Course Update Out Current Plan (updated) Que

- HW 8 (online)
- Mini-project proposal
- HW 9 (online)
- HW 10 (written/prog)
- Midterm 2
- Mini-project

Sun	Mon	Tue	Wed	Thu	Fri	Sat
2	3	4	5 HW8 Proj	6	7	8
9 HW8	10 HW9 HW10	11	12	13	14	15
16	17 HW9	18	19 Prop	20	21	22 HW10
23	24	25	26 MT2	27	28	29
30	1	2	3	4	5 Proj	6

Plan

Last time

Unsupervised Learning: Dimensionality Reduction

Today

- Recommender Systems
- Unsupervised Learning: Clustering
 - K-means

Next time

- Unsupervised Learning: Clustering
 - Gaussian mixture models and expectation maximization

10-315 Introduction to ML

Recommender Systems

Instructor: Pat Virtue

A Common Challenge:

- Assume you're a company selling items of some sort: movies, songs, products, etc.
- Company collects millions of ratings from users of their items
- To maximize profit / user happiness, you want to recommend items that users are likely to want

1	NEW & INTERESTING FINDS ON AMAZON EXPLORE	
amazon	All -	CYBER MONDAY DEALS WEEK
Departments -	Browsing History - Matt's Amazon.com Cyber Monday Gift Cards & Registry Sell Help	Hello, Matt Your Account - Prime - Lists - 1. Cart
Your Amazon.com	Your Browsing History Recommended For You Improve Your Recommendations Your Profile Learn More	

You could be seeing useful stuff here! Sign in to get your order status, balances and rewards.

Sign In

Recommended for you, Matt

Forum

© 1997-2009 Netflix, Inc. All rights reserved.

Netflix Home

Slide credit: CMU MLD Matt Gormley

Recommender Systems

Home Rules Lead	Ierboard Update	Co	ngratulation
		The Ne improvi- how me movie On Se \$1M G Pragmalgoriti Leade the Fo We ap quest, conner	etflix Prize sought to substantia the the accuracy of predictions a uch someone is going to enjoy based on their movie preference ptember 21, 2009 we awarded arand Prize to team "BellKor's atic Chaos". Read about <u>their</u> hm, checkout team scores on t rboard, and join the discussion rum. plaud all the contributors to this which improves our ability to ct people to the movies they low

7

Al System Design: Movie Recommendation

Task

Experience

Performance measure

NET	FLIX			
R	letflix Prize			COMPLETED
Home	Rules Leaderboard Update			
1	eaderhoard			
P	rohlem So	tup		
	TODICITI SC	tup		-
Ra	Ink Team Name	Best Test Score	% Improveme	nt Best Submit Time
	500,000 users			
•	20,000 movies			
•	100 million ratings			
•	Goal: To obtain low	er root mean s	quared e	error (RMSE)
	than Netflix's existi	ng system on E	3 million	held out ratings
3	- reeusz	0.0022	9.40	2008-07-12 13.11.01
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

ML System Design: Movie Recommendation

Model

ML System Design: Movie Recommendation

Model

Setup:

 Items: movies, songs, products, etc. (often many thousands)

Users:

watchers, listeners, purchasers, etc. (often many millions)

Feedback:

5-star ratings, not-clicking 'next', purchases, etc.

Challenge:

 Users only rate a small number of items (the user/item rating data is sparse)

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3P0	3	5	2

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

User-based

- Features about each user
- Given a user, other "close" users have similar preferences
- Market segmentation

Learning user-item relationship

- Can be done without features on either user or item
- Collaborative filtering techniques

Collaborative Filtering

Collaborative Filtering

Everyday Examples of Collaborative Filtering...

- Bestseller lists
- Top 40 music lists
- The "recent returns" shelf at the library
- Unmarked but well-used paths thru the woods
- The printer room at work
- "Read any good books lately?"
- •

Common insight: personal tastes are correlated

- If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y
- especially (perhaps) if BB-8 knows Alita

Two Types of Collaborative Filtering

1. Neighborhood Methods

2. Latent Factor Methods

Two Types of Collaborative Filtering

1. Neighborhood Methods

In the figure, assume that a green line indicates the movie was **watched**

Algorithm:

- Find neighbors based on similarity of movie preferences
- Recommend movies that those neighbors watched

Two Types of Collaborative Filtering

2. Latent Factor Methods

- Assume that both movies and users can be mapped to the same feature space
- Recommend a movie based on its proximity to the user in the feature (latent) space
- Example algorithm: Matrix Factorization

Word2vec:

Feature space for words

CLIP:

Common feature space for text and images

Why might low dimensional embeddings be useful?

• Example: MNIST digit classification with nearest neighbor

Why might low dimensional embeddings be useful?

• Example: MNIST digit classification with nearest neighbor

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.

Background: Measure of Similarity

We've been using Euclidean distance

• $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|_2$

Cosine similarity

- To vectors are similar if the angle between them is small
- $d(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v}$

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.

CLIP: Common feature space for text and images

Learning to map items and users to the same feature space

Learning to map items and users to the same lower dimensional space

Figures from Koren et al. (2009)

Optimization: Objective function using only the labels we have

Poll 1

Is the following optimization a quadratic optimization?

$$\min_{\boldsymbol{U},\boldsymbol{V}}\sum_{i,j\in\mathcal{S}}\left(r_{ij}-\mathbf{u}^{(i)^{T}}\mathbf{v}^{(j)}\right)^{2}$$

A. B. C. D.

Method of *alternating minimization*

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

Method of *alternating minimization*

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

- 1) $\underset{U}{\operatorname{argmin}} J(U,V)$
- 2) $\underset{V}{\operatorname{argmin}} J(U,V)$

Method of alternating minimization

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

1) $\underset{U}{\operatorname{argmin}} J(U,V)$ 2) $\underset{V}{\operatorname{argmin}} J(U,V)$

 For all *i*, argmin J(U,V) u_i
 For all *j*, argmin J(U,V) v_j

Method of alternating minimization

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

1) For all *i*, $\underset{\mathbf{u}_{i}}{\operatorname{argmin}} J(U,V)$ 2) For all *j*, $\underset{\mathbf{v}_{j}}{\operatorname{argmin}} J(U,V)$ $\mathbf{v}_{j}^{(t+1)} = (C^{T}C)^{-1}C^{T}\mathbf{d}$

Method of *alternating minimization*

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} (r_{ij} - \mathbf{u}_i^T \mathbf{v}_j)^2$$

1) For all *i*,
$$\underset{\mathbf{u}_{i}}{\operatorname{argmin}} J(U,V)$$

2) For all *j*, $\underset{\mathbf{v}_{j}}{\operatorname{argmin}} J(U,V)$
 $\mathbf{v}_{j}^{(t+1)} = (C^{T}C)^{-1}C^{T}\mathbf{d}$

First solve:

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

What then?

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3Po	3	5	2

First solve:

$$\min_{U,V} J(U,V) \qquad J(U,V) = \sum_{i,j\in\mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

What then?

Why is it called matrix factorization?

$$\min_{U,V} \sum_{i,j\in\mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

Why is it called matrix factorization?

$$\min_{\boldsymbol{U},\boldsymbol{V}} \|\boldsymbol{R} - \boldsymbol{U}\boldsymbol{V}^T\|_F^2$$

Sparse labels ⊗

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3Po	3	5	2

Add regularization to avoid overfitting

 $\min_{U,V} J(U,V)$

$$J(U,V) = \sum_{i,j\in\mathcal{S}} \left(r_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

Bias in Recommender Systems

What high-level problems can occur from recommender systems?

Summary

Recommender systems solve many **real-world** (*large-scale) **problems**

Collaborative filtering by matrix factorization (MF) is an **efficient** and **effective** approach

(Sparse matrix makes MF more challenging)

MF is just another example of a **common recipe**:

- 1. define a model
- 2. define an objective function
- 3. optimize

Optimization

- Use alternating minimization
- Add regularization to avoid overfitting