
Plan

Today
▪ Wrap-up regularization (for now)
▪ MLE

▪ Probability / likelihood
▪ Maximum likelihood estimation
▪ Probabilistic formulation of linear and logistic regression
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Wrap up Neural Nets

Switch to regression slides
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10-315
Introduction to ML

MLE and
Probabilistic Formulation 
of Machine Learning

Instructor: Pat Virtue



Poll 1: Exercise
Implement a function in Python for the pdf of a Gaussian distribution.

Python numpy or math packages are fine, no scipy, etc.

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒
− 𝑥−𝜇 2

2𝜎2



Exercises
Calculate the probability of these event sequences happening

Coin
Fair: H, H, T, H

Biased, 𝜙 = 3/4 heads: H, H, T, H

4-sided die with sides: A, B, C, D
Fair: A, B, D, D, A

Weighted, [𝜙𝐴, 𝜙𝐵 , 𝜙𝐶 , 𝜙𝐷] = [1/10, 2/10, 3/10, 4/10]
A, B, D, D, A



Probability



Probability Vocab
Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable

Continuous random variable

Probability mass function

Probability density function

Parameters



Example
Random variable for spinach or no spinach

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for spinach or no spinach

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for topping type with

three categories: none, non-meat, meat

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for topping type with

three categories: none, non-meat, meat

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for number of heads after 
two flips of a fair coin

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for number of heads after 
two flips of a biased coin that lands heads 75%

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for cat in picture or not

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for animal species in picture assuming 
one animal picture and available species: dog, cat, pig

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Example
Random variable for height of student

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Random variable Distribution

Sample space Values Probabilities or 
Densities



Probability Vocab
Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable

Continuous random variable

Probability mass function

Probability density function

Parameters



Example Discrete Distributions
Bernoulli

Categorical

Binomial

Multinomial

Uniform



Example Continuous Distributions
Gaussian

Beta

Laplace



Probability Vocab
Marginal

Joint

Conditional



Notation
Dataset
Parameters, generically 𝜃

𝑝(𝒟 | 𝜃), 𝑝(𝒟 ; 𝜃)
Random variables 

Capital
Values

lower case
Random variable: function that maps events to values

Y is rand variable that maps the event of a coin toss being heads to value one 
and the event of a coin toss being tails to zero

𝑃(𝑌 = 1 | 𝜙) = 3/4, where 𝜙 = 3/4
𝑃(𝑌 = 1) = 3/4
Sometimes even
𝑃(𝑌 = ℎ𝑒𝑎𝑑𝑠) = 3/4



Probability Toolbox
▪ Algebra

▪ Three axioms of probability

▪ Theorem of total probability

▪ Definition of conditional 
probability

▪ Product rule

▪ Bayes’ theorem

▪ Chain rule

▪ Independence

▪ Conditional independence



Probability Tools Summary

Adding to the toolbox

1. Definition of conditional probability

2. Chain Rule

3. Bayes’ theorem

4. Chain Rule…

𝑃 𝐴 𝐵 =
𝑃 𝐴, 𝐵

𝑃(𝐵)

𝑃(𝐴, 𝐵) = 𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃 𝐵 𝐴 =
𝑃 𝐴 | 𝐵 𝑃(𝐵)

𝑃(𝐴)

𝑃(𝐴1, …𝐴𝑁) = 𝑃(𝐴1)෍

𝑖=2

𝑁

𝑃(𝐴𝑖 ∣ 𝐴𝑖−1)



Likelihood



Likelihood
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.



Likelihood
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

Grades

Gaussian PDF: 𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2



Likelihood
Trick coin: comes up heads only 1/3 of the time

1 flip: H probability:  
1

3

2 flips:  H,H probability:  
1

3
⋅
1

3

3 flips:  H,H,T probability:  
1

3
⋅
1

3
⋅ 1 −

1

3

But why can we just multiply these?



Likelihood and i.i.d
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

i.i.d.: Independent and identically distributed



Bernoulli Likelihood
Bernoulli distribution:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙 𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1
1 − 𝜙, 𝑦 = 0

What is the likelihood for three i.i.d. samples, given parameter 𝜙:

𝒟 = {𝑦 1 = 1, 𝑦 2 = 1, 𝑦 3 = 0}

ς𝑖=1
𝑁 𝑝(𝑌 = 𝑦 𝑖 ∣ 𝜙)

= 𝜙 ⋅ 𝜙 ⋅ 1 − 𝜙



MLE
Maximum likelihood estimation



From Probability to Statistics



Poll 2
Assume that exam scores are drawn independently from the same 
Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is a 
better fit (a higher likelihood)?

A) Mean 80, standard deviation 3

B) Mean 85, standard deviation 7

Use a calculator/computer.

Gaussian PDF: 𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2



Likelihood
Trick coin



Estimating Parameters with Likelihood
We model the outcome of a single mysterious weighted-coin flip as a 
Bernoulli random variable:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1 (𝐻𝑒𝑎𝑑𝑠)

1 − 𝜙, 𝑦 = 0 𝑇𝑎𝑖𝑙𝑠

Given the ordered sequence of coin flip outcomes:
1, 0, 1, 1

What is the estimate of parameter ෠𝜙?



Estimating Parameters with Likelihood
We model the outcome of a single mysterious weighted-coin flip as a 
Bernoulli random variable:

𝑌 ∼ 𝐵𝑒𝑟𝑛 𝜙

𝑝 𝑦 ∣ 𝜙 = ቊ
𝜙, 𝑦 = 1 (𝐻𝑒𝑎𝑑𝑠)

1 − 𝜙, 𝑦 = 0 𝑇𝑎𝑖𝑙𝑠

Given the ordered sequence of coin flip outcomes:
1, 0, 1, 1

What is the estimate of parameter ෠𝜙?

𝑝 𝐷 𝜙 = 𝜙 ⋅ 𝜙 ⋅ 1 − 𝜙 ⋅ 𝜙

= 𝜙3 1 − 𝜙 1



Likelihood and Maximum Likelihood Estimation
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many 
different values of the parameters)

Maximum Likelihood Estimation (MLE): Find the parameter value that 
maximizes the likelihood.



MLE as Data Increases
Given the ordered sequence of coin flip outcomes:

1, 0, 1, 1

p(𝒟 ∣ 𝜙) =ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜙 = 𝜙𝑁𝑦=1 1 − 𝜙 𝑁𝑦=0

What happens as we flip more coins?



MLE for Gaussian
Gaussian distribution:

𝑌 ∼ 𝒩 𝜇, 𝜎2

𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2

What is the log likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

𝒟 = {𝑦 1 = 65, 𝑦 2 = 95, 𝑦 3 = 85}

𝐿 𝜇, 𝜎2 = ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2 ෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽



MLE for Gaussian
Assume that exam scores are drawn independently from the same 
Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is the 
best fit (the highest likelihood)?

𝑝 𝒟 𝜇, 𝜎2 =ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2



MLE

40

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

Slide credit: CMU MLD Matt Gormley



Likelihood and Log Likelihood
Likelihood: The probability (or density) of random variable 𝑌 taking on 
value 𝑦 given the distribution parameters, 𝜽.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many 
different values of the parameters)



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood

J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



MLE for Gaussian
Gaussian distribution:

𝑌 ∼ 𝒩 𝜇, 𝜎2

𝑝 𝑦 ∣ 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2

What is the log likelihood for three i.i.d. samples, given parameters 𝜇, 𝜎2?

𝒟 = {𝑦 1 = 65, 𝑦 2 = 95, 𝑦 3 = 85}

𝐿 𝜇, 𝜎2 =

ℓ 𝜇, 𝜎2 =

ෑ

𝑖=1

𝑁
1

2𝜋𝜎2
𝑒
−

𝑦(𝑖)−𝜇
2

2𝜎2

෍

𝑖=1

𝑁

−log 2𝜋𝜎2 −
𝑦(𝑖) − 𝜇

2

2𝜎2

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝜽

෠𝜃𝑀𝐿𝐸 = argmax
𝜽

෍

𝑖

𝑁

log 𝑝 𝑦 𝑖 𝜽



Probabilistic Formulation for ML
MLE for Linear and Logistic Regression



Using Statistics for Machine Learning



Recipe for Estimation
MLE

1. Formulate the likelihood, 𝑝(𝒟 ∣ 𝜃)

2. Set objective 𝐽(𝜃) equal to negative log of likelihood

J 𝜃 = − log 𝑝 𝒟 𝜃

3. Compute derivative of objective, 𝜕𝐽/𝜕𝜃

4. Find መ𝜃, either

a. Set derivate equal to zero and solve for 𝜃

b. Use (stochastic) gradient descent to step towards better 𝜃



M(C)LE for Logistic Regression
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of just one test results, 𝑋𝐴 and 𝑋𝐵

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁
1

1 + 𝑒−𝜽
𝑇𝒙

𝑖

𝕀 𝑦 𝑖 =1

1 −
1

1 + 𝑒−𝜽
𝑇𝒙

𝑖

𝕀 𝑦(𝑖)=0



M(C)LE for Logistic Regression
Learn to predict if a patient has cancer (𝑌 = 1) or not (𝑌 = 0) given the 
input of just one test results, 𝑋𝐴 and 𝑋𝐵

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝐱 𝑖 , 𝜽



M(C)LE for Multi-class Logistic Regression
Learn to predict if probability of output belonging to class 𝑘, 𝑌𝑘 , given 
input 𝑋, 𝑃(𝑌𝑘 = 1 ∣ 𝑋, 𝜽1, … , 𝜽𝐾)

෡Θ𝑀𝐿𝐸 = argmax
𝚯

ෑ

𝑖

𝑁

ෑ

𝑘

𝐾
𝑒𝜽𝑘

𝑇𝒙
𝑖

σ𝑙=1
𝐾 𝑒𝜽𝑙

𝑇𝒙
𝑖

𝕀 𝑦𝑘
𝑖
=1



M(C)LE for Multi-class Logistic Regression
Learn to predict if probability of output belonging to class 𝑘, 𝑌𝑘 , given 
input 𝑋, 𝑃(𝑌𝑘 = 1 ∣ 𝑋, 𝜽1, … , 𝜽𝐾)

𝐿 Θ;𝒟 =ෑ

𝑖

𝑁

ෑ

𝑘

𝐾
𝑒𝜽𝑘

𝑇𝒙
𝑖

σ𝑙=1
𝐾 𝑒𝜽𝑙

𝑇𝒙
𝑖

𝕀 𝑦𝑘
𝑖
=1



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

መ𝜃𝑀𝐿𝐸 = argmax
𝜽

ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝒙 𝑖 , 𝜽



M(C)LE for Linear Regression
Probabilistic interpretation of linear regression

𝐿 𝜃;𝒟 =ෑ

𝑖

𝑁

𝑝 𝑦 𝑖 𝒙 𝑖 , 𝜽
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