
Course Update

Current Plan (updated)

▪ HW 8 (online)

▪ Mini-project proposal

▪ HW 9 (online)

▪ HW 10 (written/prog)

▪ Midterm 2

▪ Mini-project
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Plan

Last time

▪ Unsupervised Learning: Dimensionality Reduction

Today

▪ Recommender Systems
▪ Unsupervised Learning: Clustering

▪ K-means

Next time

▪ Unsupervised Learning: Clustering
▪ Gaussian mixture models and expectation maximization
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10-315
Introduction to ML

Recommender Systems

Instructor: Pat Virtue



Recommender Systems

A Common Challenge:
▪ Assume you’re a company selling items of some sort: 

movies, songs, products, etc.

▪ Company collects millions of ratings from users of their items

▪ To maximize profit / user happiness, you want to 
recommend items that users are likely to want

4Slide credit: CMU MLD Matt Gormley



Recommender Systems
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Recommender Systems
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Recommender Systems
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AI System Design: Movie Recommendation

Task

Experience

Performance measure
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Recommender Systems
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Problem Setup
• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower root mean squared error (RMSE) 

than Netflix’s existing system on 3 million held out ratings 
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ML System Design: Movie Recommendation

Model



ML System Design: Movie Recommendation

Model



Recommender Systems

Setup:

▪ Items: 
movies, songs, products, etc.
(often many thousands)

▪ Users: 
watchers, listeners, purchasers, etc.
(often many millions)

▪ Feedback: 
5-star ratings, not-clicking ‘next’, purchases, 
etc.

Challenge:

▪ Users only rate a small number of items 
(the user/item rating data is sparse)
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Different Approaches
Item-based (Content filtering)

▪ Features about each item

▪ Given an item, other “close” items have similar values

▪ e.g. Pandora.com, music genome project



Different Approaches
Item-based (Content filtering)

▪ Features about each item

▪ Given an item, other “close” items have similar values

▪ e.g. Pandora.com, music genome project

User-based

▪ Features about each user

▪ Given a user, other “close” users have similar preferences

▪ Market segmentation

Learning user-item relationship

▪ Can be done without features on either user or item

▪ Collaborative filtering techniques



Collaborative Filtering
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Collaborative Filtering

Everyday Examples of Collaborative Filtering...
▪ Bestseller lists

▪ Top 40 music lists

▪ The “recent returns” shelf at the library

▪ Unmarked but well-used paths thru the woods

▪ The printer room at work

▪ “Read any good books lately?”

▪ …

Common insight: personal tastes are correlated
▪ If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y

▪ especially (perhaps) if BB-8 knows Alita

16
Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods

17

Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods
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In the figure, assume that a 
green line indicates the movie 
was watched

Algorithm:

1. Find neighbors based on 
similarity of movie 
preferences

2. Recommend movies that 
those neighbors watched

Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
2. Latent Factor Methods

19

Figures from Koren et al. (2009)

• Assume that both 
movies and users can 
be mapped to the same 
feature space

• Recommend a movie 
based on its proximity
to the user in the 
feature (latent) space

• Example algorithm: 
Matrix Factorization



Background: Learn a Feature Space



Background: Learn a Feature Space

Word2vec:
Feature space for words

CLIP:

Common feature space for text and images



Background: Learn a Feature Space
Why might low dimensional embeddings be useful?

▪ Example: MNIST digit classification with nearest neighbor



Background: Learn a Feature Space
Why might low dimensional embeddings be useful?

▪ Example: MNIST digit classification with nearest neighbor

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.



Background: Measure of Similarity
We’ve been using Euclidean distance

▪ 𝑑 𝐮, 𝐯 = 𝐮 − 𝐯 2

Cosine similarity

▪ To vectors are similar if the angle 
between them is small

▪ 𝑑 𝐮, 𝐯 = 𝐮𝑇𝐯

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.



Background: Learn a Feature Space

CLIP: Common feature space for text and images



Recommender System: Matrix Factorization
Learning to map items and users to the same feature space



Recommender System: Matrix Factorization
Learning to map items and users to the same lower dimensional space

Figures from Koren et al. (2009)



Recommender System: Matrix Factorization
Optimization: Objective function using only the labels we have



Poll 1
Is the following optimization a quadratic optimization?

min
𝑼,𝑽

෍

𝑖,𝑗∈𝒮

𝑟𝑖𝑗 − 𝐮 𝑖 𝑇𝐯(𝑗)
2

A.

B.

C.

D.



Matrix Factorization
Method of alternating minimization

min
𝑈,𝑉

𝐽 𝑈, 𝑉 𝐽 𝑈, 𝑉 = σ𝑖,𝑗∈𝒮 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇𝐯(𝑗)
2



Matrix Factorization
Method of alternating minimization

min
𝑈,𝑉

𝐽 𝑈, 𝑉 𝐽 𝑈, 𝑉 = σ𝑖,𝑗∈𝒮 𝑟𝑖𝑗 − 𝐮𝑖
𝑇𝐯𝑗
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1) argmin
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Matrix Factorization
Method of alternating minimization
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Matrix Factorization
Method of alternating minimization
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Matrix Factorization
Method of alternating minimization
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Matrix Factorization
First solve:

min
𝑈,𝑉

𝐽 𝑈, 𝑉 𝐽 𝑈, 𝑉 = σ𝑖,𝑗∈𝒮 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇𝐯(𝑗)
2

What then?
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Recommender System: Matrix Factorization
Why is it called matrix factorization?

min
𝑈,𝑉

σ𝑖,𝑗∈𝒮 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇𝐯(𝑗)
2



Recommender System: Matrix Factorization
Why is it called matrix factorization?

min
𝑼,𝑽

𝑹 − 𝑼𝑽𝑇 𝐹
2

Sparse labels 
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Matrix Factorization
Add regularization to avoid overfitting

min
𝑈,𝑉

𝐽 𝑈, 𝑉

𝐽 𝑈, 𝑉 = σ𝑖,𝑗∈𝒮 𝑟𝑖𝑗 − 𝐮 𝑖 𝑇𝐯(𝑗)
2



Bias in Recommender Systems
What high-level problems can occur from recommender systems?



Summary

Recommender systems solve many real-world (*large-scale) problems

Collaborative filtering by matrix factorization (MF) is an efficient and effective
approach

(Sparse matrix makes MF more challenging)

MF is just another example of a common recipe:
1. define a model

2. define an objective function

3. optimize

Optimization

▪ Use alternating minimization

▪ Add regularization to avoid overfitting 44
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