Warm-up as you walk in

1. https://www.sporcle.com/games/MrChewypoo/minimalist disney

2. https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-
slideshow

3. https://www.sporcle.com/games/MrChewypoo/minimalist
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https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-slideshow
https://www.sporcle.com/games/MrChewypoo/minimalist

Plan

Last time

=  Generative Models

Today

= Wrap-up Generative Models

= Naive Bayes

= Combining MAP and Generative <£——
= Dimensionality Reduction

=  Autoencoders
" Principal Component Analysis




Wrap-up Generative Models

Previous lecture slides



10-315
Introduction to ML

Deminsionality Reduction:
PCA, Autoencoders, and
~eature Learning

Instructor: Pat Virtue




Learning Paradigms

Paradigm Data

——> Supervised D= {x(i)@[izl x ~ p*(-)andy = c*(-)
—s Regression y() € R
— Classification y@) e {l,...,K}
— Binary classification y@ € {+1, -1} .
< Structured Prediction  y(*) is a vector B MiaS A

——> Unsupervised D= {x@\}g\le X ~ p*)(/-) 3
Semi-supervised D ={x®,y®O}" U {xD}¥2
Online D = {(x),yM), (x(2), @) (xB) 4B, .}
Active Learning D = {x®}N  and can query y¥) = ¢*(-) at a cost
Imitation Learning D = {(sW),aD), (5@ o), ..}

Reinforcement Learning D = {(s(1), a1, r(1)) (5(2) o) »2)) 1



Outline

Dimensionality Reduction
* High-dimensional data
" Low dimensional representations

Autoencoders
Feature Learning

Principal Component Analysis (PCA)
" Examples: 2D and 3D

= PCA algorithm

= PCA, eigenvectors, and eigenvalues

= PCA objective and optimization
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Dimensionality Reduction

3
zel@a

\ I"\:C‘LF\/ 0.0

f/v\’w 0. D



Dimensionality Reduction
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Dimensionality Reduction




Dimensionality Reduction

For each *® € RM find representation z(® € RX wher

e K KM
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High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)

14



Dimensionality Reduction

http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



http://timbaumann.info/svd-image-compression-demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Autoencoders



Exercise: Human-defined Feature Space
Step 4: Creation!

1. Select three students: A,B,C }Wo holes
. g
2. Student A draws a new digit
and hands it to student B @ s
3. Student B thinks about where Curv> 10D
to plot it and comes up with ~ (o€ )]
a 2-D coordinate, (x, y)

4. Student Clooks at the
coordinate and the plot (but
not the drawing from A) and
draws a new digit



Exercise: Human-defined Feature Space




Learning to Organize Data

Neural networks can learn to organization t

Image =2 [2] - Image A
—> X

Z7

Zq

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html L



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Projecting MINIST digits

Task Setting:
1. Take 28x28 images of digits and project them down to 2 components

2. Plot the 2 dimensional points
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Dimensionality Reduction

http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



http://timbaumann.info/svd-image-compression-demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.
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Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.

Neural
Network
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Digit Autoencoder

https://cs.stanford. edu/people/karpathy/convnetjs/demo/autoencoder html|
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

Demo: Using a learned feature space
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Autoencoder Demo
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Feature Learning

Learning a lower dimensional representation of our data rather than
doing feature engineering to represent the data

Also called feature embedding
(embedding data in lower dimensional space)



Feature Learning

Listen Learner

https://chrisharrison.net/index.php/Research/ListenLearner



https://chrisharrison.net/index.php/Research/ListenLearner

Exploring Feature Space

https://experiments.withgoogle.com/ai/melody-mixer/view/

Twinkle H ° Sparse H




Exploring Feature Space

https://experiments.withgoogle.com/ai/beat-blender/view/
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Feature Learning

Word embedding with word2vec

Training data:
“The king sat on the throne”

“the queen sat on the throne”
A==

“the banana is yellow”

“they sat on the yellow bus”
e king
e sat
e throne
e queen

e banana

e vellow
e they
® bus

score (word,

1

Skip-gram

\

King
o’

??46%7\

32



Feature Learning

CLIP: Connecting text and images

pepper the
aussie pup

Text
Encoder
— IT
— 12
Image I
Encoder 3

https://openai.com/research/clip



Feature Learning

CLIP: Connecting text and images

L a photo of . Text
a {object}. Encoder A A ) A

3. Use for zero-shot prediction

Image
Encoder

_——

I? I? 'TT I'.' 'T.? IT 'T3 I? 'TN

|

https://openai.com/research/clip




Principal Component Analysis (PCA)



Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.

Neural
Network

LCo~NOOOMAELON—=+O

+ 0




Principal Component Analysis (PCA)

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

|dentifying the axes is known as Principal Components Analysis, and can be

obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



X

2D Gaussian dataset/ 72
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Slide from Barnabas Poczos



1st PCA axis

4 +
_6 i ; ; | ; i ;
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Slide from Barnabas Poczos



2nd PCA axis

Slide from Barnabas Poczos



PCA Axes



Data for PCA

D= {X(i)}f\il

X =

(x()T
(x2)7

()T

We assume the data is centered

Slide from Matt Gormley

|
_ () —
,u—NE_lx =0

Q: What if
your data is
not centered?

A: Subtract

off the
sample mean

X X

-
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Ny M

Sample Covariance Matrix N pont

The sample covariance matrix is given by: M dim
N
1 i i
Sie =~ 2@ — ) (@ — )
i=1

Since the data matrix is centered, we rewrite as:
e ——
| (X( ))

_ T <CNT
» NE(X < (.)

-~

()T



PCA AW+Y&“A N X M

Input: X, X;oet, K /
1. Center data (and scale each axis) based on training data 2 X, Xc4¢
V = eigenvectors(X’ X)

?‘

2
3. Keep only the top K eigenvectors: Vi o+ M\
4

- il
o Liest = Xtes@
—_———

K
Optionally, use V% to rotate Z.<; back to original subspace X'st and
uncenter EN\ /\J%,\A M x ke KxN\
\
X = X»,esﬁ \/L )

Nx W



PCA Algorithm

Input: X, X;oet, K

1. Center data (and scale each axis) based on training data 2 X, X;eq;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vi

4

Ztest — XtestVK

Optionally, use V% to rotate Z.<; back to original subspace X's¢ and

uncenter X
o o
o o
(@ ° o o
o ®
@ o




PCA Algorithm
Input: X, X;oet, K

1. Center data (and scale each axis) based on training data 2 X, X;eq;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vi

4. Ziest = XtestVi

Optionally, use V% to rotate Z.<; back to original subspace X's¢ and
uncenter 70




PCA Algorithm

Input: X, X;oet, K

1. Center data (and scale each axis) based on training data 2 X, X;eq;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vi

4

Ztest — XtestVK

Optionally, use V% to rotate Z.<; back to original subspace X's¢ and
uncenter

o [ ] O -® _eo—9 o—0—




PCA EXAMPLES



Task Setting:

Projecting MNIST digits

1. Take 28x28 images of digits and project them down to K components

2. Report percent of variance explained for K components

8y
X £

0

0

5 10 15 20 25
784 components

Original Image

5 10 15 20 25
784 components

Original Image

5 10 15 20 25
784 components

95% of Explained Variance
0

0 5 10 15 20 25
154 components

95% of Explained Variance

5 10 15 20 25
154 components

% of Explained Variance

5 10 15 20
154 component:

15

90% of Explained Variance
0

90% of Explained Variance
0

0 5 10 15 20 25
87 components

0 5 10 15 20 25
87 components

90% of Explained Variance
0

0 5 10 15 20 25
87 components

%7/

80% of Explained Variance
0

80% of Explained Variance
0

0 5 10 15 20 25
43 components

0 5 10 15 20 25
43 components

80% of Explained Variance
0

0 5 10 15 20 25
43 components

3

50% of Explained Variance
0

50% of Explained Variance
0

0 5 10 15 20 25
11 components

/

0 5 10 15 20 25
11 components

50% of Explained Variance
0

A

0 5 10 15 20 25
11 components

K =)

Then project back up to 28x28 image to visualize how much information was preserved

X' &

Z €

744

4



Projecting MNIST digits

Task Setting:
1.  Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3. 9
E
-7
6
-5
4
-
- -3
2
1
-34 : ; -. ; ; : 0

50



Projecting MNIST digits

Task Setting:
1.  Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3.0

25 3
-2.0 21

34

1.5
0_
- - 1.0
0.5
= O
1 1 1 Ll 1 OIO




Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture and
4cm leg length discrepancy

Images Courtesy

‘ H. Potter, H.S.S.
\ ) imagination at work 52
- GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture and
4cm leg length discrepancy

Images Courtesy

H. Potter, H.S.S.
\ ) imagination at work N
- GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

@ imagination at work <
- GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

Flatten Growth Plate to Enable 2D Area Measurement

@ imagination at work 55
- GLBC — MSK Image Analysis

April 23,2010



Outline

Dimensionality Reduction

* High-dimensional data

" Low dimensional representations 7
7

/Autoencoders & " X = X‘”

\/?ea”\’v\(e\,mm\’\q

Principal Component Analysis (PCA)
" Examples: 2D and 3D
—=» PCA algorithm

" PCA, eigenvectors, and eigenvalues
= PCA objective and optimization

56



Poll 1 vl

. . TR .
What is the projection of point x onto vector v, assuming that ||v||, = 17

KL VX \"\ -
- | B. & —— Ca\&r’\\*\f /

C v'x J hol, =]
D.|((vTx)v — — /\\

N vixxlv /




Rotation of Data (and back)

1. For any orthogonal matrix V €
2. Rotate to new space: = Vx® vi
3. (Un)rotate back: x'W = yTz0

Xz \ X

\

/’ - X !
_--/-"/ .
y l




PCA Algorithm

Input: X, X;oet, K

1. Center data (and scale each axis) based on training data 2 X, X;eq;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vi

4

Ztest — XtestVK

Optionally, use V% to rotate Z.<; back to original subspace X's¢ and

uncenter
o o J/

o [ ] O -® _eo—9 o—0—




Sketch of PCA J

1. Select “best” V € RK*M
2. Project down: 7D = yx® i
3. Reconstruct up: x' @D = pTzO



Sketch of PCA

1. Select “best” V € RK*M
2. Project down: 7O = Vx®D i
3. Reconstruct up: 'O = yT 7D

Definition of PCA
T~ :
1. Select v4 that best explains data

2. Select next v; that
. Isorthogonalto vy, ...,v;_4
ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



Select “Best” Vector

Reconstruction Error vs Variance of Projection
R

o \




Poll 2 & Poll 3

Consider the two projections below
Poll 2: Which maximizes the variance?
Poll 3: Which minimizes the reconstruction error?

Option B OptionC 3/




Select “Best” Vector

Reconstruction Error vs Variance of Projection

O
o o ¢
/ /
¢ O
Reconstruction Error Variance of PrOJectlon

. 112
||x(l) —x (l)” v' = argmax E(V X(z))

s.t. ||V||2‘1 L=

v' = argmin z”x@—(v xO)v]|?

s.t. ||V||2—1 L=
-



PCA

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
1x = (vIx )| = ||x@|? = (vIx)? (1)

since viv = Hv||2 =1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

v* = srgmin —lex“ vIx @)y e €
= argmin e i |[x(D]|2 — (vIx(9))? (3)
villvip=1 N
1 & -
= argmax Z(VTX(Z))Q (4) <

vi||v|[?=1 i=1



Sketch of PCA

1. Select “best” V € RK*M
2. Project down: 7O = Vx®D i
3. Reconstruct up: 'O = yT 7D

Definition of PCA

1. Select v, that best explains data

2. Select next v; that
. Isorthogonalto vy, ...,v;_4
ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



PCA: The First Principal Component

Use method of Lagrange multipliers



PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance maximization).

1 ¥ argmax V7§\ (1)
vi|[v][2=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

LvV,\)=vIZv-Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to zero gives:

% (VTEV — )\(VTV — 1)) =0 (3)
Sv—Av=0 (4)
Yv=J\v (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue )\ such that:

Av =)\v (6)

68



PCA: The Next Principal Component

Compute the next principal component from the residuals



Principal Component Analysis (PCA)

(XTX )v = Av, so v (the first PC) is the eigenvector of
sample covariance matrix X' X

Sample variance of projection v’ XX v = Aviv =1

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along
that dimension).

Eigenvalues 4, = 4, = 43 = -

* The 1t PC v, is the eigenvector of the sample covariance
matrixX” X associated with the largest eigenvalue

* The2nd PCuw, is the eigenvector of the sample covariance
matrixX” X associated with the second largest eigenvalue

e Andsoon...

Slide from Nina Balcan



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 - Variance (%) = ratio of variance along
- given principal component to total

20 | variance of all principal components

:\o\ _

~~ 15 -

[<B]

(&)

c

8

= 10 -

> -
5 7 _—
Jd B0 H A A A e mme

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose
much

— M dimensions in original data

— calculate M eigenvectors and eigenvalues

— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011 71



SVD for PCA \ X%Q
atrix factorization %

X =USVT, A e RVM 5 <>Q
U: N X N orthogonal matrix U S \/(/5\1
" Columns of U are left singular vectors of X V) rg

= Columns of U are eigenvectors of XXT
V: M X M orthogonal matrix

L. Columns of V are right singular vectors of X

[C’olu}mns of V are eigenvectors of X' X J
S: N X M diagonal matrix

* Diagonal entries are singular values of X, gy,

= Each g/ are the eigenvalues of both XXT and X7 X!!




SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:

A =UAV?

(1)

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we obtain an SVD of our data matrix X, so that:

X = UAVT (1)
Now consider what happens when we rewrite ¥ = %XTX terms
of this SVD.
1
¥ =_-X'X
~ ()
= H(UAVT)T(UAVT) G)
1
= 5 (VAU (UAVT) (4)
1
= —VATAVT
N (5)
1
= NV(A)QVT (6)

Above we used the fact that UTU = I since U is orthogonal by

definition.

We find that (A)? is a diag-
onal matrix whose entries are
A;; = \? the squares of the
eigenvalues of the SVD of X.
Further, both X and XX
share the same eigenvectors
in their SVD.

Thus, we canrun SVD on X
without everinstantiating the
large X7 X to obtain the nec-
essary principal components
more efficiently.

75



PCA Algorithm

Input: X, Xsoqr, K
1. Center data (and scale each axis) based on training data 2 X, Xe4¢
V = eigenvectors(XTX) & SV (X)

2
3. Keep only the top K eigenvectors: Vi
4

Ztest — XtestVK

Optionally, use V% to rotate Z.<; back to original subspace X'st and
uncenter
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