
Warm-up as you walk in
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1. https://www.sporcle.com/games/MrChewypoo/minimalist_disney

2. https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-
slideshow

3. https://www.sporcle.com/games/MrChewypoo/minimalist

https://www.sporcle.com/games/MrChewypoo/minimalist_disney
https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-slideshow
https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-slideshow
https://www.sporcle.com/games/MrChewypoo/minimalist


Plan

Last time

▪ Generative Models

Today

▪ Wrap-up Generative Models
▪ Naïve Bayes
▪ Combining MAP and Generative

▪ Dimensionality Reduction
▪ Autoencoders
▪ Principal Component Analysis
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Wrap-up Generative Models

Previous lecture slides
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10-315
Introduction to ML

Deminsionality Reduction:
PCA, Autoencoders, and 
Feature Learning

Instructor: Pat Virtue



Learning Paradigms
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Outline

Dimensionality Reduction
▪ High-dimensional data

▪ Low dimensional representations

Autoencoders

Feature Learning

Principal Component Analysis (PCA)
▪ Examples: 2D and 3D

▪ PCA algorithm

▪ PCA, eigenvectors, and eigenvalues

▪ PCA objective and optimization
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Warm-up as you log in
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1. https://www.sporcle.com/games/MrChewypoo/minimalist_disney
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Dimensionality Reduction



Dimensionality Reduction



Dimensionality Reduction



Dimensionality Reduction



Dimensionality Reduction



Dimensionality Reduction

For each 𝑥(𝑖) ∈ ℝ𝑀 find representation 𝑧(𝑖) ∈ ℝ𝐾 where 𝐾 ≪ 𝑀
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High Dimension Data

Examples of high dimensional data:

– High resolution images (millions of pixels)
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Dimensionality Reduction
http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

http://timbaumann.info/svd-image-compression-demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Autoencoders



Exercise: Human-defined Feature Space
Step 4: Creation!

1. Select three students: A,B,C

2. Student A draws a new digit 
and hands it to student B

3. Student B thinks about where 
to plot it and comes up with 
a 2-D coordinate, (x, y)

4. Student C looks at the 
coordinate and the plot (but 
not the drawing from A) and 
draws a new digit



Exercise: Human-defined Feature Space



Learning to Organize Data
Neural networks can learn to organization too!

Image →
𝑧1
𝑧2

→ Image

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Net Net𝑧1
𝑧2

Net Net𝑧1
𝑧2

𝑧1

𝑧2

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Projecting MNIST digits

Task Setting:

1. Take 28x28 images of digits and project them down to 2 components

2. Plot the 2 dimensional points



Dimensionality Reduction
http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

http://timbaumann.info/svd-image-compression-demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Dimensionality Reduction with Deep Learning
Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.

"Reducing the dimensionality of data with neural networks.”

Science 313.5786 (2006): 504-507.



Dimensionality Reduction with Deep Learning
Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.

"Reducing the dimensionality of data with neural networks.”

Science 313.5786 (2006): 504-507.

PCA
Neural 
Network



Digit Autoencoder
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Autoencoder network
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28x28 = 784 pixels

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Digit Autoencoder
Demo: Using a learned feature space



Autoencoder Demo

Zhuoyue Lyu, Safinah Ali, and 
Cynthia Breazeal. EAAI 2022.
https://colab.research.google.com/g
ist/ZhuoyueLyu/5046225a9ae3675cf
633c1df5f63be06/digits-
interpolation-notebook-eaai.ipynb

https://colab.research.google.com/gist/ZhuoyueLyu/5046225a9ae3675cf633c1df5f63be06/digits-interpolation-notebook-eaai.ipynb
https://colab.research.google.com/gist/ZhuoyueLyu/5046225a9ae3675cf633c1df5f63be06/digits-interpolation-notebook-eaai.ipynb
https://colab.research.google.com/gist/ZhuoyueLyu/5046225a9ae3675cf633c1df5f63be06/digits-interpolation-notebook-eaai.ipynb
https://colab.research.google.com/gist/ZhuoyueLyu/5046225a9ae3675cf633c1df5f63be06/digits-interpolation-notebook-eaai.ipynb


Autoencoder Demo
Feature space interpolation



Feature Learning
Learning a lower dimensional representation of our data rather than 
doing feature engineering to represent the data

Also called feature embedding

(embedding data in lower dimensional space)



Feature Learning
Listen Learner

https://chrisharrison.net/index.php/Research/ListenLearner

https://chrisharrison.net/index.php/Research/ListenLearner


Exploring Feature Space
https://experiments.withgoogle.com/ai/melody-mixer/view/



Exploring Feature Space
https://experiments.withgoogle.com/ai/beat-blender/view/



Feature Learning

32

Word embedding with word2vec

Training data:

“The king sat on the throne”

“the queen sat on the throne”

“the banana is yellow”

“they sat on the yellow bus”

Skip-gram
score(word, <other words around it>)

• king

• sat

• throne

• queen

• they

• yellow

• banana

• king

• sat

• throne

• queen

• they

• yellow

• banana

• bus • bus



Feature Learning
CLIP: Connecting text and images

https://openai.com/research/clip



Feature Learning
CLIP: Connecting text and images

https://openai.com/research/clip



Principal Component Analysis (PCA)



Dimensionality Reduction with Deep Learning
Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.

"Reducing the dimensionality of data with neural networks.”

Science 313.5786 (2006): 504-507.

PCA
Neural 
Network



Principal Component Analysis (PCA)

In case where data  lies on or near a low d-dimensional linear subspace, 
axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be 
obtained by using classic matrix computation tools (Eigen or Singular Value 
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset

Slide from Barnabas Poczos



1st PCA axis

Slide from Barnabas Poczos



2nd PCA axis

Slide from Barnabas Poczos



PCA Axes

41



Data for PCA

We assume the data is centered

42

Q: What if 
your data is 

not centered?

A: Subtract 
off the 

sample mean

Slide from Matt Gormley



Sample Covariance Matrix

The sample covariance matrix is given by:

43

Since the data matrix is centered, we rewrite as:

Slide from Matt Gormley



PCA Algorithm
Input: 𝑿, 𝑿𝑡𝑒𝑠𝑡, 𝐾

1. Center data (and scale each axis) based on training data → 𝑿,𝑿𝒕𝒆𝒔𝒕

2. 𝑽 = eigenvectors(𝑿𝑇𝑿)

3. Keep only the top 𝐾 eigenvectors: 𝑽𝐾
4. 𝐙test = 𝑿𝑡𝑒𝑠𝑡𝑽𝐾

Optionally, use 𝑽𝐾
𝑇 to rotate 𝐙test back to original subspace 𝐗′test and 

uncenter



PCA Algorithm
Input: 𝑿, 𝑿𝑡𝑒𝑠𝑡, 𝐾

1. Center data (and scale each axis) based on training data → 𝑿,𝑿𝒕𝒆𝒔𝒕

2. 𝑽 = eigenvectors(𝑿𝑇𝑿)

3. Keep only the top 𝐾 eigenvectors: 𝑽𝐾
4. 𝐙test = 𝑿𝑡𝑒𝑠𝑡𝑽𝐾

Optionally, use 𝑽𝐾
𝑇 to rotate 𝐙test back to original subspace 𝐗′test and 

uncenter



PCA Algorithm
Input: 𝑿, 𝑿𝑡𝑒𝑠𝑡, 𝐾

1. Center data (and scale each axis) based on training data → 𝑿,𝑿𝒕𝒆𝒔𝒕

2. 𝑽 = eigenvectors(𝑿𝑇𝑿)

3. Keep only the top 𝐾 eigenvectors: 𝑽𝐾
4. 𝐙test = 𝑿𝑡𝑒𝑠𝑡𝑽𝐾

Optionally, use 𝑽𝐾
𝑇 to rotate 𝐙test back to original subspace 𝐗′test and 

uncenter



PCA Algorithm
Input: 𝑿, 𝑿𝑡𝑒𝑠𝑡, 𝐾

1. Center data (and scale each axis) based on training data → 𝑿,𝑿𝒕𝒆𝒔𝒕

2. 𝑽 = eigenvectors(𝑿𝑇𝑿)

3. Keep only the top 𝐾 eigenvectors: 𝑽𝐾
4. 𝐙test = 𝑿𝑡𝑒𝑠𝑡𝑽𝐾

Optionally, use 𝑽𝐾
𝑇 to rotate 𝐙test back to original subspace 𝐗′test and 

uncenter



PCA EXAMPLES

48



Projecting MNIST digits

49

Task Setting:

1. Take 28x28 images of digits and project them down to K components

2. Report percent of variance explained for K components

3. Then project back up to 28x28 image to visualize how much information was preserved



Projecting MNIST digits

50

Task Setting:
1. Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points



Projecting MNIST digits

51

Task Setting:
1. Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points



52
GLBC – MSK Image Analysis

April 23, 2010

Images Courtesy 
H. Potter, H.S.S.

8 year-old boy with previous fracture and 
4cm leg length discrepancy

Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy



53
GLBC – MSK Image Analysis

April 23, 2010

Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

Images Courtesy 
H. Potter, H.S.S.

8 year-old boy with previous fracture and 
4cm leg length discrepancy
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GLBC – MSK Image Analysis

April 23, 2010

Growth Plate Imaging
Area Measurement
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GLBC – MSK Image Analysis

April 23, 2010

Growth Plate Imaging
Area Measurement

Flatten Growth Plate to Enable 2D Area Measurement



Outline

Dimensionality Reduction
▪ High-dimensional data

▪ Low dimensional representations

Autoencoders

Principal Component Analysis (PCA)
▪ Examples: 2D and 3D

▪ PCA algorithm

▪ PCA, eigenvectors, and eigenvalues

▪ PCA objective and optimization

56



Poll 1
What is the projection of point 𝒙 onto vector 𝒗, assuming that ‖𝒗‖2 = 1?

A. 𝐯𝐱

B.

C. 𝐯T𝐱

D. 𝐯T𝐱 𝐯

E. 𝐯T𝐱 𝐱T𝐯



Rotation of Data (and back)
1. For any orthogonal matrix 𝑽 ∈ ℝ𝑀×𝑀

2. Rotate to new space: 𝒛(𝑖) = 𝑽𝒙(𝑖) ∀𝑖

3. (Un)rotate back: 𝒙′(𝑖) = 𝑽𝑇𝒛(𝑖)



PCA Algorithm
Input: 𝑿, 𝑿𝑡𝑒𝑠𝑡, 𝐾

1. Center data (and scale each axis) based on training data → 𝑿,𝑿𝒕𝒆𝒔𝒕

2. 𝑽 = eigenvectors(𝑿𝑇𝑿)

3. Keep only the top 𝐾 eigenvectors: 𝑽𝐾
4. 𝐙test = 𝑿𝑡𝑒𝑠𝑡𝑽𝐾

Optionally, use 𝑽𝐾
𝑇 to rotate 𝐙test back to original subspace 𝐗′test and 

uncenter



Sketch of PCA
1. Select “best”   𝑽 ∈ ℝ𝐾×𝑀

2. Project down: 𝒛(𝑖) = 𝑽𝒙(𝑖) ∀𝑖

3. Reconstruct up: 𝒙′(𝑖) = 𝑽𝑇𝒛(𝑖)



Sketch of PCA
1. Select “best”   𝑽 ∈ ℝ𝐾×𝑀

2. Project down: 𝒛(𝑖) = 𝑽𝒙(𝑖) ∀𝑖

3. Reconstruct up: 𝒙′(𝑖) = 𝑽𝑇𝒛(𝑖)

Definition of PCA

1. Select 𝑣1 that best explains data

2. Select next 𝑣𝑗 that

i. Is orthogonal to 𝑣1, … , 𝑣𝑗−1
ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



Select “Best” Vector
Reconstruction Error vs Variance of Projection



Poll 2 & Poll 3
Consider the two projections below

Poll 2: Which maximizes the variance?

Poll 3: Which minimizes the reconstruction error?

Option B Option C



Select “Best” Vector
Reconstruction Error vs Variance of Projection

Reconstruction Error

𝐱 𝑖 − 𝐱′ 𝑖
2

2

𝐯∗ = argmin
𝐯

𝑠.𝑡. 𝐯 2=1

෍

𝑖=1

𝑁

𝐱 𝑖 − 𝐯𝑇𝐱 𝑖 𝐯
2

2

Variance of Projection

𝐯∗ = argmax
𝐯

𝑠.𝑡. 𝐯 2=1

෍

𝑖=1

𝑁

𝐯𝑇𝐱 𝑖 2



PCA

65

Equivalence of Maximizing Variance and Minimizing  Reconstruction Error



Sketch of PCA
1. Select “best”   𝑽 ∈ ℝ𝐾×𝑀

2. Project down: 𝒛(𝑖) = 𝑽𝒙(𝑖) ∀𝑖

3. Reconstruct up: 𝒙′(𝑖) = 𝑽𝑇𝒛(𝑖)

Definition of PCA

1. Select 𝑣1 that best explains data

2. Select next 𝑣𝑗 that

i. Is orthogonal to 𝑣1, … , 𝑣𝑗−1
ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



PCA: The First Principal Component
Use method of Lagrange multipliers



PCA: the First Principal Component

68



PCA: The Next Principal Component
Compute the next principal component from the residuals



Principal Component Analysis (PCA)

XTX v = λv , so v (the first PC) is the eigenvector of 

sample covariance matrix 𝑋𝑇𝑋

Sample variance of projection v𝑇𝑋𝑇𝑋 v = 𝜆v𝑇v = 𝜆

Thus, the eigenvalue 𝜆 denotes the amount of variability 
captured along that dimension (aka amount of energy along 

that dimension).

Eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯

• The 1st PC 𝑣1 is the eigenvector of the sample covariance 
matrix𝑋𝑇𝑋 associated with the largest eigenvalue 

• The 2nd PC 𝑣2 is the eigenvector of the sample covariance 
matrix𝑋𝑇𝑋 associated with the second largest eigenvalue 

• And so on …

Slide from Nina Balcan



• For M original dimensions, sample covariance matrix is MxM, and has 
up to M eigenvectors. So M PCs.

• Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 
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How Many PCs?

© Eric Xing @ CMU, 2006-2011 71

• You do lose some information, but if the eigenvalues are small, you don’t lose 
much

– M dimensions in original data 
– calculate M eigenvectors and eigenvalues
– choose only the first D eigenvectors, based on their eigenvalues
– final data set has only D dimensions

Variance (%) = ratio of variance along 
given principal component to total 

variance of all principal components



SVD for PCA
SVD matrix factorization

𝑿 = 𝑼𝑺𝑽𝑇 , 𝐴 ∈ ℝ𝑁×𝑀

𝑼:  𝑁 × N orthogonal matrix

▪ Columns of 𝑼 are left singular vectors of 𝑿

▪ Columns of 𝑼 are eigenvectors of 𝑿𝑿𝑇

𝑽:  𝑀 ×𝑀 orthogonal matrix

▪ Columns of 𝑽 are right singular vectors of 𝑿

▪ Columns of 𝑽 are eigenvectors of 𝑿𝑇𝑿

𝑺:  𝑁 ×𝑀 diagonal matrix

▪ Diagonal entries are singular values of 𝑿, 𝜎𝑘

▪ Each 𝜎𝑘
2 are the eigenvalues of both 𝑿𝑿𝑇 and 𝑿𝑇𝑿!!



SVD for PCA

75



PCA Algorithm
Input: 𝑿, 𝑿𝑡𝑒𝑠𝑡, 𝐾

1. Center data (and scale each axis) based on training data → 𝑿,𝑿𝒕𝒆𝒔𝒕

2. 𝑽 = eigenvectors(𝑿𝑇𝑿)

3. Keep only the top 𝐾 eigenvectors: 𝑽𝐾
4. 𝐙test = 𝑿𝑡𝑒𝑠𝑡𝑽𝐾

Optionally, use 𝑽𝐾
𝑇 to rotate 𝐙test back to original subspace 𝐗′test and 

uncenter
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