Plan

Today

- Wrap-up regularization (for now)
- MLE
- Probability / likelihood
- Maximum likelihood estimation
- Probabilistic formulation of linear and logistic regression

Wrap up Neural Nets
Switch to regression slides

10-315
 Introduction to ML

MLE and
Probabilistic Formulation of Machine Learning

Instructor: Pat Virtue

Poll 1: Exercise
Implement a function in Python for the pdf of a Gaussian distribution.
Python humpy or math packages are fine, no scipy, etc.

$$
\begin{aligned}
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \quad & \rho d f \\
& f(x) \\
\text { def } \operatorname{ganssian}(x, m u, \operatorname{sigmasq}):= & \rho(x) \\
= & p(x ; \mu, \sigma) \\
= & p(x \mid \mu, \sigma)
\end{aligned}
$$

Exercises
Calculate the probability of these event sequences happening
) Coin
a Foin: H, H, T, H $\quad \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{16}$

$$
\begin{aligned}
& 2 \text { 4-sided die with sides: A, B, C, D } \quad \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}=\frac{1}{1024} \\
& \text { a Fair: A, B, D, D, A }
\end{aligned}
$$

b Weighted, $\left[\phi_{A}, \phi_{B}, \phi_{C}, \phi_{D}\right]=[1 / 10,2 / 10,3 / 10,4 / 10]$
A, B, D, D, A

$$
\frac{1}{10} \cdot \frac{2}{10} \frac{4}{10} \frac{4}{10} \frac{1}{10}=\frac{32}{100000}
$$

Probability

Probability Vocab

Outcomes

Sample space
Events
Probability
Random variable
Discrete random variable
Continuous random variable
Probability mass function
Probability density function
Parameters

Example

$$
\begin{aligned}
& S \in\{0,1\} \\
& S: \Omega(\underset{\text { nach or no spinach }}{ }\{0,1\}
\end{aligned}
$$

Random variable for spinach or no spinach

[^0]

Distribution

Probabilities or Densities

Example

Random variable for spinach or no spinach

Distribution

$$
\mathbb{R} \rightarrow[0,1] \text { pm }
$$

$$
S: \Omega \rightarrow\{0,1\}
$$

$\Omega \quad \underset{\text { Random variable }}{S: \Omega} \rightarrow\{0,1\}$

Sample space
Values

$$
\frac{1}{2}
$$

Probabilities or Densities

Example

Random variable for topping type with three categories: none, non-meat, meat

Example

Random variable for topping type with three categories: none, non-meat, meat

Distribution

$9 / 20$ $6 / 20$
mf

Probabilities or Densities

Example

Random variable for number of heads after two flips of a fair coin

> Random variable

Distribution

Example

Random variable for number of heads after two flips of a biased coin that lands heads 75\%

Random variable

Distribution

$$
\begin{aligned}
& \frac{1}{4} \cdot \frac{1}{4} \\
& \frac{1}{4} \cdot \frac{3}{4}+\frac{3}{4} \frac{1}{4} \\
& \frac{3}{4} \frac{3}{4}
\end{aligned}
$$

Probabilities or Densities

Example

Random variable for cat in picture or not

Distribution

Bernoulli: (q)

Values

Probabilities or

Example

Example
Random variable for height of student

Probability Vocab
Outcomes
Sample space
Events

$$
\begin{aligned}
& {[\operatorname{Pr}[\text { event }]} \\
& P(\text { event }) \\
& \rightarrow P(\text { value }) \\
& \rightarrow P(y=1)
\end{aligned}
$$

Probability

Discrete random variable

Probability mass function $P(x)=P(X=x)$
Probability density function $f(x) \quad p(\alpha)$

$$
F(x)=P(x \leq x)
$$

Parameters

Example Discrete Distributions

$$
\begin{aligned}
& \begin{array}{l}
\text { Bernoulli }
\end{array} \quad P(Y=1)=\phi \\
& Y \in\{0,1\} \\
& P(Y=0)=1-\phi \\
& Z=\left[\begin{array}{c}
P\left(Y_{1}=1\right)=\phi_{1} \\
\text { Categorical } \\
Y_{1} \\
Y_{k}
\end{array}\right] \quad Y_{k} \in\{0,1\}\left[\begin{array}{c}
P\left(Y_{2}=1\right)=\phi_{2} \\
\vdots \\
\vdots \\
P\left(Y_{K}=1\right)=\phi_{k}
\end{array}\right]=\sum_{k=1}^{K} \phi_{k} \\
& {\left[\begin{array}{l}
\text { Binomial } \\
\text { Multinomial } \\
\text { Uniform }
\end{array}\right.}
\end{aligned}
$$

Bern Binom.

Example Continuous Distributions
Gaussian

$$
\begin{aligned}
& \text { nntinuous Distributions } \\
& p\left(y ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(y-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Beta
Laplace

Probability Vocab
Marginal $p(x)=\sum_{y} p(x, y) \quad$ Marginalizing
Joint $p(x, y) \quad p(x, y, z, \omega)$
Conditional $p(x \mid y) p(x, y \mid \tau, y)$

Notation

Dataset

Parameters, generically θ
$p(\mathcal{D} \mid \theta), p(\mathcal{D} ; \theta)$
Random variables
Capital
Values
lower case

Random variable: function that maps events to values
Y is rand variable that maps the event of a coin toss being heads to value one and the event of a coin toss being tails to zero

$$
\begin{aligned}
& P(Y=1 \mid \phi)=3 / 4, \text { where } \phi=3 / 4 \\
& P(Y=1)=3 / 4
\end{aligned}
$$

Sometimes even

$$
P(Y=\text { heads })=3 / 4
$$

Probability Toolbox

- Algebra
- Three axioms of probability
- Theorem of total probability
- Definition of conditional probability
- Product rule
- Bayes' theorem
- Chain rule
- Independence
- Conditional independence

Probability Tools Summary

Adding to the toolbox

1. Definition of conditional probability

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

2. Chain Rule Product rule

$$
P(A, \underline{B})=P(A \mid B) P(B)
$$

3. Bayes' theorem

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

4. Chain Rule...

$$
P\left(A_{1}, \ldots A_{N}\right)=P\left(A_{1}\right) \sum_{i=2}^{N} P\left(A_{i} \mid A_{i-1}\right)
$$

Likelihood

Likelihood

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, $\boldsymbol{\theta}$.

Likelihood

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, $\boldsymbol{\theta}$.

Grades

Gaussian PDF: $p\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}$

Likelihood

Trick coin: comes up heads only $1 / 3$ of the time

$$
\phi=\frac{1}{3}
$$

1 flip: H
2 flips: H,H
3 flips: H,H,T
probability: $\frac{1}{3}$
probability: $\frac{1}{3} \cdot \frac{1}{3}$
probability: $\frac{1}{3} \cdot \frac{1}{3} \cdot\left(1-\frac{1}{3}\right)$

But why can we just multiply these?

Likelihood and i.i.d
Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, $\boldsymbol{\theta}$.
i.i.d.: Independent and identically distributed

$$
\begin{aligned}
& p(D \mid \theta) \\
& \text { indent } / P\left(Y=y^{(1)}, Y_{2}=y^{(2)}, Y_{3}=y^{(3)} \mid \phi_{1}, \phi_{2}, \phi_{3}\right) \\
& \rightarrow p\left(Y=y^{(1)} Y=y^{(2)} Y=y^{(3)} \mid \phi\right) \\
& \text { indef. } S P\left(Y=y^{(1)} \mid \phi\right) p\left(Y=y^{(2)} \mid \phi\right) p\left(Y=y^{(3)} \mid \phi\right) \\
& \prod_{i=1}^{n} p\left(Y=y^{(i)} \mid \phi\right)
\end{aligned}
$$

Bernoulli Likelihood

Bernoulli distribution:

$$
Y \sim \operatorname{Bern}(\phi) \quad p(y \mid \phi)= \begin{cases}\phi, & y=1 \\ 1-\phi, & y=0\end{cases}
$$

What is the likelihood for three i.i.d. samples, given parameter ϕ :

$$
\begin{aligned}
& \mathcal{D}=\left\{y^{(1)}=1, y^{(2)}=1, y^{(3)}=0\right\} \quad \mathbb{Z}\left(y^{(i)}=1\right) \\
& \prod_{i=1}^{N} p\left(Y=y^{(i)} \mid \phi\right) \\
& =\phi \cdot \phi \cdot(1-\phi) \\
& \phi^{\prime}(1-\phi)^{0} \cdot \phi^{\prime}(1-\phi)^{0} \phi^{0}(1-\phi)^{\prime}
\end{aligned}
$$

MLE
Maximum likelihood estimation

From Probability to Statistics

Poll 2

Assume that exam scores are drawn independently from the same Gaussian (Normal) distribution.
Given three exam scores $75,80,90$, which pair of parameters is a better fit (a higher likelihood)?
$\theta_{\text {A }}$ A) Mean 80, standard deviation 3
θ_{B} B) Mean 85, standard deviation 7$\}$

Use a calculator/computer.

Gaussian $\operatorname{PDF} p\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}$

$$
\underset{p}{\arg \operatorname{gar}}\left(\bar{D} / \theta_{A}\right) \rightarrow \hat{\theta}_{\text {ALE }}
$$

Likelihood
$Y=1$ Heads
Trick coin

$$
D=[1,0,1,1]
$$

$$
\begin{aligned}
& \text { AlT } 1 / 3 H \text { Fair } 2 / 3 H \text { All } \\
& \phi^{(A)}=0 \quad \phi^{(3)}=1 / 3
\end{aligned} \begin{aligned}
& \phi^{(i)}=1 / 2
\end{aligned} \phi^{(())}=2 / 3 \quad \phi^{(E)}=1
$$

$A B C D E$

Likelihood $Y=1$ Heads

Trick coin

$$
D=[1,0,1,1]
$$

$$
\begin{array}{ll}
\text { All } T & 1 / 3 H \\
\phi^{(N)}=0 & \phi^{(B)}=1 / 3
\end{array} \begin{array}{lll}
\text { Fair } & \phi^{(1)}=1 / 3 H & \phi^{(())}=2 / 3
\end{array} \phi^{(E)}=1
$$

Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a Bernoulli random variable:

$$
p(y \mid \phi)= \begin{cases}Y \sim \operatorname{Bern}(\phi) \\ \phi, & y=1 \text { (Heads) } \\ 1-\phi, & y=0 \text { (Tails) }\end{cases}
$$

Given the ordered sequence of coin flip outcomes:

$$
[1,0,1,1]
$$

What is the estimate of parameter $\hat{\phi}$?

Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a Bernoulli random variable:

$$
p(y \mid \phi)= \begin{cases}Y \sim \operatorname{Bern}(\phi) \\ \phi, & y=1 \text { (Heads) } \\ 1-\phi, & y=0 \text { (Tails) }\end{cases}
$$

Given the ordered sequence of coin flip outcomes:

$$
[1,0,1,1]
$$

Likelihood and Maximum Likelihood Estimation

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, $\boldsymbol{\theta}$.

$$
p(D \mid \theta)
$$

Likelihood function: The value of likelihood as we change theta (same as likelihood, but conceptually we are considering many different values of the parameters)

$$
\mathcal{L}(\underset{g}{\theta} ; D)=p(D \mid \theta)
$$

Maximum Likelihood Estimation (MLE): Find the parameter value that maximizes the likelihood.

$$
\arg \max
$$

MLE as Data Increases

Given the ordered sequence of coin flip outcomes:

$$
\mathrm{p}(\mathcal{D} \mid \phi)=\prod_{i}^{N} p\left(y^{(i)} \mid \phi\right)=\phi^{N_{y=1}}(1-\phi)^{N_{y=0}}
$$

What happens as we flip more coins?

MLE for Gaussian

Gaussian distribution:
$Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
$p\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}$
What is the \log likelihood for three i.i.d. samples, given parameters μ, σ^{2} ?
$\mathcal{D}=\left\{y^{(1)}=65, y^{(2)}=95, y^{(3)}=85\right\}$
$L\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}}$

$$
\hat{\theta}_{M L E}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i}^{N} p\left(y^{(i)} \mid \boldsymbol{\theta}\right)
$$

MLE for Gaussian

Assume that exam scores are drawn independently from the same Gaussian (Normal) distribution.
Given three exam scores $75,80,90$, which pair of parameters is the best fit (the highest likelihood)?

$$
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

MLE

Suppose we have data $\mathcal{D}=\left\{x^{(i)}\right\}_{i=1}^{N}$

Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data.

$$
\boldsymbol{\theta}^{\mathrm{MLE}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{N} p\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)
$$

Maximum Likelihood Estimate (MLE)

Likelihood and Log Likelihood

$$
\log x z=\log x+\log z
$$

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, $\boldsymbol{\theta}$.

Likelihood function: The value of likelihood as we change theta (same as likelihood, but conceptually we are considering many different values of the parameters)

Likelihood and Log Likelihood

$$
\log x z=\log x+\log z
$$

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, $\boldsymbol{\theta}$.

$$
p(D \mid \theta)=\pi p\left(y^{(i)} \mid \theta\right)
$$

Likelihood function: The value of likelihood as we change theta (same as likelihood, but conceptually we are considering many different values of the parameters)

$$
\begin{aligned}
\text { likelihood } \mathcal{L}^{-}(\theta ; D) & =p(D \mid \theta)=\pi p\left(y^{(i)} \mid \theta\right) \\
\log \text { likelihood } \ell(\theta ; D) & =\log p(D \mid \theta)=\sum \log p\left(y^{(i)} \mid \theta\right)
\end{aligned}
$$

Maximum Likelihood Estimation

MLE of parameter θ for i.i.d. dataset $\mathcal{D}=\left\{y^{(i)}\right\}_{i=1}^{N}$
$\hat{\theta}_{M L E}=\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta)$

Recipe for Estimation

MLE

1. Formulate the likelihood, $p(\mathcal{D} \mid \theta)$
2. Set objective $J(\theta)$ equal to negative log of likelihood

$$
\mathrm{J}(\theta)=-\log p(\mathcal{D} \mid \theta)
$$

3. Compute derivative of objective, $\partial J / \partial \theta$
4. Find $\hat{\theta}$, either
a. Set derivate equal to zero and solve for θ
b. Use (stochastic) gradient descent to step towards better θ

7

MLE for Gaussian

Gaussian distribution:
$Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
$p\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}$
What is the log likelihood for three i.i.d. samples, given parameters μ, σ^{2} ?

$$
\begin{array}{ll}
\mathcal{D}=\left\{y^{(1)}=65, y^{(2)}=95, y^{(3)}=85\right\} & \\
L\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}} & \hat{\theta}_{M L E}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i}^{N} p\left(y^{(i)} \mid \boldsymbol{\theta}\right) \\
\ell\left(\mu, \sigma^{2}\right)=\sum_{i=1}^{N}-\log \sqrt{2 \pi \sigma^{2}}-\frac{\left(y^{(i)}-\sqrt{\underline{u}}\right)^{2}}{2 \sigma^{2}} & \hat{\theta}_{M L E}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i}^{N} \log p\left(y^{(i)} \mid \boldsymbol{\theta}\right)
\end{array}
$$

Probabilistic Formulation for ML

 MLE for Linear and Logistic RegressionUsing Statistics for Machine Learning

$$
\begin{aligned}
& \text { likelihood } \rightarrow p(D \mid \theta) \\
& \pi p\left(y^{(i)} \mid \theta\right) \\
& \begin{aligned}
\text { conditional likelihood } & \pi p\left(y^{(i)} \mid x, \theta\right) \\
& p(D \mid \theta)
\end{aligned}
\end{aligned}
$$

Recipe for Estimation

MLE

1. Formulate the likelihood, $p(\mathcal{D} \mid \theta)$
2. Set objective $J(\theta)$ equal to negative log of likelihood

$$
\mathrm{J}(\theta)=-\log p(\mathcal{D} \mid \theta)
$$

3. Compute derivative of objective, $\partial J / \partial \theta$
4. Find $\hat{\theta}$, either
a. Set derivate equal to zero and solve for θ
b. Use (stochastic) gradient descent to step towards better θ

M(C)LE for Logistic Regression

Learn to predict if a patient has cancer $(Y=1)$ or not $(Y=0)$ given the input of just one test results, X_{A} and X_{B}

M(C)LE for Logistic Regression

Learn to predict if a patient has cancer $(Y=1)$ or not $(Y=0)$ given the input of just one test results, X_{A} and X_{N}

$$
\hat{\theta}_{M L E}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i}^{N} p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
$$

M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k, Y_{k}, given input $X, P\left(Y_{k}=1 \mid X, \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right)$

$$
\widehat{\Theta}_{M L E}=\underset{\Theta}{\operatorname{argmax}} \prod_{i}^{N} \prod_{k}^{K} \frac{e^{\boldsymbol{\theta}_{k}^{T} x^{(i)}}}{\sum_{l=1}^{K} e^{\boldsymbol{\theta}_{l}^{T} x^{(i)}}}
$$

M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k, Y_{k}, given input $X, P\left(Y_{k}=1 \mid X, \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right)$

$$
\begin{aligned}
& l(\text { (AnD })=\sum_{i}^{k} \log _{k} \prod_{l}^{K} e^{\theta_{i}^{T} x^{(i)}} \quad F\left(y_{k}^{(i)}=1\right) \\
& =\sum_{i} \sum_{k} I\left(y_{k}^{(i)}=1\right) \log \square
\end{aligned}
$$

M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

M(C)LE for Linear Regression

$$
\frac{1}{\sqrt{2 \pi v^{2}}} e^{-\left(\frac{\left.y-\theta^{-} x\right)^{2}}{2 a^{2}}\right.}
$$

Probabilistic interpretation of linear regression

$$
\begin{aligned}
& \prod_{i} p\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}\right) \quad \partial^{+} x \\
& T y=\underline{w^{\top} x+b+\epsilon} \\
& \rightarrow \in \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& y \sim N\left(\theta^{+} \times a^{2}\right) \\
& \longrightarrow p\left(y^{(i)} \mid x^{(i)}, w, b\right)=
\end{aligned}
$$

M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

$$
L(\theta ; \mathcal{D})=\prod_{i}^{N} p\left(y^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}\right)
$$

[^0]: Icons: CC, https://openclipart.org/detail/296791/pizza-slice

