Warm-up as you walk in

1. https://www.sporcle.com/games/MrChewypoo/minimalist disney

2. https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-
slideshow

3. https://www.sporcle.com/games/MrChewypoo/minimalist



https://www.sporcle.com/games/MrChewypoo/minimalist_disney
https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-slideshow
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https://www.sporcle.com/games/MrChewypoo/minimalist

Plan

Last time

=  Generative Models

Today

= Wrap-up Generative Models

= Naive Bayes

= Combining MAP and Generative
= Dimensionality Reduction

=  Autoencoders

" Principal Component Analysis



Wrap-up Generative Models

Previous lecture slides



10-315
Introduction to ML

Deminsionality Reduction:
PCA, Autoencoders, and
~eature Learning

Instructor: Pat Virtue




Learning Paradigms

Paradigm Data

Supervised D = {xO 4N x~p*(-)andy = c*(-)
—s Regression y() € R

— Classification y@) e {l,...,K}

— Binary classification y@ € {+1, -1}

< Structured Prediction  y(*) is a vector

Unsupervised D={xON = x~p()

Semi-supervised D ={x®,y®O}" U {xD}¥2

Online D = {(x),yM), (x(2), @) (xB) 4B, .}
Active Learning D = {x®}N  and can query y¥) = ¢*(-) at a cost
Imitation Learning D = {(sW),aD), (5@ o), ..}

Reinforcement Learning D = {(s(1), a1, r(1)) (5(2) o) »2)) 1



Outline

Dimensionality Reduction
* High-dimensional data
" Low dimensional representations

Autoencoders
Feature Learning

Principal Component Analysis (PCA)
" Examples: 2D and 3D

= PCA algorithm

= PCA, eigenvectors, and eigenvalues

= PCA objective and optimization
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Dimensionality Reduction



Dimensionality Reduction
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Dimensionality Reduction

For each x() € RM find representation z(!) € RX where K « M

13



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)

14



Dimensionality Reduction

http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



http://timbaumann.info/svd-image-compression-demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Autoencoders



Exercise: Human-defined Feature Space
Step 4: Creation!

1. Select three students: A,B,C }Wo holes
. g
2. Student A draws a new digit
and hands it to student B @ s
3. Student B thinks about where Curv> 10D
to plot it and comes up with ~ (o€ )]
a 2-D coordinate, (x, y)

4. Student Clooks at the
coordinate and the plot (but
not the drawing from A) and
draws a new digit



Exercise: Human-defined Feature Space




Learning to Organize Data

Neural networks can learn to organization t

NEE
Image [ZZI Image

/

Z7

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Projecting MINIST digits

Task Setting:
1. Take 28x28 images of digits and project them down to 2 components

2. Plot the 2 dimensional points
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Dimensionality Reduction

http://timbaumann.info/svd-image-compression-demo/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
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Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.
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Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.

Neural
Network
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Digit Autoencoder

https://cs.stanford. edu/people/karpathy/convnetjs/demo/autoencoder html|
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Digit Autoencoder

Demo: Using a learned feature space
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Autoencoder Demo
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Zhuoyue Lyu, Safinah Ali, and
Cynthia Breazeal. EAAI 2022.
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Autoencoder Demo
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Feature Learning

Learning a lower dimensional representation of our data rather than
doing feature engineering to represent the data

Also called feature embedding
(embedding data in lower dimensional space)



Feature Learning

Listen Learner

https://chrisharrison.net/index.php/Research/ListenLearner



https://chrisharrison.net/index.php/Research/ListenLearner

Exploring Feature Space

https://experiments.withgoogle.com/ai/melody-mixer/view/

Twinkle H ° Sparse H




Exploring Feature Space

https://experiments.withgoogle.com/ai/beat-blender/view/
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Feature Learning

Word embedding with word2vec _
Skip-gram
Training data: score (word,

“The king sat on the throne” \ king
“the queen sat on the throne” o’
A==

“the banana is yellow” 74een

“they sat on the yellow bus”
e king

e sat
e throne
® queen

e banana

e yellow )
e they
e bus 32



Feature Learning

CLIP: Connecting text and images

pep p-er the Text
aussie pup ' Encoder

—
|
Image .
Encoder
https://openai.com/research/clip g



Feature Learning

CLIP: Connecting text and images

L a photo of . Text
a {object}. Encoder A A ) A

3. Use for zero-shot prediction

Image
Encoder

_——

I? I? 'TT I'.' 'T.? IT 'T3 I? 'TN

|

https://openai.com/research/clip




Principal Component Analysis (PCA)



Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.
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Principal Component Analysis (PCA)
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In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

|dentifying the axes is known as Principal Components Analysis, and can be

obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset

Slide from Barnabas Poczos



1st PCA axis

Slide from Barnabas Poczos



2nd PCA axis

Slide from Barnabas Poczos



PCA Axes



Data for PCA

_(X(l))T_
| (X(z))T

° D= {X(Z)}fil X =

- (<)

We assume the data is centered

N
L (i
o K= N Z x'/ =0
1=1
Q: What if A: Subtract
your data is off the

not centered? sample mean

Slide from Matt Gormley



Sample Covariance Matrix

The sample covariance matrix is given by:
N
1 i i
Sie =~ 2@ — ) (@ — )
i=1

Since the data matrix is centered, we rewrite as:
e ——
| (X( ))

—_— — T X(2)T
)3 NXX < (.)

()T



PCA Algorithm

Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data 2 X, X;..;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vg

4

Ztest — XtestVK

Optionally, use V# to rotate Z,,; back to original subspace X';.¢; and
uncenter



PCA Algorithm

Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data 2 X, X;..;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vg

4

Ztest — XtestVK

Optionally, use V& to rotate Z;,s; back to original subspace X';.¢; and
uncenter




PCA Algorithm
Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data 2 X, X;..;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vg

4. Liest = XtestVi

Optionally, use V& to rotate Z;,s; back to original subspace X';.¢; and
uncenter
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PCA Algorithm
Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data 2 X, X;..;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vg

4. Liest = XtestVi

Optionally, use V& to rotate Z;,s; back to original subspace X';.¢; and
uncenter
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PCA EXAMPLES



Projecting MNIST digits

Task Setting:
1. Take 28x28 images of digits and project them down to K components
2. Report percent of variance explained for K components

3. Then project back up to 28x28 image to visualize how much information was preserved

Original Image

95% of Explained Variance
0

90% of Explained Variance
0

80% of Explained Variance
0

50% of Explained Variance
0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components

43 components 11 components

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components

43 components 11 components

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components

43 components 11 components



Projecting MNIST digits

Task Setting:
1.  Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3. 9
E
-7
6
-5
4
-
- -3
2
1
-34 : ; -. ; ; : 0

50



Projecting MNIST digits

Task Setting:
1.  Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3.0

34
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- 1.0

0.5
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Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture and
4cm leg length discrepancy

Images Courtesy

‘ H. Potter, H.S.S.
\ ) imagination at work 52
- GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture and
4cm leg length discrepancy

Images Courtesy

H. Potter, H.S.S.
\ ) imagination at work N
- GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

@ imagination at work <
- GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

Flatten Growth Plate to Enable 2D Area Measurement

@ imagination at work 55
- GLBC — MSK Image Analysis

April 23,2010



Outline

Dimensionality Reduction
* High-dimensional data
" Low dimensional representations

Autoencoders
Feature Learning

Principal Component Analysis (PCA)
" Examples: 2D and 3D

= PCA algorithm

= PCA, eigenvectors, and eigenvalues

= PCA objective and optimization

56



Poll 1

What is the projection of point X onto vector v, assuming that ||v]||, = 1?

A. VvX
T

B. v X
C. (vTx)v
D T T

V XXV



Rotation of Data (and back)

1. For any orthogonal matrix V € RM*M

2. Rotate to new space: 7O — yx@D v
3. (Un)rotate back: x' @ = yT,®



PCA Algorithm
Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data 2 X, X;..;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vg

4. Liest = XtestVi

Optionally, use V& to rotate Z;,s; back to original subspace X';.¢; and
uncenter

® - s -2 _@o—eo—o o




Sketch of PCA

1. Select “best” V € RK*M
2. Project down: zO =xO) yj

3. Reconstruct up: x' ) = pTz®



Sketch of PCA

1. Select “best” V € RK*M
2. Project down: zO =px®) v

3. Reconstruct up: x' ) = pTz®

Definition of PCA
= :
1. Select v; that best explains data

2. Select next v; that
i. Isorthogonaltovy,...,v;_4
ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



Select “Best” Vector

Reconstruction Error vs Variance of Projection



Poll 2 & Poll 3

Consider the two projections below
Poll 2: Which maximizes the variance?
Poll 3: Which minimizes the reconstruction error?

Option A Option B




Select “Best” Vector

Reconstruction Error vs Variance of Projection

O
o o ¢
/ /
¢ O
Reconstruction Error Variance of PrOJectlon

. 112
||x(l) —x (l)” v' = argmax 2(‘, X(z))
St||V||2_1 L=

v' = argmin z”x@—(v xO)v]|?

s.t. ||V||2—1 L=



PCA

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
1x = (vIx )| = ||x@|? = (vIx)? (1)

since viv = Hv||2 =1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

v = argmin G Z @ — (v"xO)v] e)
= argmin e i |[x(D]|2 — (vIx(9))? (3)
villvip=1 N
_ L T2
— jl|‘|%1|1|12a:}(1 ~ ;(v x\*) (4)

65



Sketch of PCA

1. Select “best” V € RK*M
2. Project down: zO =px®) v

3. Reconstruct up: x' ) = pTz®

Definition of PCA
1. Select v; that best explains data

2. Select next v; that
i. Isorthogonaltovy,...,v;_4
ii. Best explains remaining data

3. Repeat 2 until desired amount of data is explained



PCA: The First Principal Component

Use method of Lagrange multipliers



PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance maximization).

vi = argmax v %v (1)
vi|[v][2=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

LvV,\)=vIZv-Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to zero gives:

% (VTEV —Avlv - 1)) =0 (3)
Yv—Av=0 (4)
Yv=J\v (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue )\ such that:

Av =)\v (6)



PCA: The Next Principal Component

Compute the next principal component from the residuals



Principal Component Analysis (PCA)

(XTX )v = Av, so v (the first PC) is the eigenvector of
sample covariance matrix X' X

Sample variance of projection v’ XX v = Aviv =1

Thus, the eigenvalue 1 denotes the amount of variability
captured along that dimension (aka amount of energy along
that dimension).

Eigenvalues 4, = 4, = 43 = -

* The 1t PC v, is the eigenvector of the sample covariance
matrixX” X associated with the largest eigenvalue

* The2nd PCuw, is the eigenvector of the sample covariance
matrixX” X associated with the second largest eigenvalue

e Andsoon...

Slide from Nina Balcan



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 - Variance (%) = ratio of variance along
- given principal component to total
20 - variance of all principal components
:\o\ _
~~ 15 -
[<B] —
(&)
c
8
= 10 -
> —
5 -
Jd 0 H A A A e mmme

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose
much

— M dimensions in original data

— calculate M eigenvectors and eigenvalues

— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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SVD for PCA

SVD matrix factorization

X =USVT, A e RN*M

U: N X N orthogonal matrix

" Columns of U are left singular vectors of X
= Columns of U are eigenvectors of XXT

V: M X M orthogonal matrix

= Columns of V are right singular vectors of X
= Columns of V are eigenvectors of X7 X

S: N X M diagonal matrix

* Diagonal entries are singular values of X, gy,
= Each g/ are the eigenvalues of both XX and X7 X!!



SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:

A =UAV?

(1)

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we obtain an SVD of our data matrix X, so that:

X = UAVT (1)
Now consider what happens when we rewrite ¥ = %XTX terms
of this SVD.
1
¥ =_-X'X
~ ()
= H(UAVT)T(UAVT) G)
1
= 5 (VAU (UAVT) (4)
1
= —VATAVT
N (5)
1
= NV(A)QVT (6)

Above we used the fact that UTU = I since U is orthogonal by

definition.

We find that (A)? is a diag-
onal matrix whose entries are
A;; = \? the squares of the
eigenvalues of the SVD of X.
Further, both X and XX
share the same eigenvectors
in their SVD.

Thus, we canrun SVD on X
without everinstantiating the
large X7 X to obtain the nec-
essary principal components
more efficiently.

75



PCA Algorithm

Input: X, X¢eor, K

1. Center data (and scale each axis) based on training data 2 X, X;..;
2. V =eigenvectors(X' X)

3. Keep only the top K eigenvectors: Vg

4

Ztest — XtestVK

Optionally, use V# to rotate Z,,; back to original subspace X';.¢; and
uncenter
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