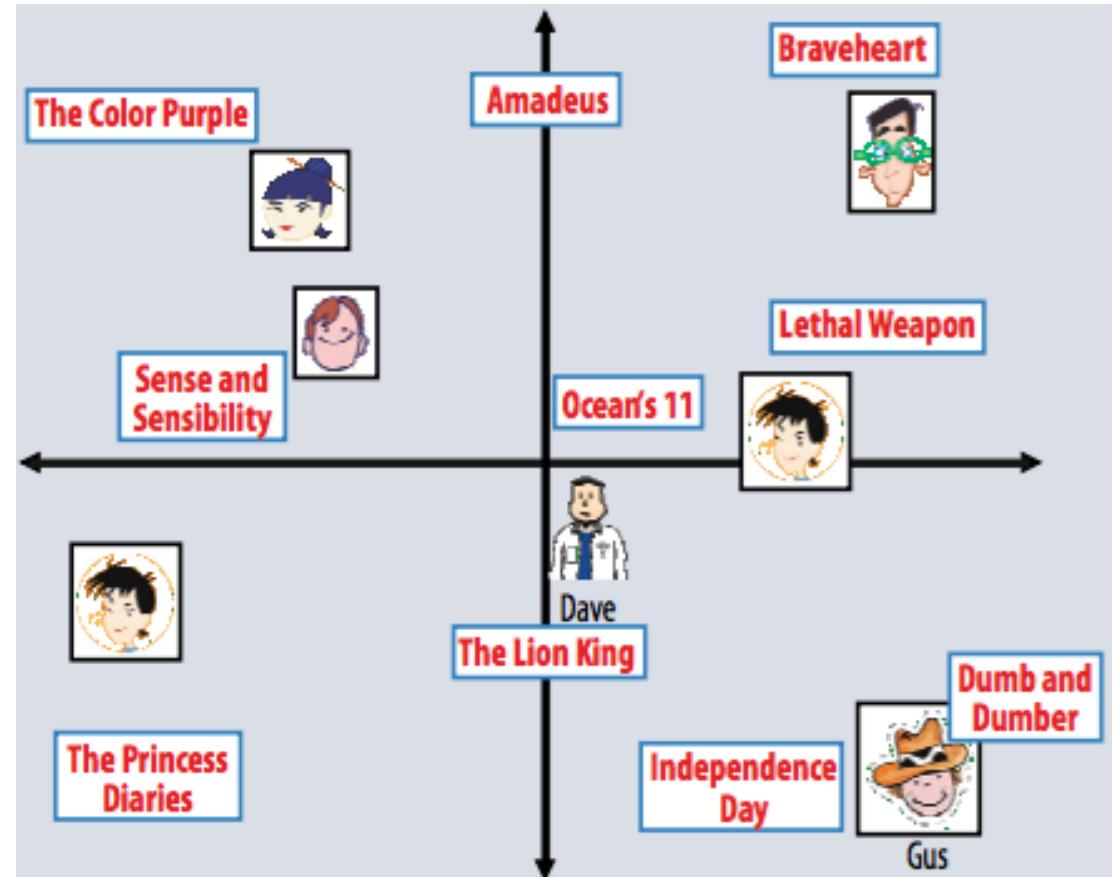
Two Types of Collaborative Filtering



1. Neighborhood Methods

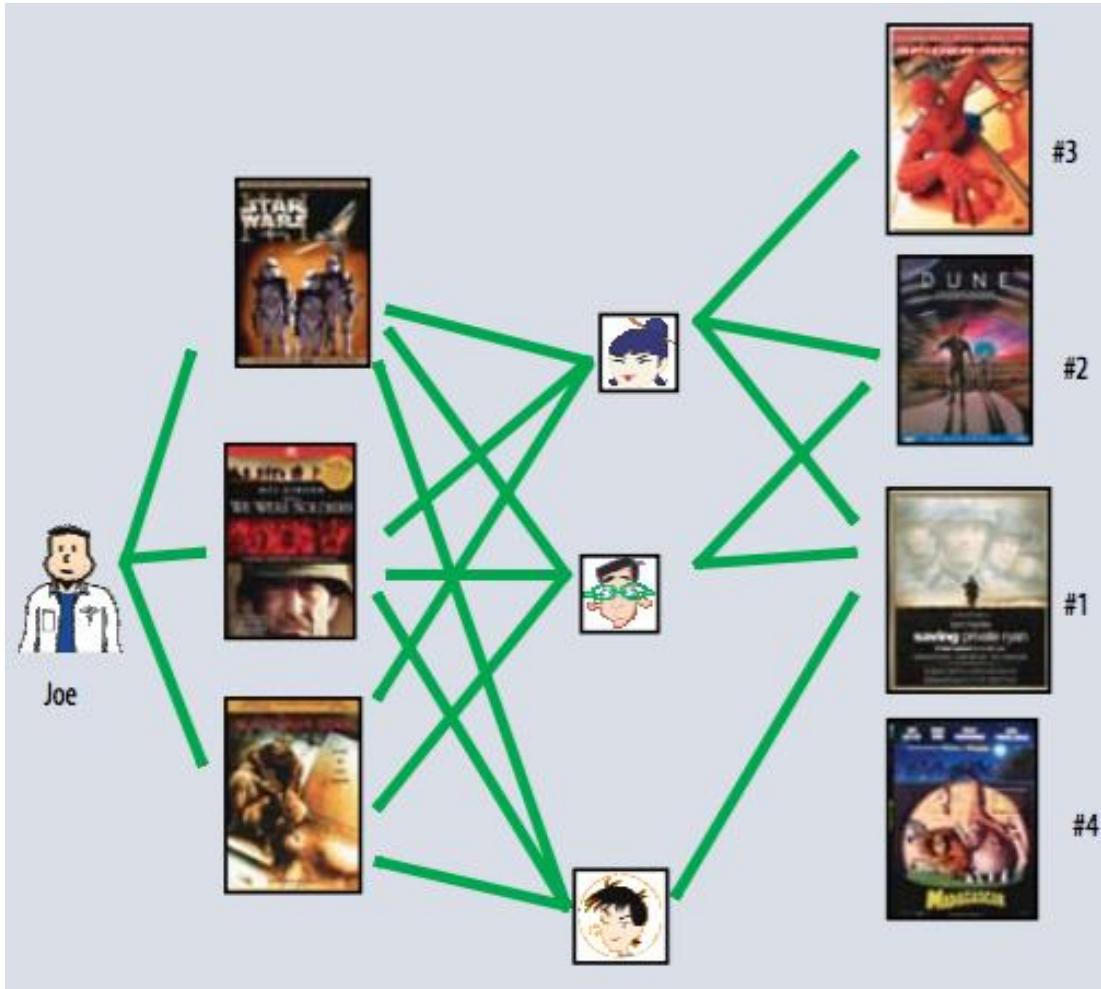


2. Latent Factor Methods



Two Types of Collaborative Filtering

1. Neighborhood Methods



In the figure, assume that a green line indicates the movie was **watched**

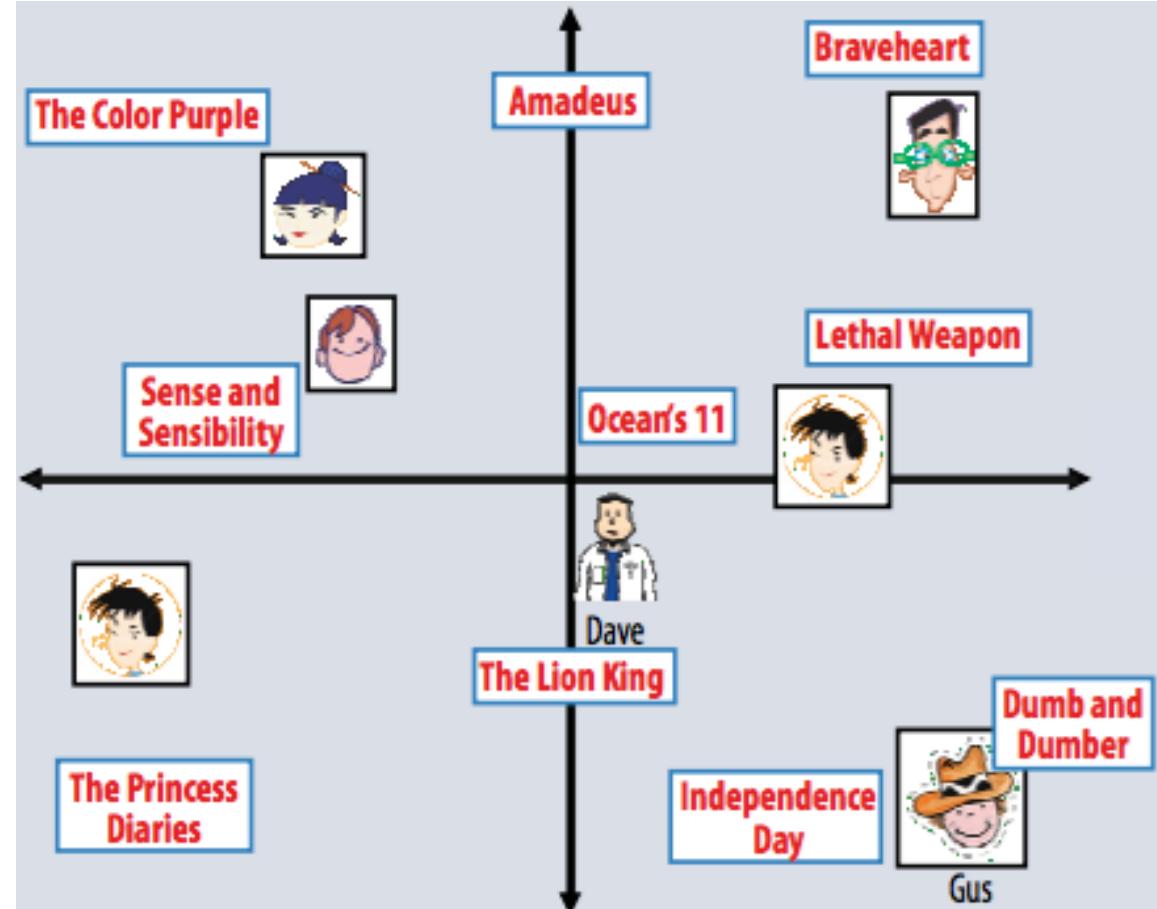
Algorithm:

1. **Find neighbors** based on similarity of movie preferences
2. **Recommend** movies that those neighbors watched

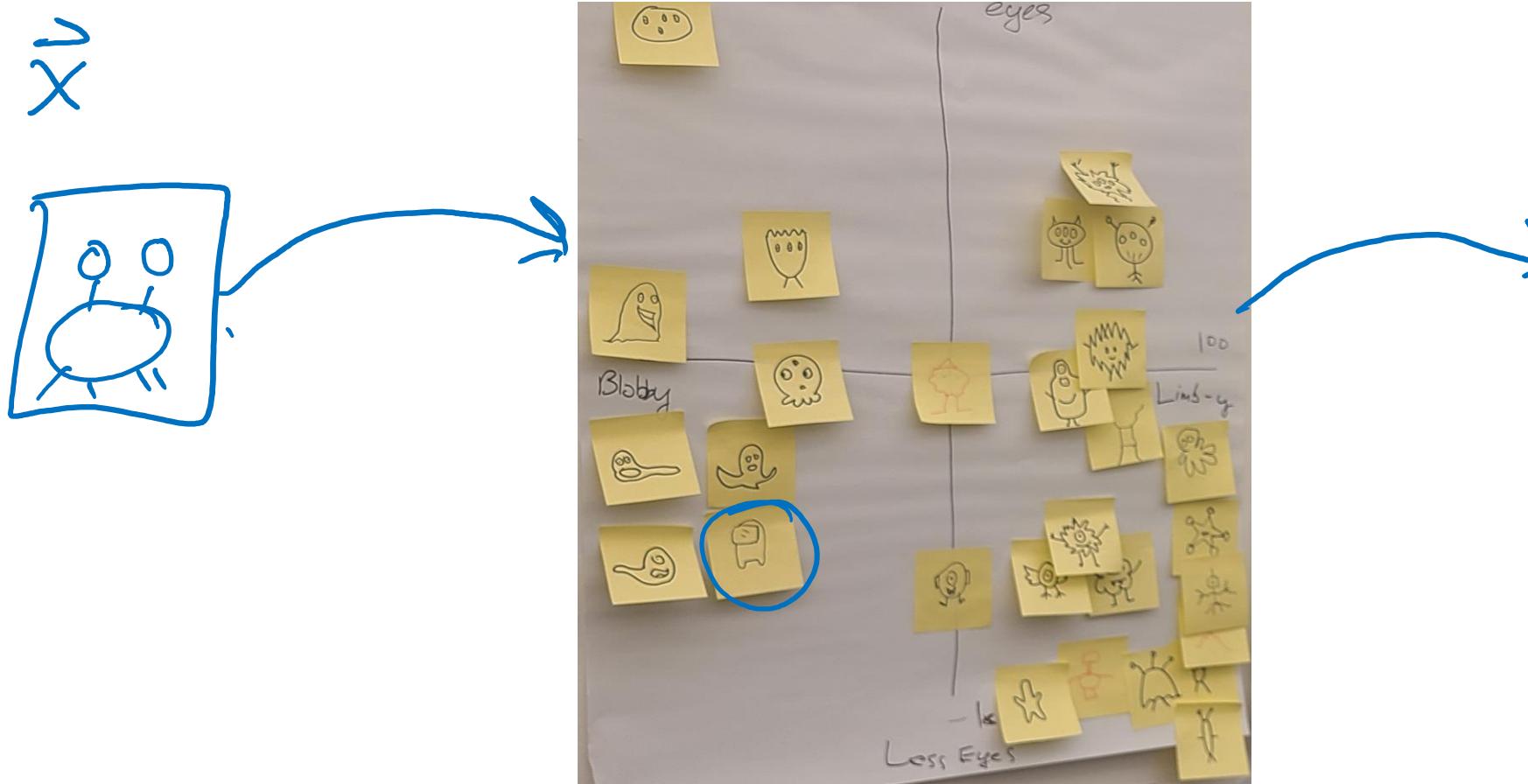
Two Types of Collaborative Filtering

2. Latent Factor Methods

- Assume that both movies and users can be mapped to the same **feature space**
- **Recommend** a movie based on its **proximity** to the user in the feature (latent) space
- **Example algorithm:**
Matrix Factorization



Background: Learn a Feature Space



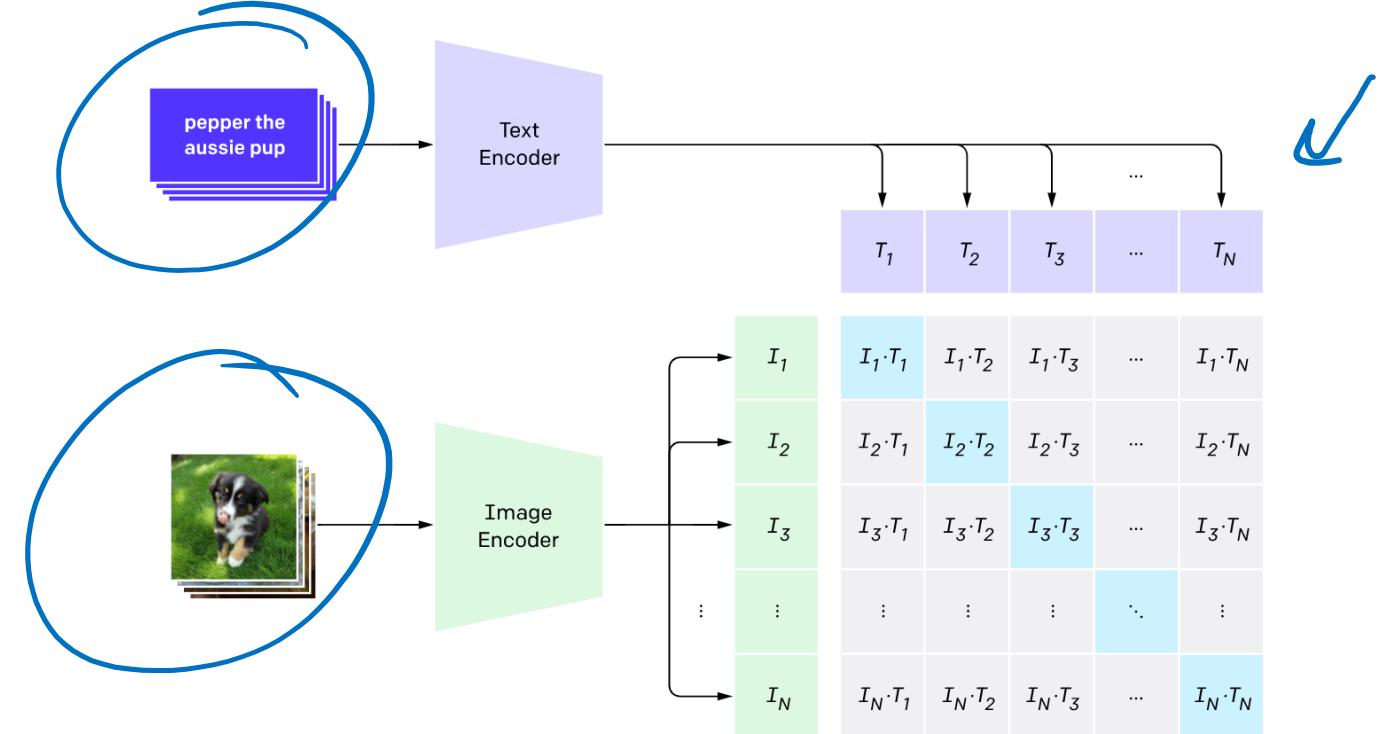
Background: Learn a Feature Space

Word2vec:

Feature space for words

CLIP:

Common feature space for text and images



Background: Learn a Feature Space

Why might low dimensional embeddings be useful?

- Example: MNIST digit classification with nearest neighbor

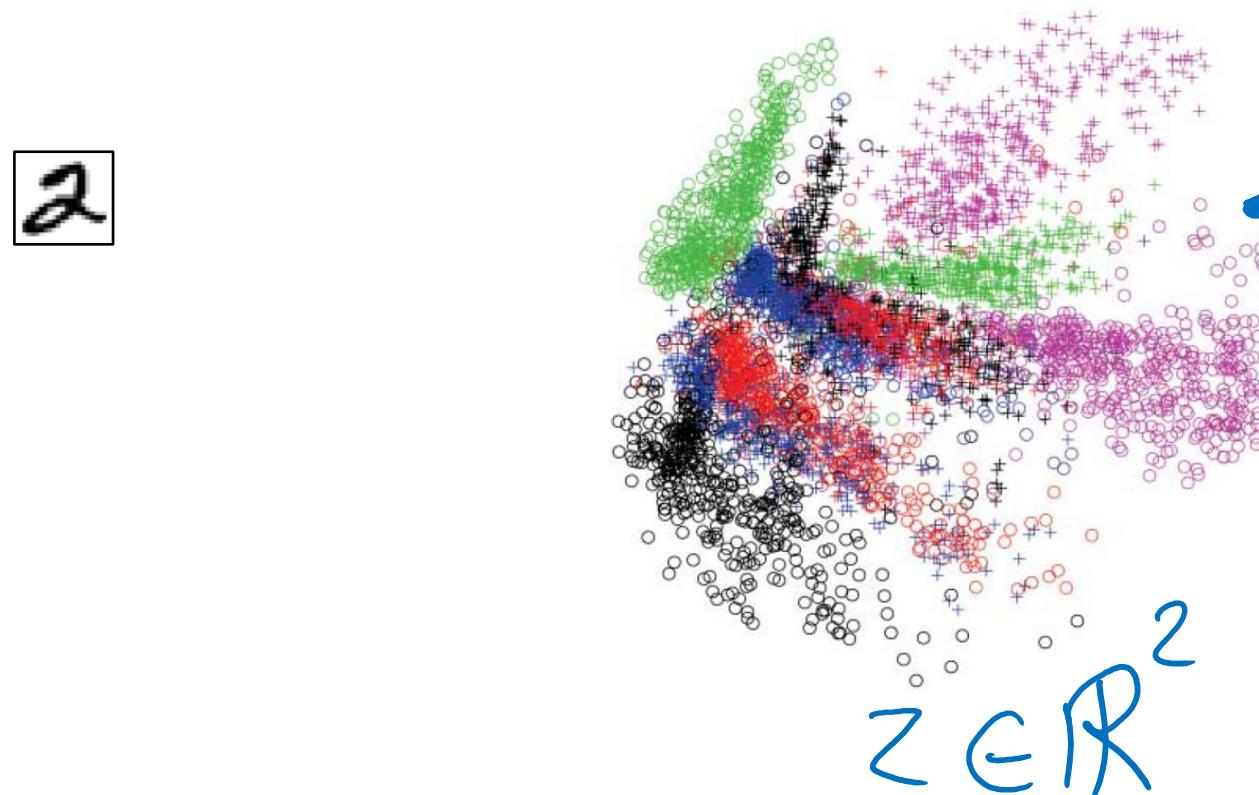
2



Background: Learn a Feature Space

Why might low dimensional embeddings be useful?

- Example: MNIST digit classification with nearest neighbor



Background: Measure of Similarity

$$\|\mathbf{u} - \mathbf{v}\|_2$$

We've been using Euclidean distance

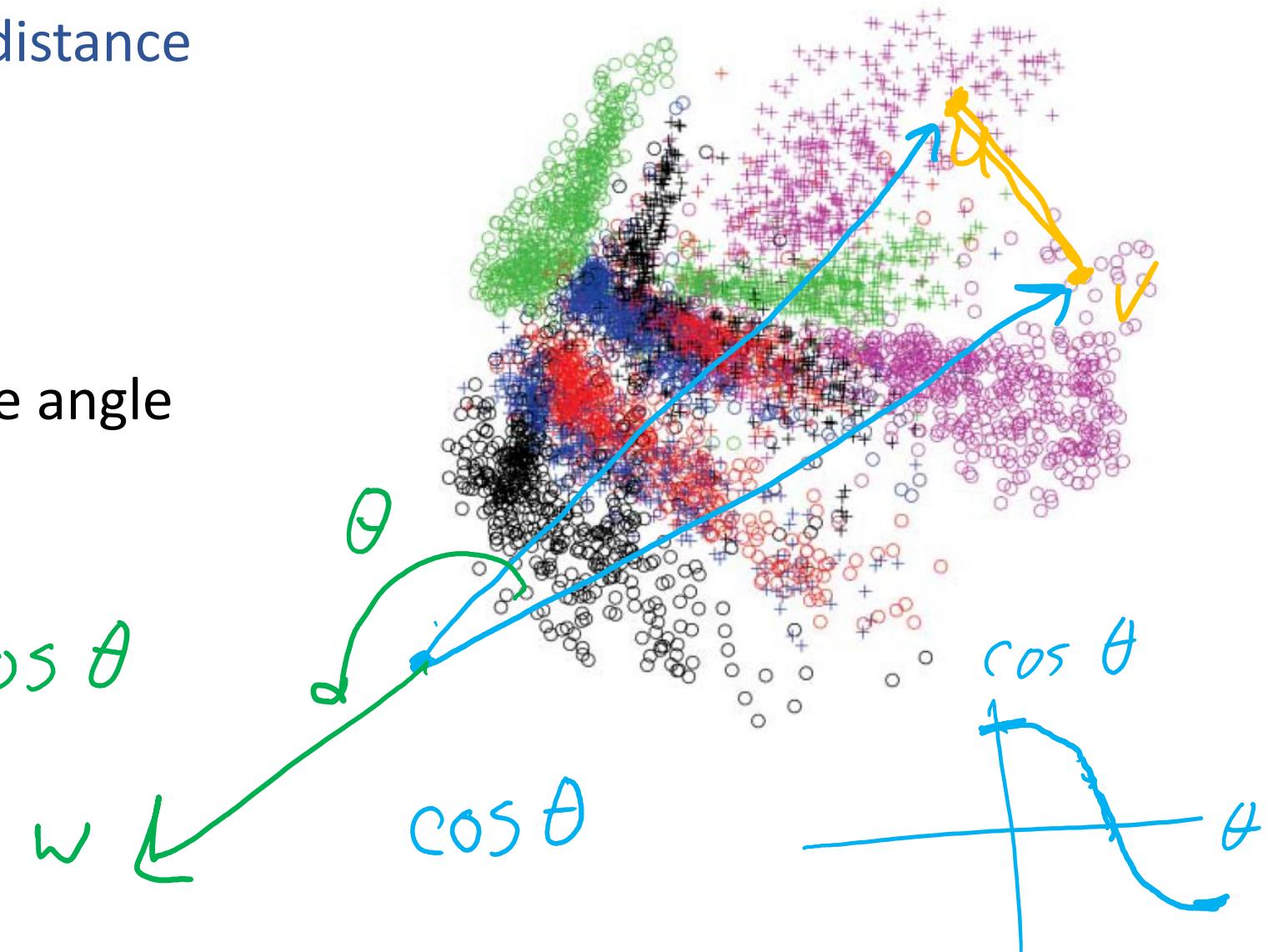
- $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|_2$

Cosine similarity

- Two vectors are similar if the angle between them is small

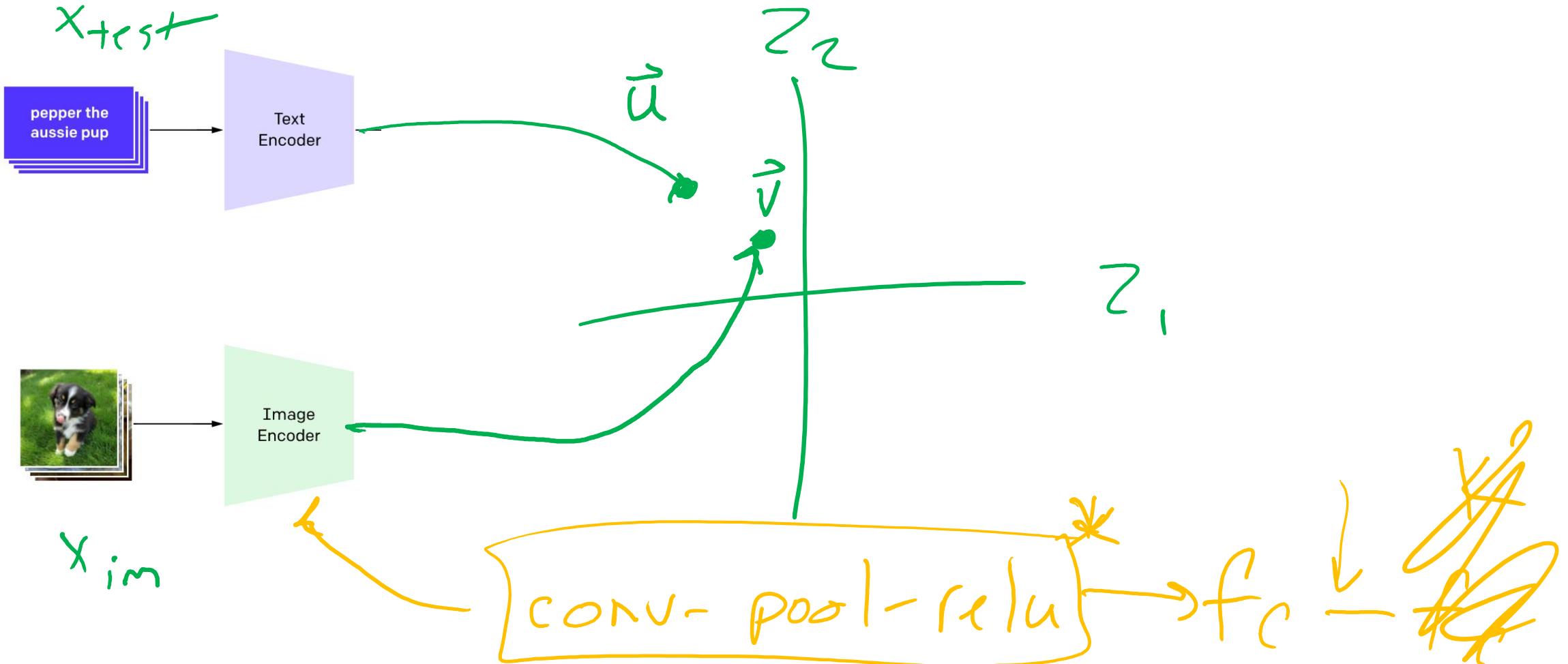
- $\text{sim}(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v}$

$\text{sim}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u}\|_2 \|\mathbf{v}\|_2 \cos \theta$



Background: Learn a Feature Space

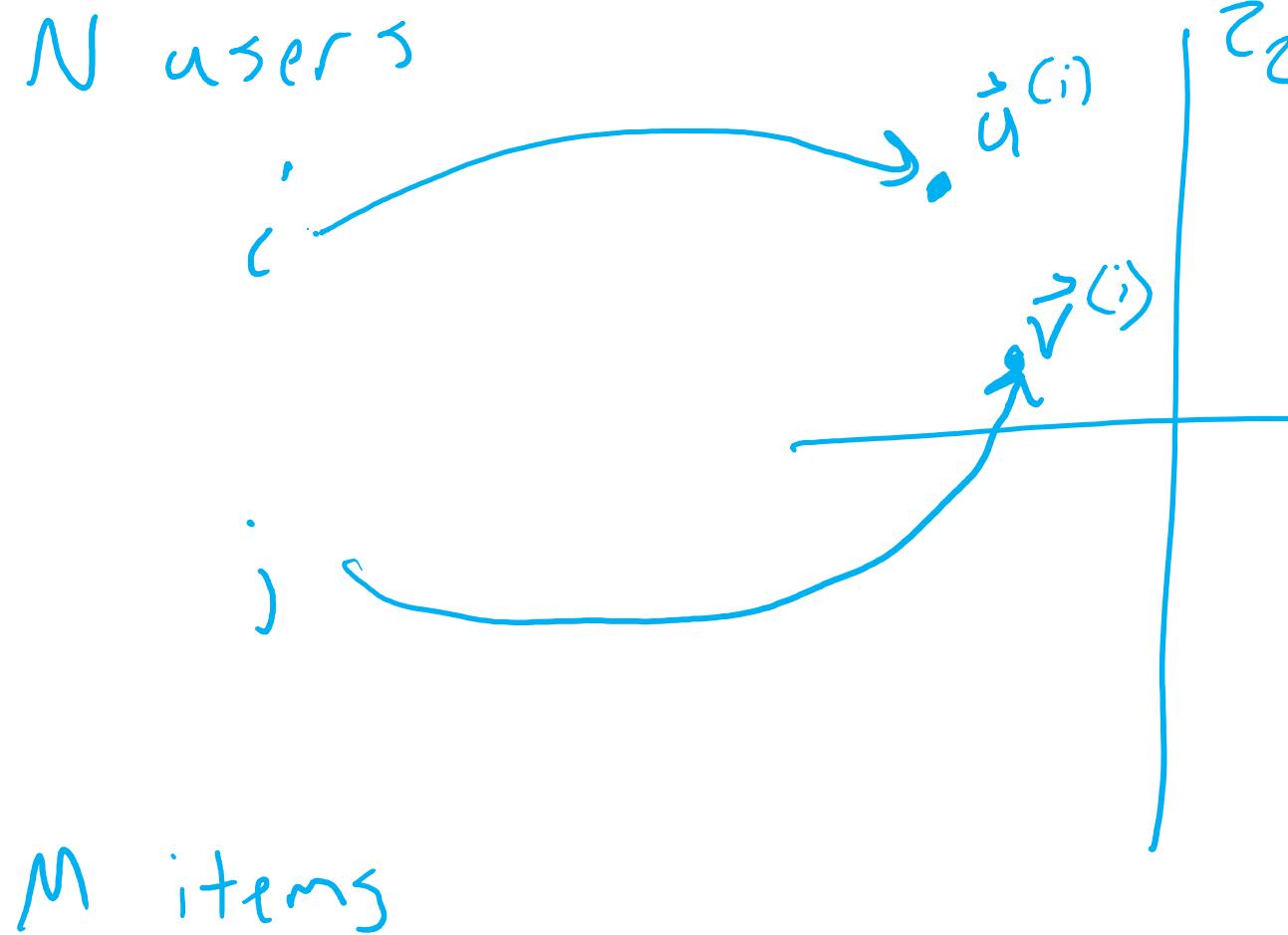
CLIP: Common feature space for text and images



Recommender System: Matrix Factorization

Learning to map items and users to the same feature space

N users



M items

$$\vec{u}^{(i)T} \vec{v}^{(j)} = \hat{r}_{ij}$$

$$\min_{(i,j,r)} \sum (r_{ij} - \hat{r}_{ij})^2$$

Recommender System: Matrix Factorization

Learning to map items and users to the same feature space

Recommender System: Matrix Factorization

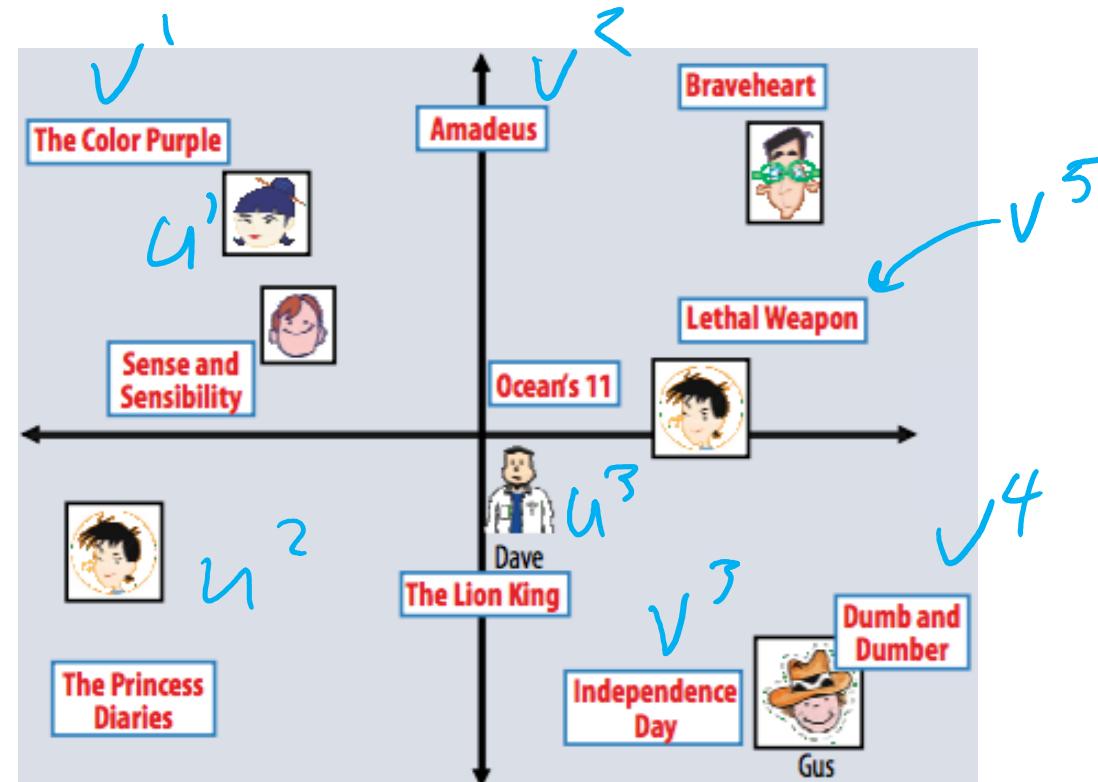
Learning to map items and users to the same lower dimensional space

N user

M item

$U \in \mathbb{R}^{N \times K}$

$V \in \mathbb{R}^{M \times K}$



$$K=2$$

Recommender System: Matrix Factorization

Optimization: Objective function using only the labels we have

$$\underset{U, V}{\operatorname{argmin}} \sum_{(i, j), r_{ij}} (r_{ij} - \underbrace{u^{(i)T} v^{(j)}}_{})^2$$

Poll 1

Is the following optimization a quadratic optimization?

$$\min_{\mathbf{u}, \mathbf{v}} \sum_{i,j \in \mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)T} \mathbf{v}^{(j)} \right)^2$$

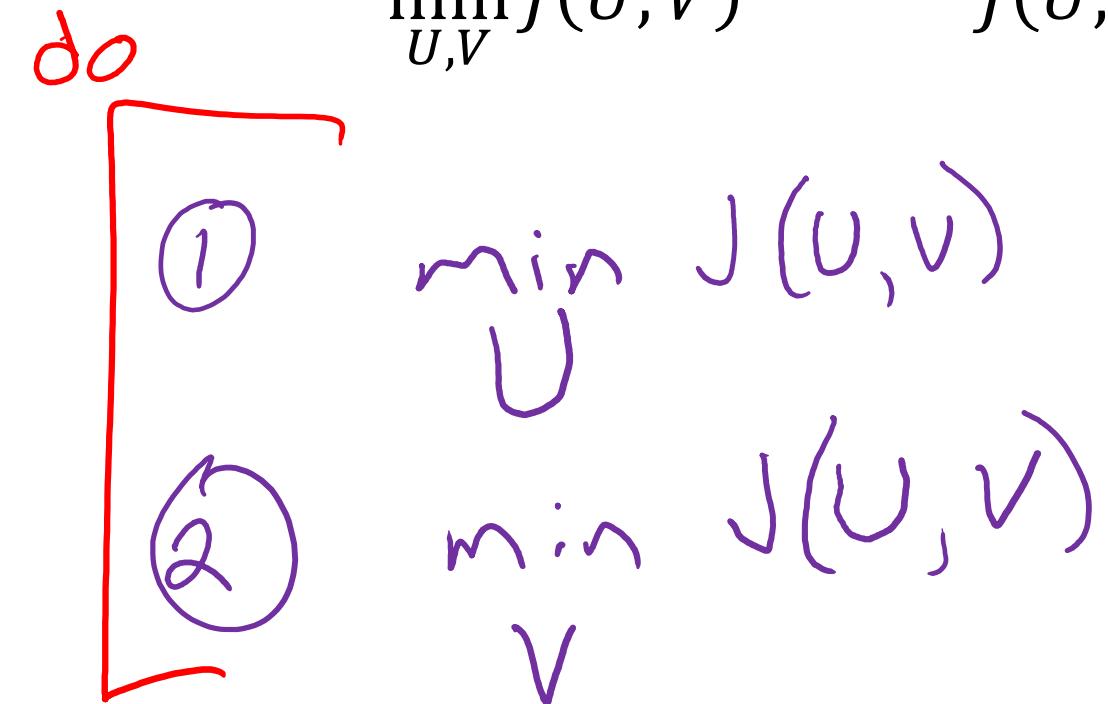
- A. ~~Yes~~ A \checkmark
- B. Yes
- C. No
- D. ~~Yes~~ A \checkmark

Matrix Factorization

Method of *alternating minimization*

$$\min_{U,V} J(U,V)$$

$$J(U,V) = \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}^{(i)T} \mathbf{v}^{(j)})^2$$



$$U^{(t+1)} \leftarrow U^{(t)} - \alpha \nabla_U J(U^{(t)}, V^{(t)})$$
$$V^{(t+1)} \leftarrow V^{(t)} - \alpha \nabla_V J(U^{(t+1)}, V^{(t)})$$

Matrix Factorization

Method of *alternating minimization*

$$\min_{U,V} J(U, V) \quad J(U, V) = \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

1) $\operatorname{argmin}_U J(U, V)$

2) $\operatorname{argmin}_V J(U, V)$

Matrix Factorization

Method of *alternating minimization*

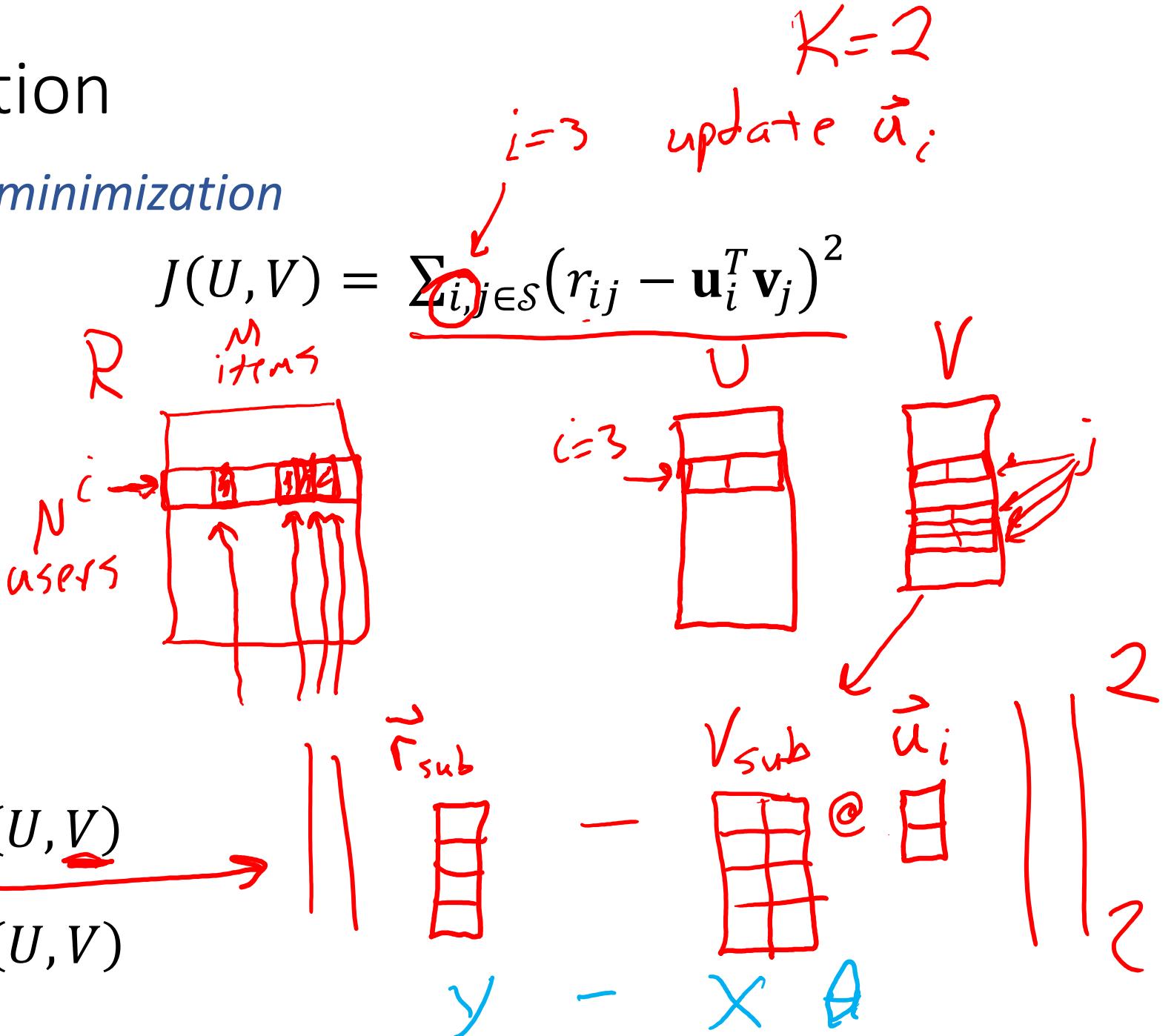
$$\min_{U,V} J(U, V)$$

$$1) \ \underset{U}{\operatorname{argmin}} J(U, V)$$

$$2) \ \underset{V}{\operatorname{argmin}} J(U, V)$$

$$1) \ \text{For all } i, \ \underset{\mathbf{u}_i}{\operatorname{argmin}} J(U, V)$$

$$2) \ \text{For all } j, \ \underset{\mathbf{v}_j}{\operatorname{argmin}} J(U, V)$$

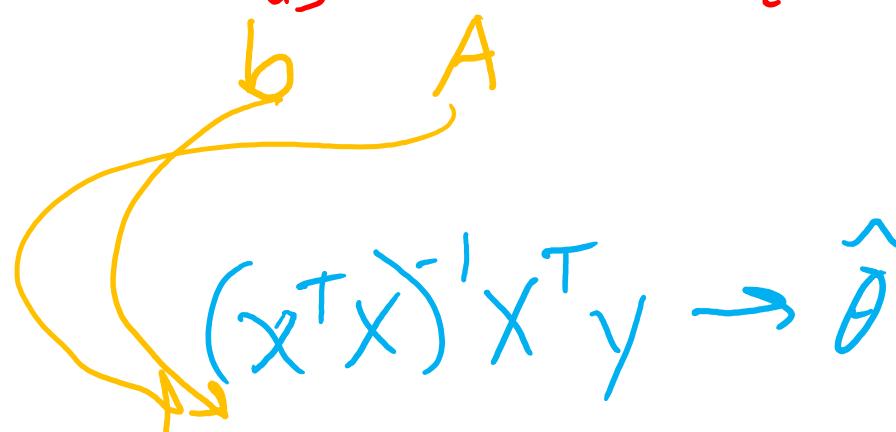


Matrix Factorization

Method of *alternating minimization*

$$\min_{U,V} J(U,V)$$

$$J(U,V) = \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

$$\left\| \tilde{\mathbf{r}}_{\text{sub}} - \mathbf{v}_{\text{sub}}^T \tilde{\mathbf{u}}_i \right\|_2^2$$


1) For all i , $\operatorname{argmin}_{\mathbf{u}_i} J(U,V)$

2) For all j , $\operatorname{argmin}_{\mathbf{v}_j} J(U,V)$

$$\mathbf{u}_i^{(t+1)} = (A^T A)^{-1} A^T \mathbf{b}$$

$$\mathbf{v}_j^{(t+1)} = (C^T C)^{-1} C^T \mathbf{d}$$

Matrix Factorization

Method of *alternating minimization*

$$\min_{U,V} J(U, V) \quad J(U, V) = \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

1) For all i , $\operatorname{argmin}_{\mathbf{u}_i} J(U, V)$

$$\mathbf{u}_i^{(t+1)} = (A^T A)^{-1} A^T \mathbf{b}$$

2) For all j , $\operatorname{argmin}_{\mathbf{v}_j} J(U, V)$

$$\mathbf{v}_j^{(t+1)} = (C^T C)^{-1} C^T \mathbf{d}$$

Matrix Factorization

First solve:

$$\min_{U,V} J(U, V)$$

$$J(U, V) = \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}^{(i)T} \mathbf{v}^{(j)})^2$$

U V

What then?

predict

$$h(i, j) \rightarrow \hat{r}_{i,j}$$

$$\mathbf{u}^{(i)T} \mathbf{v}^{(j)} \rightarrow \hat{r}_{i,j}$$

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1	6.4	5
BB-8	3	4	2.5
C-3Po	3	5	2

Matrix Factorization

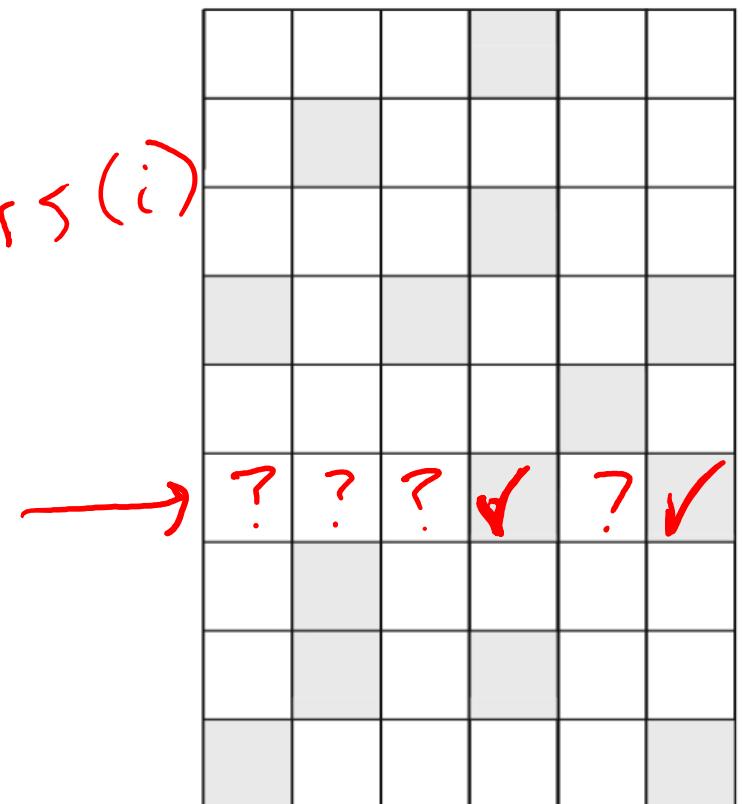
First solve:

$$\min_{U,V} J(U,V) \quad J(\underline{U},V) = \sum_{i,j \in \mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

items (j)

What then?

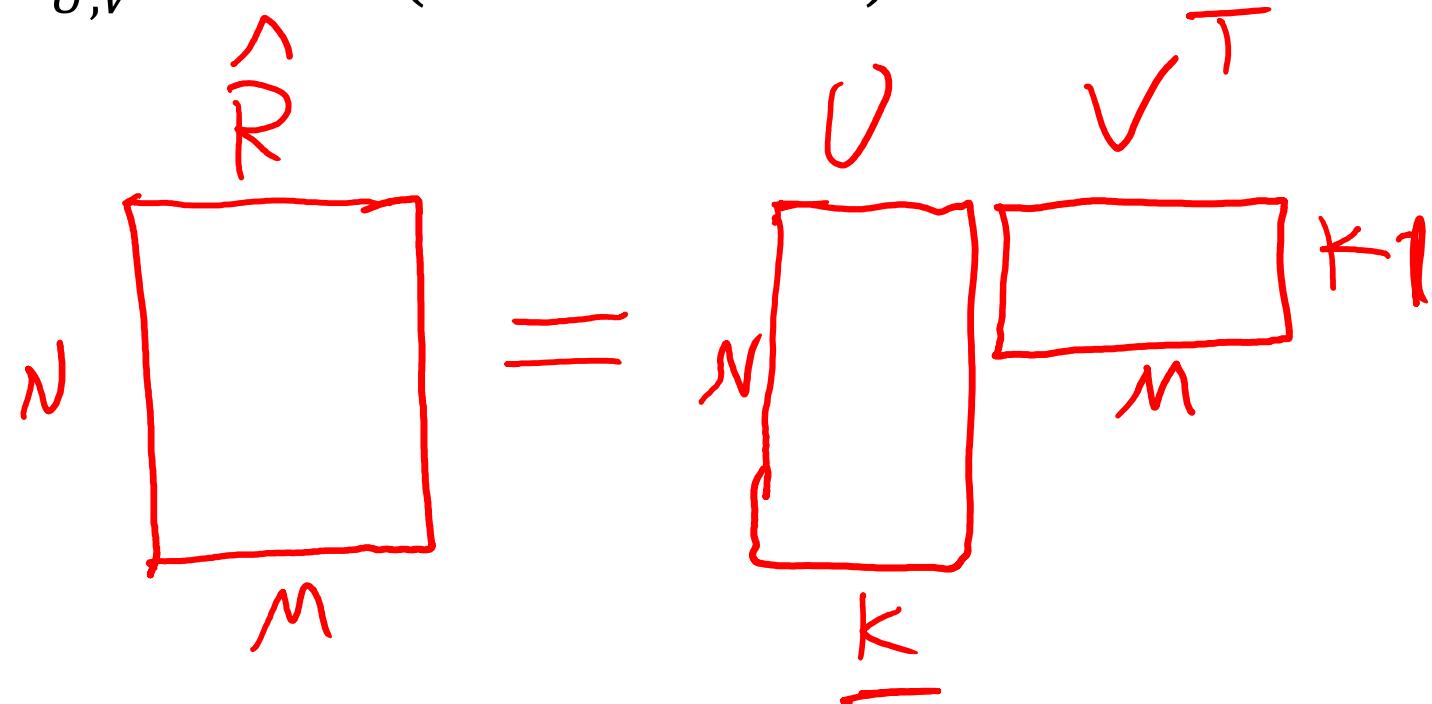
users(i)



Recommender System: Matrix Factorization

Why is it called matrix factorization?

$$\min_{U,V} \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}^{(i)T} \mathbf{v}^{(j)})^2$$



SVD

$$X = USV^T$$

$$R = U \underset{V^T}{\boxed{V}}$$

Matrix factorization

Recommender System: Matrix Factorization

Why is it called matrix factorization?

$$\min_{U,V} \|R - UV^T\|_F^2$$

Sparse labels 😞

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3PO	3	5	2

Matrix Factorization

Add regularization to avoid overfitting

$$\min_{U,V} J(U,V) + \lambda_1 \|U\|_F^2 + \lambda_2 \|V\|_F^2$$

$$J(U,V) = \sum_{i,j \in \mathcal{S}} (r_{ij} - \mathbf{u}^{(i)T} \mathbf{v}^{(j)})^2$$

Bias in Recommender Systems

What high-level problems can occur from recommender systems?

Summary

Recommender systems solve many **real-world (*large-scale) problems**

Collaborative filtering by matrix factorization (MF) is an **efficient and effective** approach

(Sparse matrix makes MF more challenging)

MF is just another example of a **common recipe**:

1. define a model
2. define an objective function
3. optimize

Optimization

- Use alternating minimization
- Add regularization to avoid overfitting