

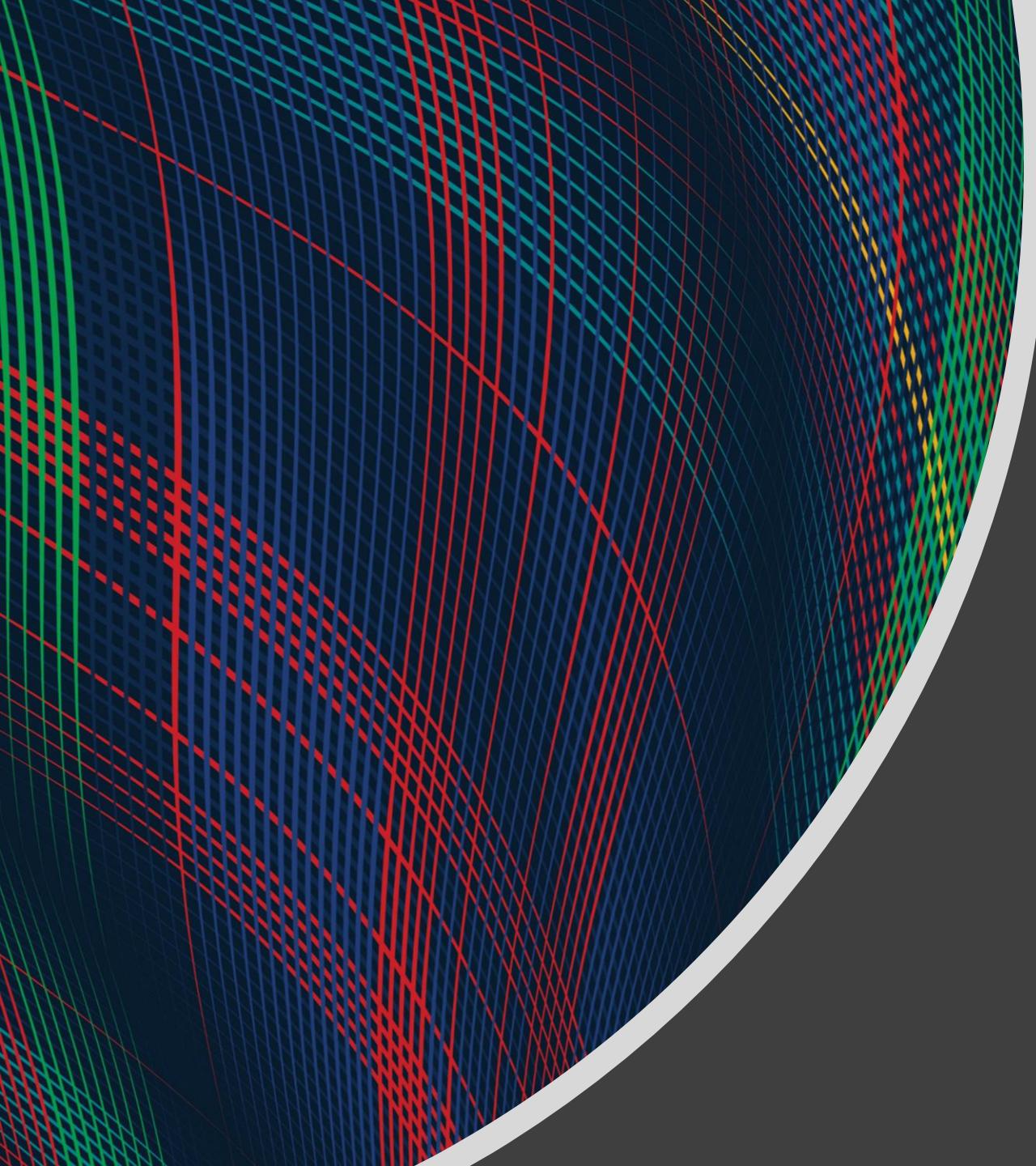
Plan

Today

- Wrap-up regularization (for now)
- MLE
 - Probability / likelihood
 - Maximum likelihood estimation
 - Probabilistic formulation of linear and logistic regression

Wrap up Neural Nets

Switch to regression slides

A 3D surface plot on the left side of the slide. The surface is a complex, undulating shape with a grid of lines overlaid. The lines are colored in a gradient: red on the left, transitioning through orange and yellow to green on the right. The surface itself is dark blue on the left and becomes lighter green on the right. The grid lines are mostly red, with some blue and green lines interspersed, creating a textured appearance.

10-315 Introduction to ML

MLE and Probabilistic Formulation of Machine Learning

Instructor: Pat Virtue

Poll 1: Exercise

Implement a function in Python for the pdf of a Gaussian distribution.

Python numpy or math packages are fine, no scipy, etc.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Exercises

Calculate the probability of these event sequences happening

Coin

Fair: H, H, T, H

Biased, $\phi = 3/4$ heads: H, H, T, H

4-sided die with sides: A, B, C, D

Fair: A, B, D, D, A

Weighted, $[\phi_A, \phi_B, \phi_C, \phi_D] = [1/10, 2/10, 3/10, 4/10]$
A, B, D, D, A

Probability

Probability Vocab

Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable

Continuous random variable

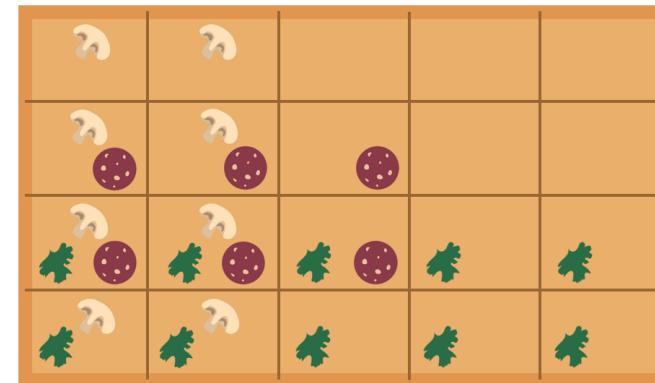
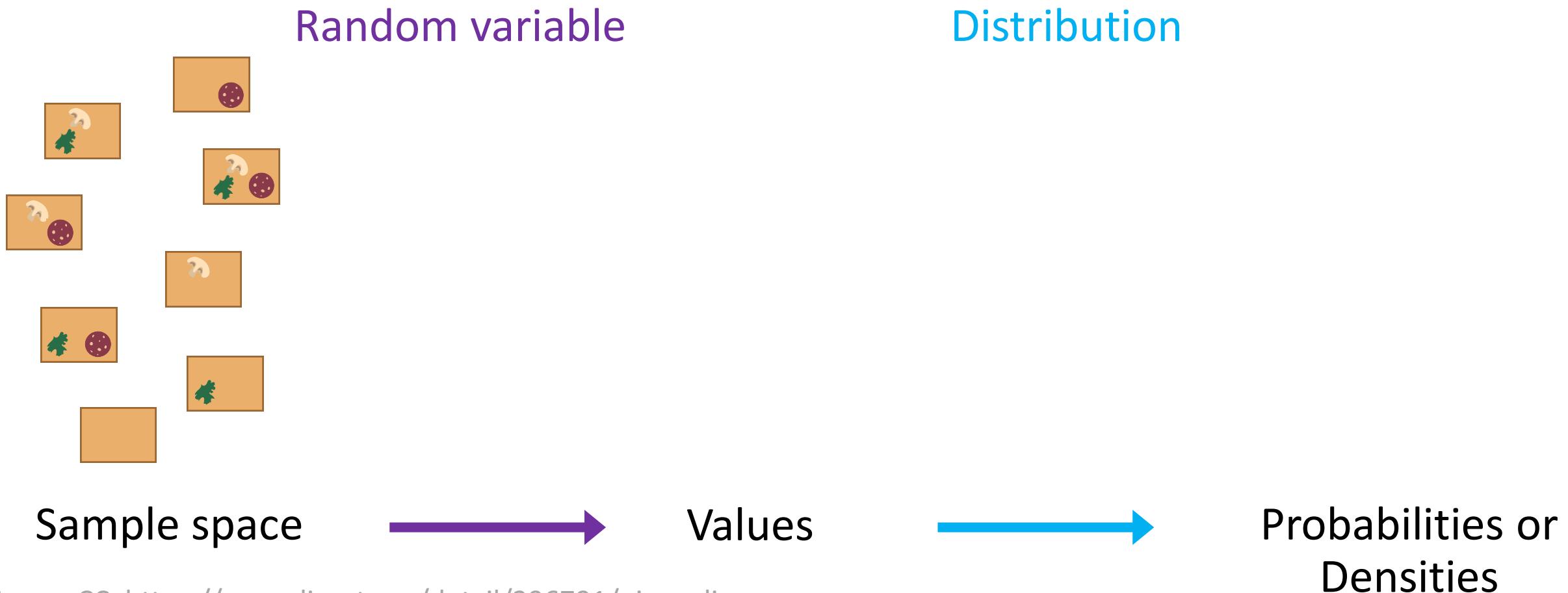
Probability mass function

Probability density function

Parameters

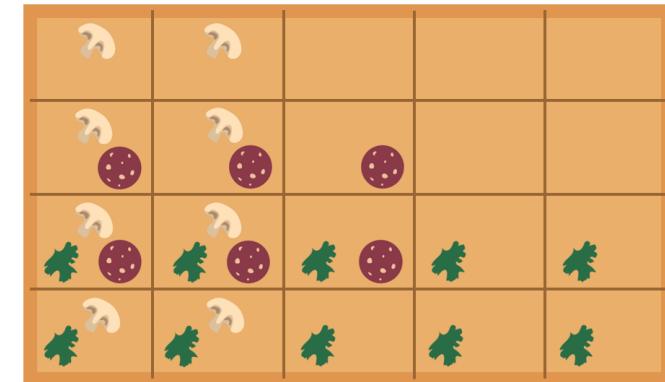
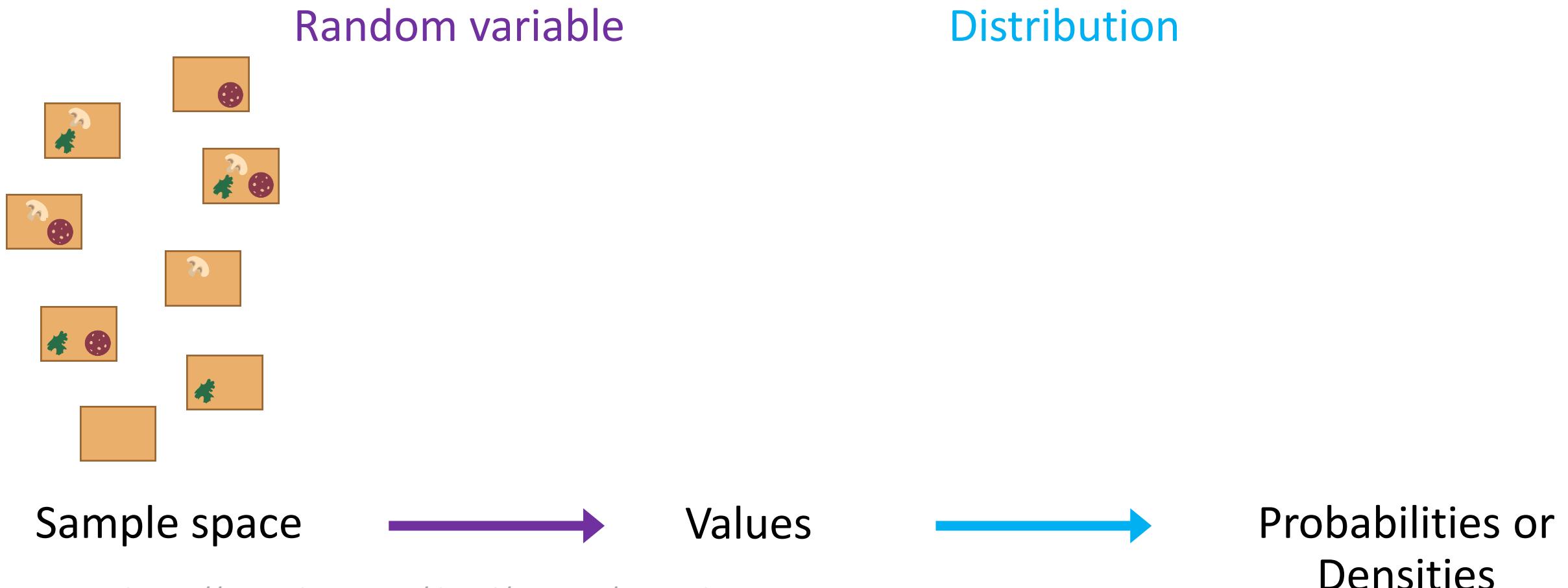
Example

Random variable for spinach or no spinach



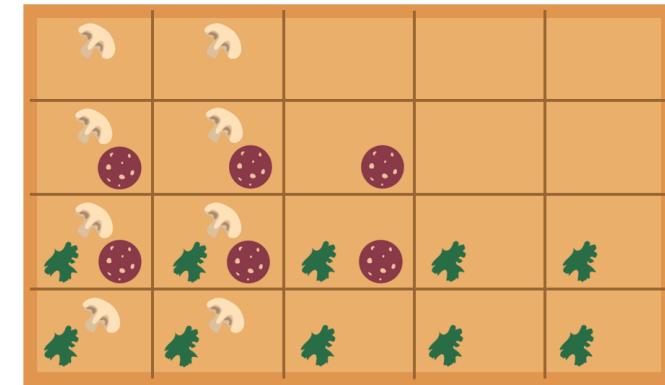
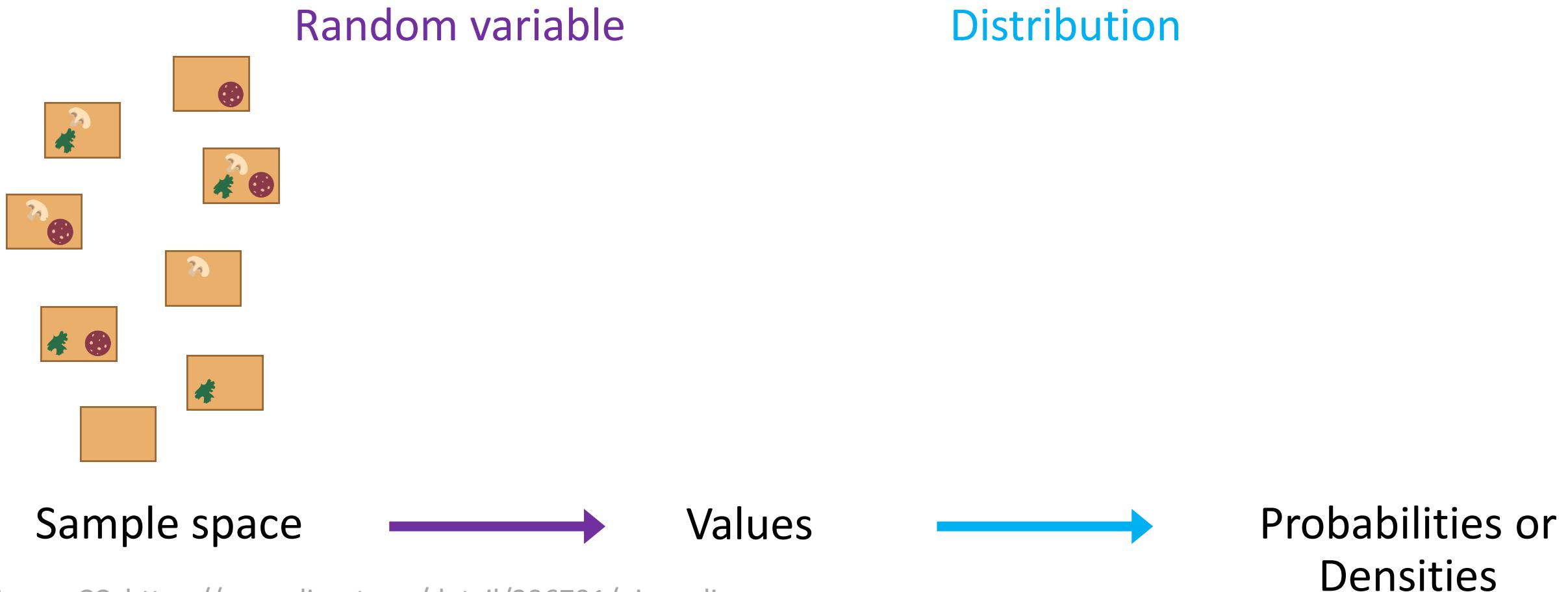
Example

Random variable for spinach or no spinach



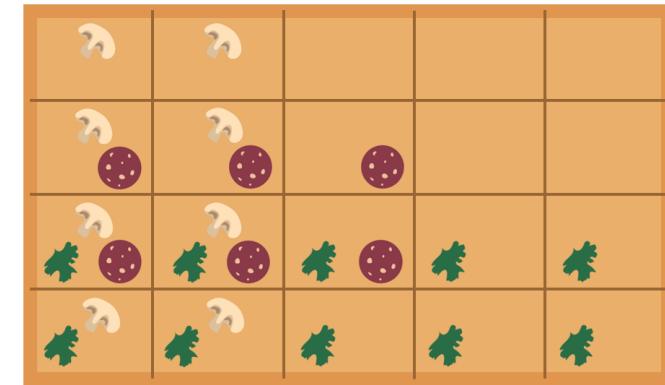
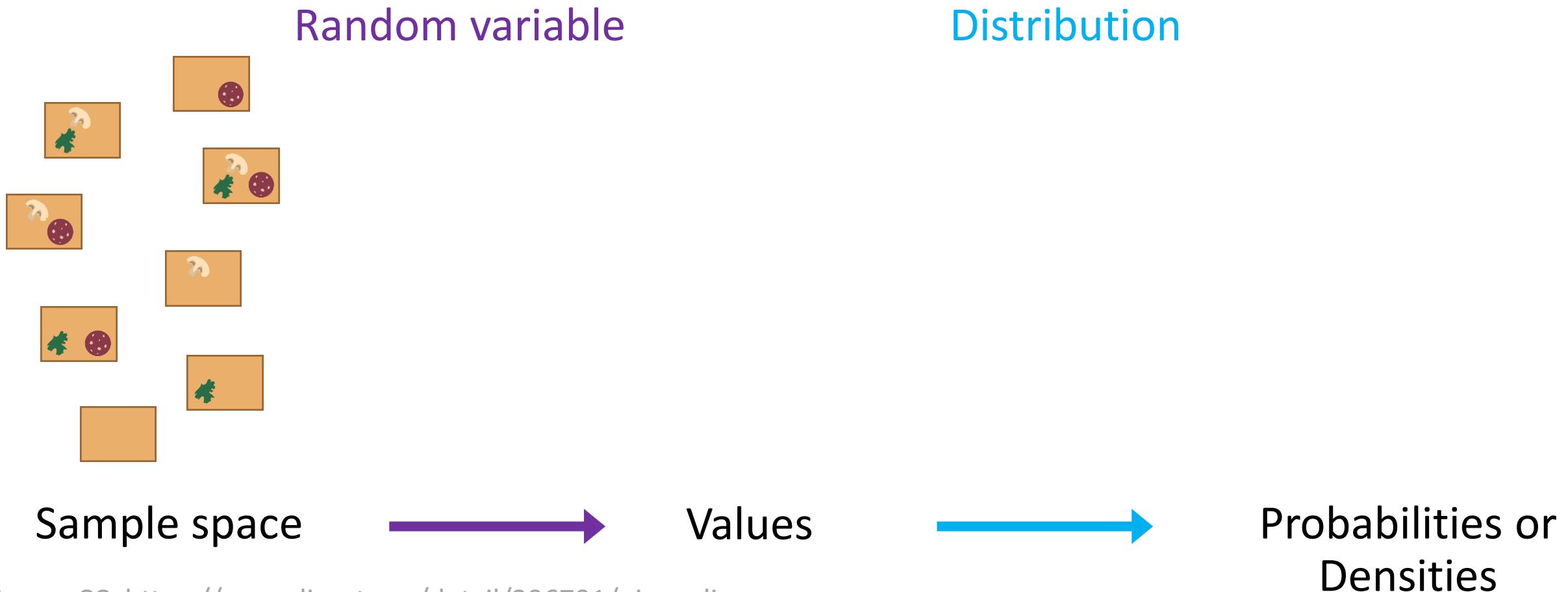
Example

Random variable for topping type with three categories: none, non-meat, meat



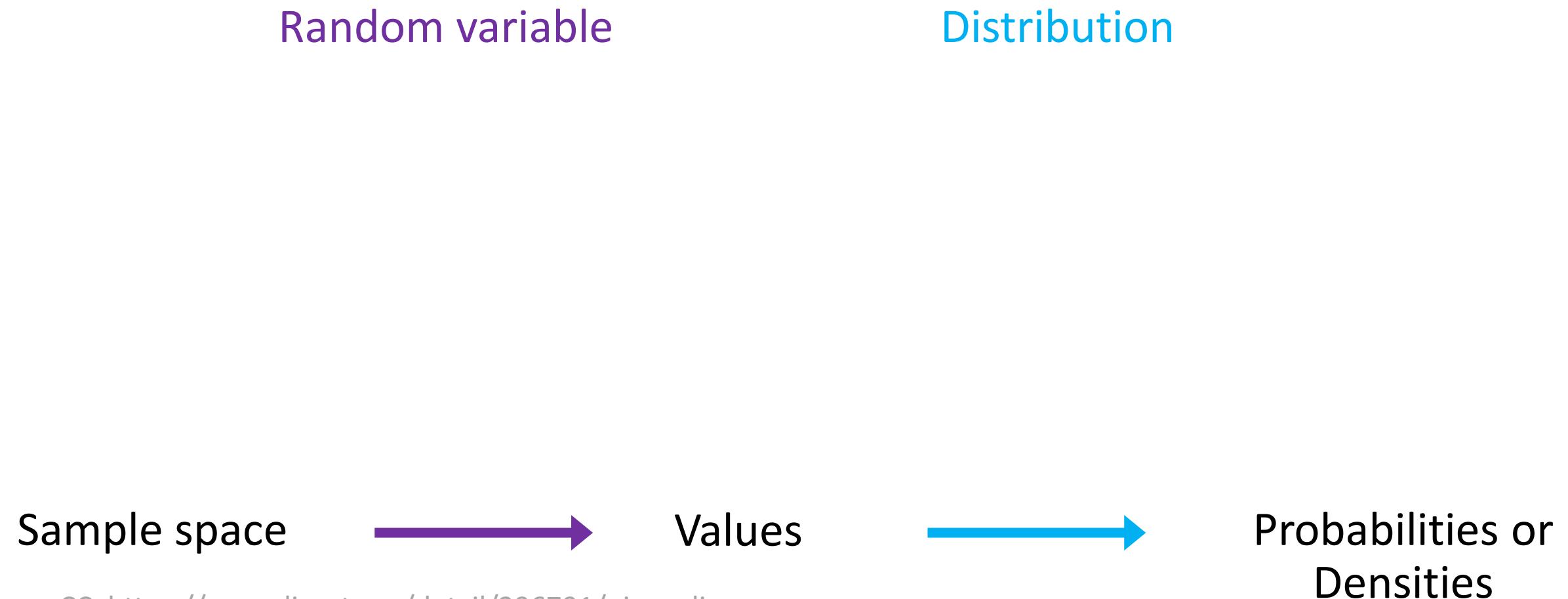
Example

Random variable for topping type with three categories: none, non-meat, meat



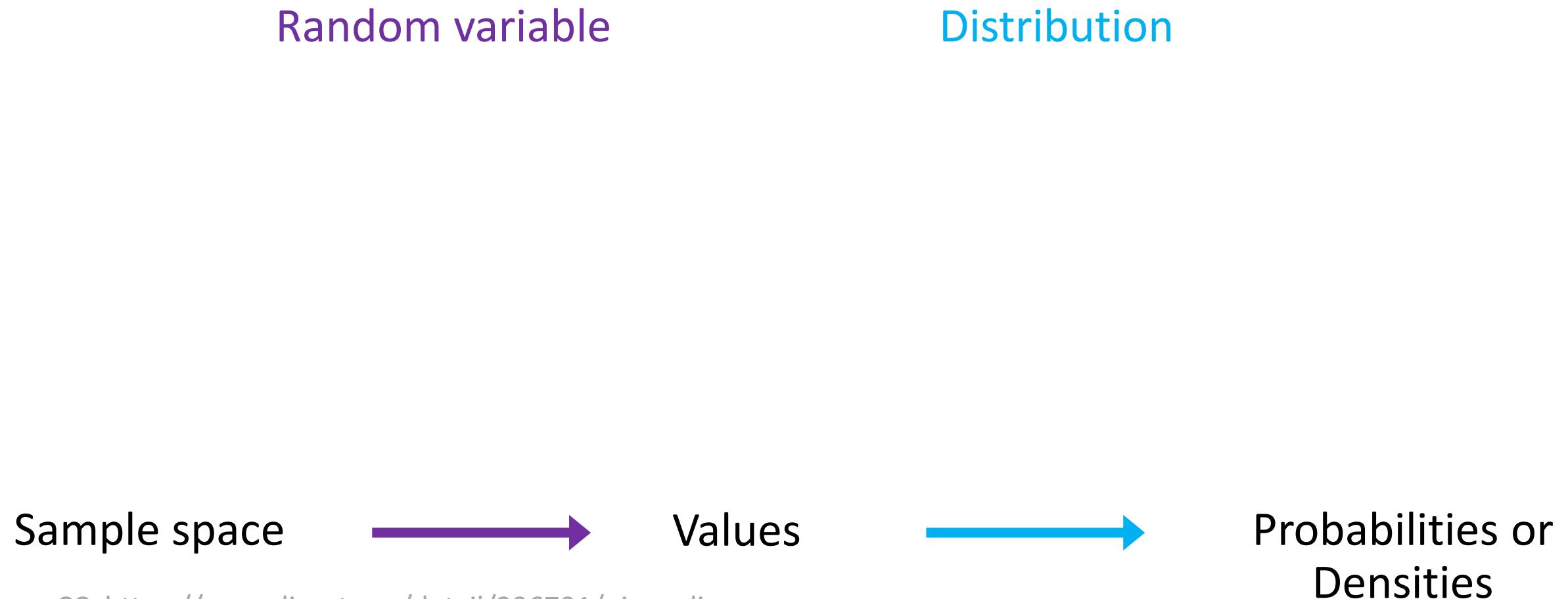
Example

Random variable for number of heads after
two flips of a fair coin



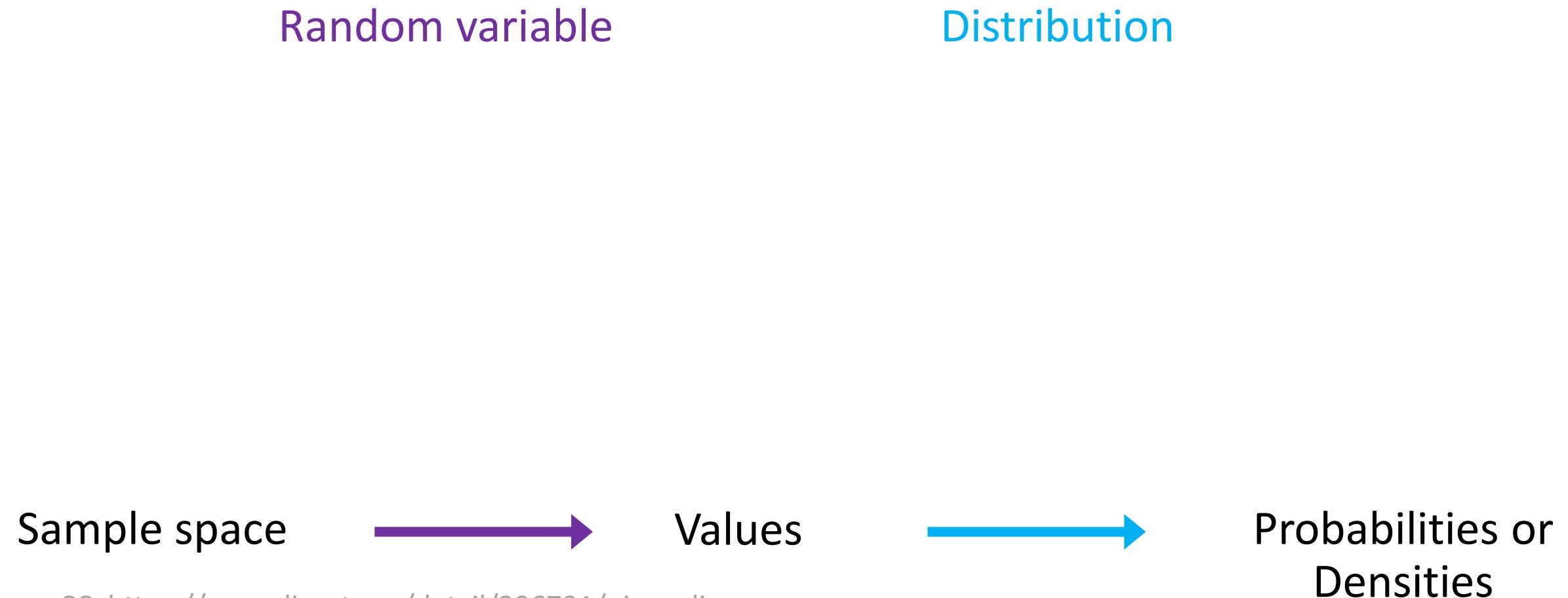
Example

Random variable for number of heads after
two flips of a *biased* coin that lands heads 75%



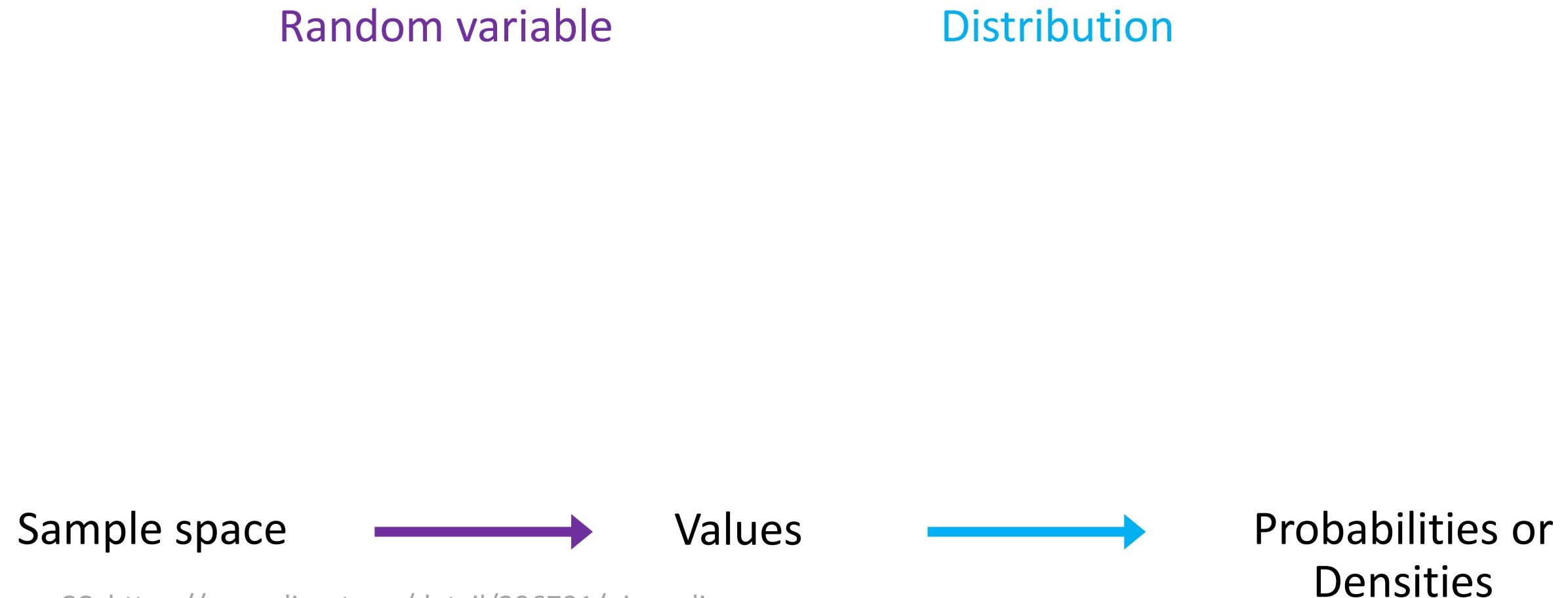
Example

Random variable for cat in picture or not



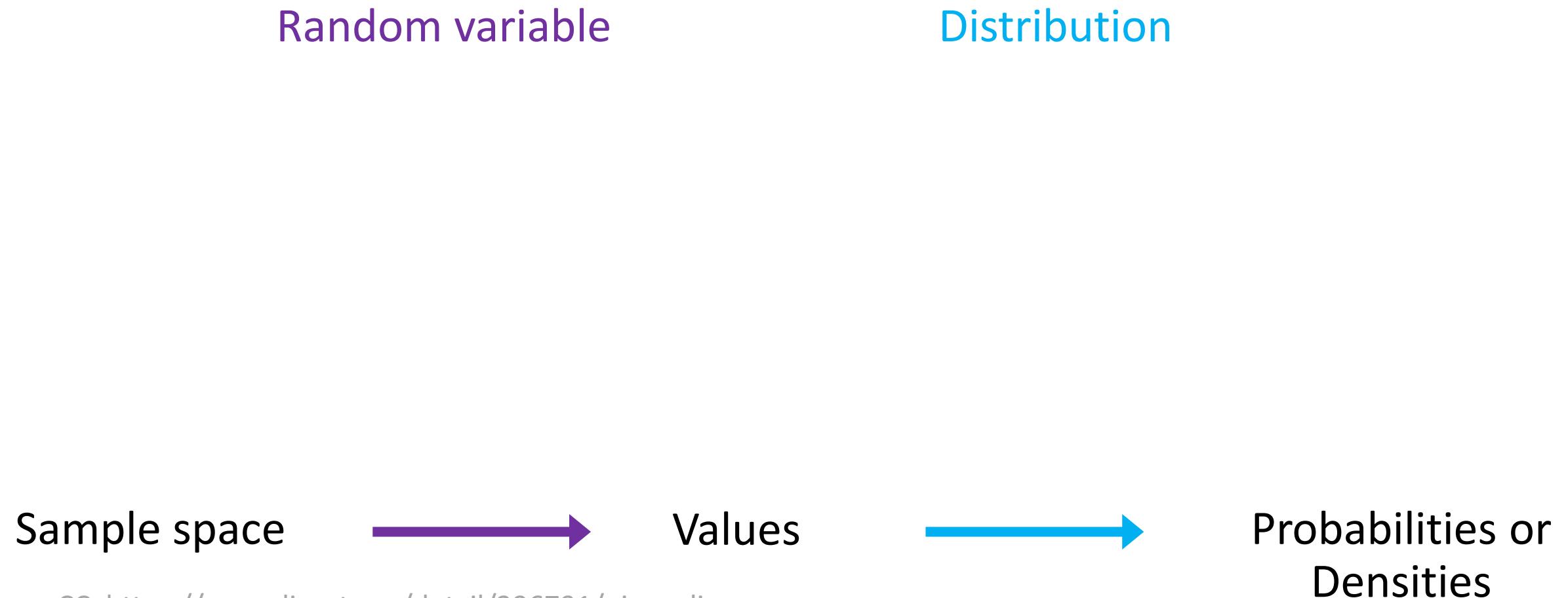
Example

Random variable for animal species in picture assuming one animal picture and available species: dog, cat, pig



Example

Random variable for height of student



Probability Vocab

Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable

Continuous random variable

Probability mass function

Probability density function

Parameters

Example Discrete Distributions

Bernoulli

Categorical

Binomial

Multinomial

Uniform

Example Continuous Distributions

Gaussian

Beta

Laplace

Probability Vocab

Marginal

Joint

Conditional

Notation

Dataset

Parameters, generically θ

$$p(\mathcal{D} | \theta), p(\mathcal{D} ; \theta)$$

Random variables

Capital

Values

lower case

Random variable: function that maps events to values

Y is random variable that maps the event of a coin toss being heads to value one and the event of a coin toss being tails to zero

$$P(Y = 1 | \phi) = 3/4, \text{ where } \phi = 3/4$$

$$P(Y = 1) = 3/4$$

Sometimes even

$$P(Y = \text{heads}) = 3/4$$

Probability Toolbox

- Algebra
- Three axioms of probability
- Theorem of total probability
- Definition of conditional probability
- Product rule
- Bayes' theorem
- Chain rule
- Independence
- Conditional independence

Probability Tools Summary

Adding to the toolbox

1. Definition of conditional probability

$$P(A|B) = \frac{P(A, B)}{P(B)}$$

2. Chain Rule

$$P(A, B) = P(A | B)P(B)$$

3. Bayes' theorem

$$P(B|A) = \frac{P(A | B)P(B)}{P(A)}$$

4. Chain Rule...

$$P(A_1, \dots, A_N) = P(A_1) \sum_{i=2}^N P(A_i | A_{i-1})$$

Likelihood

Likelihood

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

Likelihood

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

Grades

$$\text{Gaussian PDF: } p(y | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Likelihood

Trick coin: comes up heads only $1/3$ of the time

1 flip: H

probability: $\frac{1}{3}$

2 flips: H,H

probability: $\frac{1}{3} \cdot \frac{1}{3}$

3 flips: H,H,T

probability: $\frac{1}{3} \cdot \frac{1}{3} \cdot \left(1 - \frac{1}{3}\right)$

But why can we just multiply these?

Likelihood and i.i.d

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

i.i.d.: Independent and identically distributed

Bernoulli Likelihood

Bernoulli distribution:

$$Y \sim \text{Bern}(\phi) \quad p(y \mid \phi) = \begin{cases} \phi, & y = 1 \\ 1 - \phi, & y = 0 \end{cases}$$

What is the likelihood for three i.i.d. samples, given parameter ϕ :

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$\prod_{i=1}^N p(Y = y^{(i)} \mid \phi)$$

$$= \phi \cdot \phi \cdot (1 - \phi)$$

MLE

Maximum likelihood estimation

From Probability to Statistics

Poll 2

Assume that exam scores are drawn independently from the same Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is a better fit (a higher likelihood)?

- A) Mean 80, standard deviation 3
- B) Mean 85, standard deviation 7

Use a calculator/computer.

$$\text{Gaussian PDF: } p(y \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Likelihood

Trick coin

Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a Bernoulli random variable:

$$Y \sim \text{Bern}(\phi)$$
$$p(y \mid \phi) = \begin{cases} \phi, & y = 1 \text{ (Heads)} \\ 1 - \phi, & y = 0 \text{ (Tails)} \end{cases}$$

Given the ordered sequence of coin flip outcomes:

$$[1, 0, 1, 1]$$

What is the estimate of parameter $\hat{\phi}$?

Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a Bernoulli random variable:

$$Y \sim \text{Bern}(\phi)$$
$$p(y \mid \phi) = \begin{cases} \phi, & y = 1 \text{ (Heads)} \\ 1 - \phi, & y = 0 \text{ (Tails)} \end{cases}$$

Given the ordered sequence of coin flip outcomes:

$$[1, 0, 1, 1]$$

What is the estimate of parameter $\hat{\phi}$?

$$\begin{aligned} p(D \mid \phi) &= \phi \cdot \phi \cdot (1 - \phi) \cdot \phi \\ &= \phi^3 (1 - \phi)^1 \end{aligned}$$

Likelihood and Maximum Likelihood Estimation

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

Likelihood function: The value of likelihood as we change theta (same as likelihood, but conceptually we are considering many different values of the parameters)

Maximum Likelihood Estimation (MLE): Find the parameter value that maximizes the likelihood.

MLE as Data Increases

Given the ordered sequence of coin flip outcomes:

$$[1, 0, 1, 1]$$

$$p(\mathcal{D} \mid \phi) = \prod_i^N p(y^{(i)} \mid \phi) = \phi^{N_{y=1}} (1 - \phi)^{N_{y=0}}$$

What happens as we flip more coins?

MLE for Gaussian

Gaussian distribution:

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(y \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

What is the log likelihood for three i.i.d. samples, given parameters μ, σ^2 ?

$$\mathcal{D} = \{y^{(1)} = 65, y^{(2)} = 95, y^{(3)} = 85\}$$

$$L(\mu, \sigma^2) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y^{(i)}-\mu)^2}{2\sigma^2}}$$

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \prod_i^N p(y^{(i)} \mid \theta)$$

MLE for Gaussian

Assume that exam scores are drawn independently from the same Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is the best fit (the highest likelihood)?

$$p(\mathcal{D}|\mu, \sigma^2) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y^{(i)}-\mu)^2}{2\sigma^2}}$$

MLE

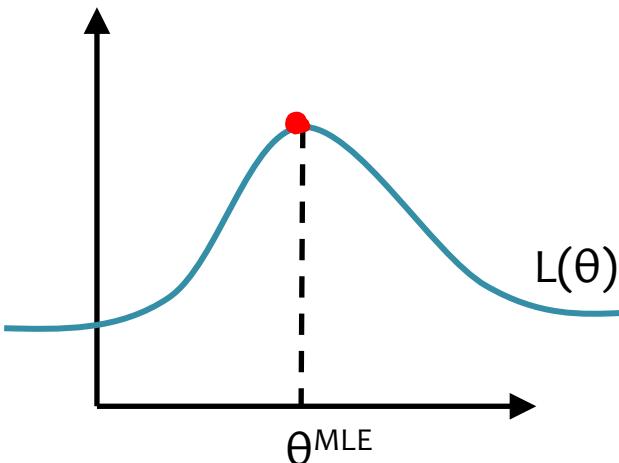
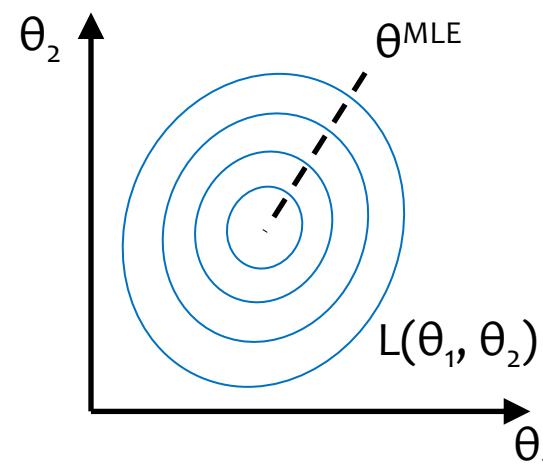
Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data.

$$\theta^{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^N p(\mathbf{x}^{(i)} | \theta)$$

Maximum Likelihood Estimate (MLE)



Likelihood and Log Likelihood

Likelihood: The probability (or density) of random variable Y taking on value y given the distribution parameters, θ .

Likelihood function: The value of likelihood as we change theta (same as likelihood, but conceptually we are considering many different values of the parameters)

Recipe for Estimation

MLE

1. Formulate the likelihood, $p(\mathcal{D} \mid \theta)$
2. Set objective $J(\theta)$ equal to negative log of likelihood

$$J(\theta) = -\log p(\mathcal{D} \mid \theta)$$

3. Compute derivative of objective, $\partial J / \partial \theta$
4. Find $\hat{\theta}$, either
 - a. Set derivate equal to zero and solve for θ
 - b. Use (stochastic) gradient descent to step towards better θ

MLE for Gaussian

Gaussian distribution:

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(y \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

What is the log likelihood for three i.i.d. samples, given parameters μ, σ^2 ?

$$\mathcal{D} = \{y^{(1)} = 65, y^{(2)} = 95, y^{(3)} = 85\}$$

$$L(\mu, \sigma^2) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y^{(i)}-\mu)^2}{2\sigma^2}}$$

$$\ell(\mu, \sigma^2) = \sum_{i=1}^N -\log \sqrt{2\pi\sigma^2} - \frac{(y^{(i)} - \mu)^2}{2\sigma^2}$$

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \prod_{i=1}^N p(y^{(i)} \mid \theta)$$

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \sum_{i=1}^N \log p(y^{(i)} \mid \theta)$$

Probabilistic Formulation for ML

MLE for Linear and Logistic Regression

Using Statistics for Machine Learning

Recipe for Estimation

MLE

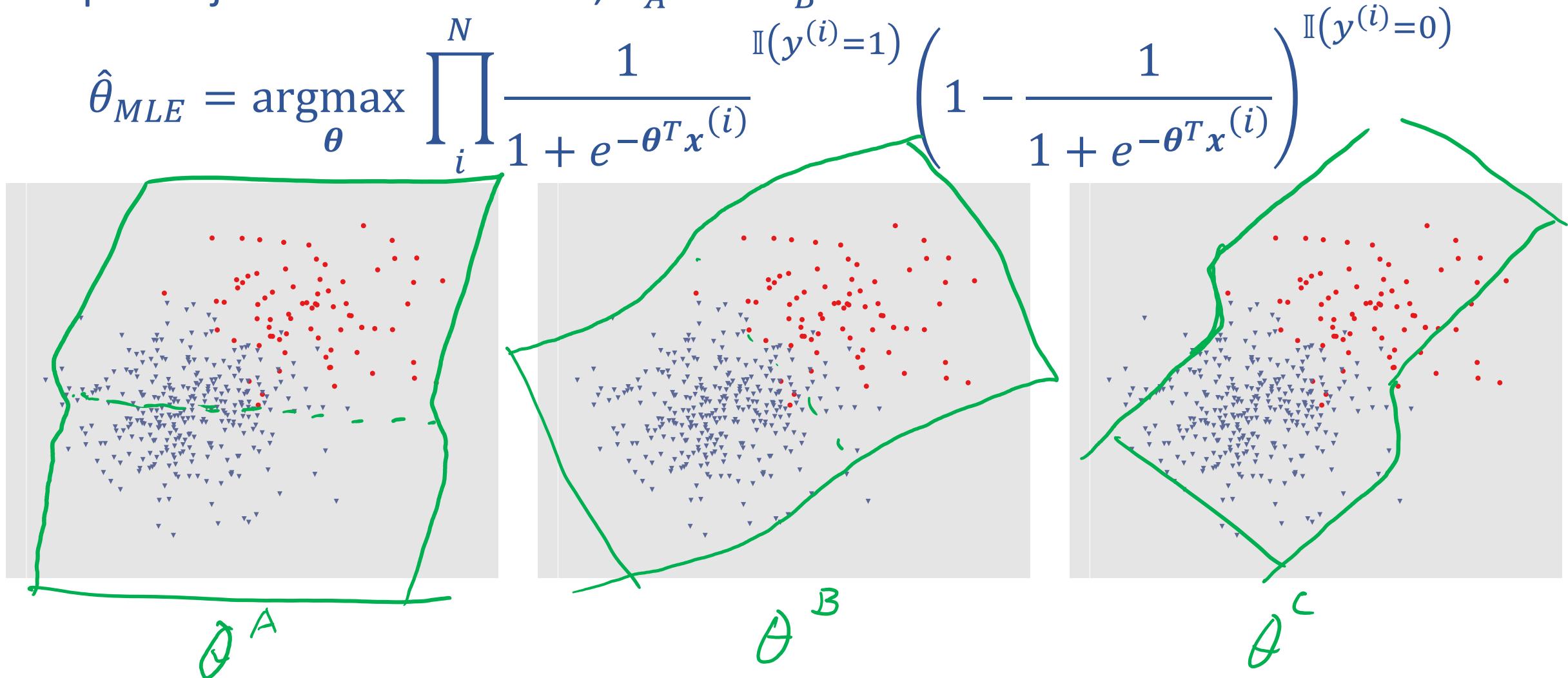
1. Formulate the likelihood, $p(\mathcal{D} \mid \theta)$
2. Set objective $J(\theta)$ equal to negative log of likelihood

$$J(\theta) = -\log p(\mathcal{D} \mid \theta)$$

3. Compute derivative of objective, $\partial J / \partial \theta$
4. Find $\hat{\theta}$, either
 - a. Set derivate equal to zero and solve for θ
 - b. Use (stochastic) gradient descent to step towards better θ

M(C)LE for Logistic Regression

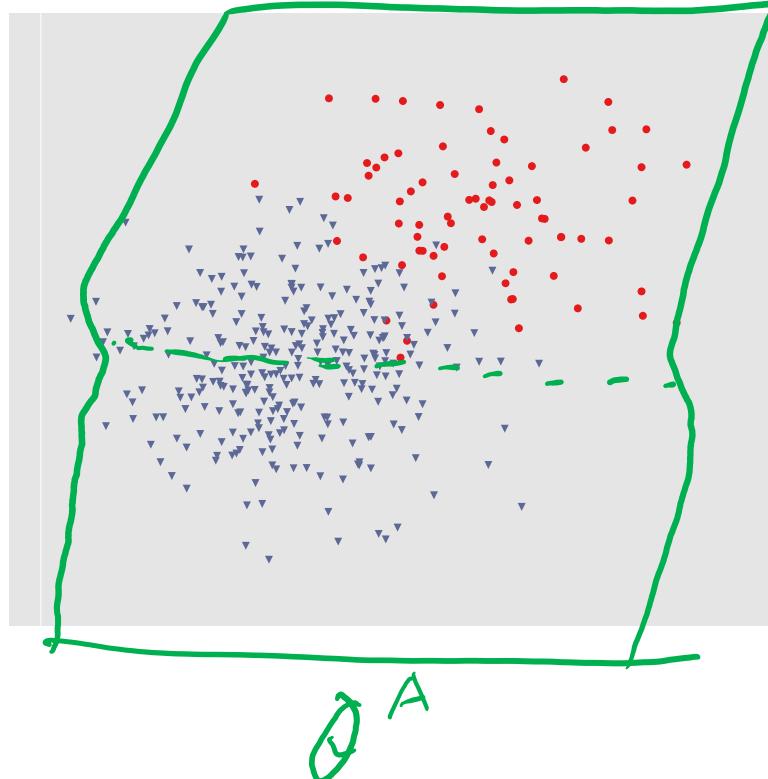
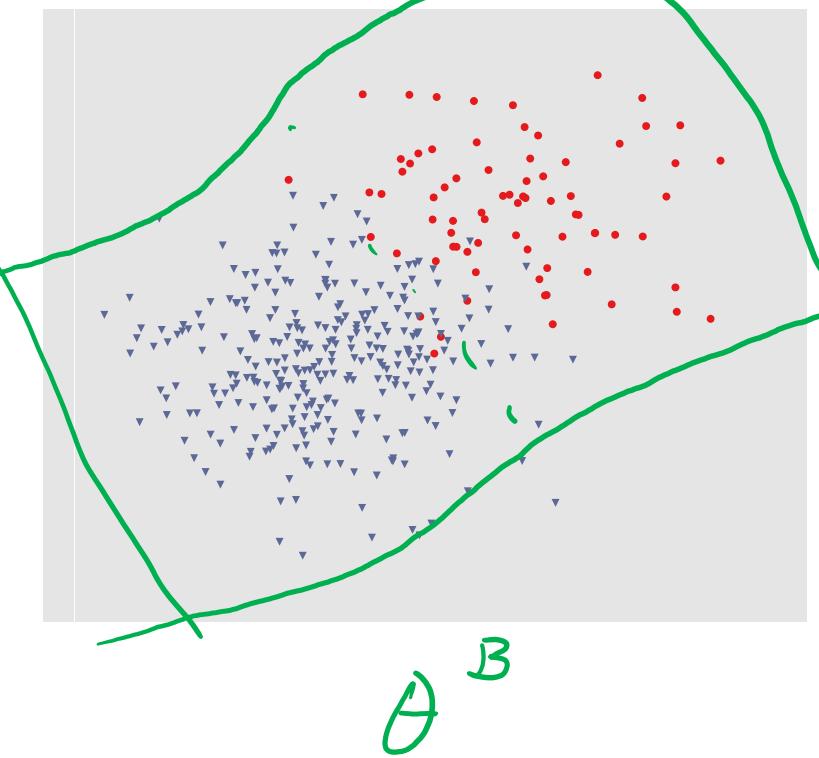
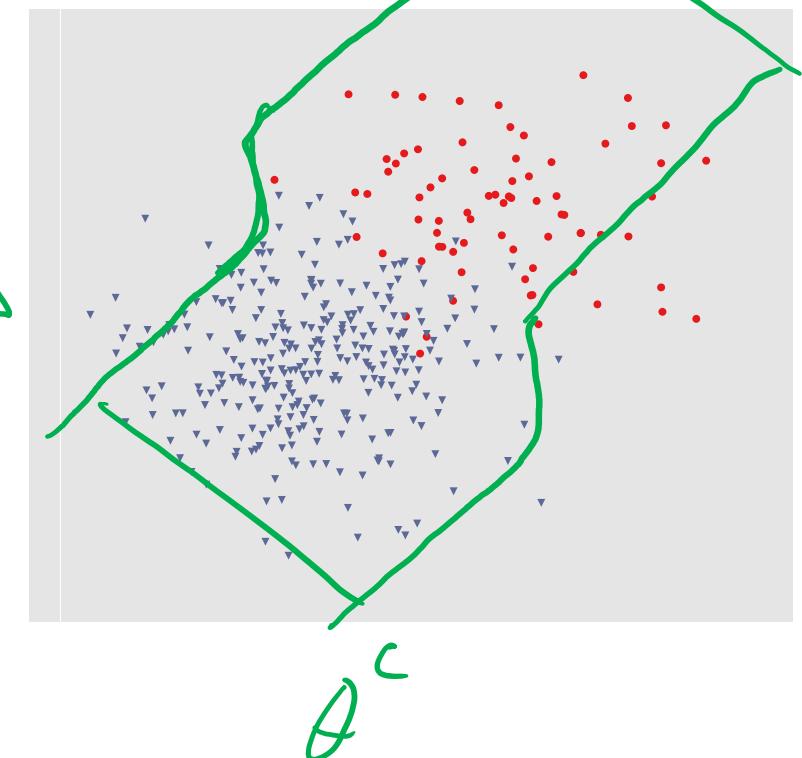
Learn to predict if a patient has cancer ($Y = 1$) or not ($Y = 0$) given the input of just one test results, X_A and X_B



M(C)LE for Logistic Regression

Learn to predict if a patient has cancer ($Y = 1$) or not ($Y = 0$) given the input of just one test results, X_A and X_B

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \prod_i^N p(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$



M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k , Y_k , given input X , $P(Y_k = 1 | X, \theta_1, \dots, \theta_K)$

$$\hat{\Theta}_{MLE} = \operatorname{argmax}_{\Theta} \prod_i^N \prod_k^K \frac{e^{\theta_k^T x^{(i)}}}{\sum_{l=1}^K e^{\theta_l^T x^{(i)}}} \mathbb{I}(y_k^{(i)} = 1)$$

M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k , Y_k , given input X , $P(Y_k = 1 | X, \theta_1, \dots, \theta_K)$

$$L(\Theta; \mathcal{D}) = \prod_i^N \prod_k^K \frac{e^{\theta_k^T x^{(i)}}}{\sum_{l=1}^K e^{\theta_l^T x^{(i)}}} \mathbb{I}(y_k^{(i)} = 1)$$

M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \prod_i^N p(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

$$L(\theta; \mathcal{D}) = \prod_i^N p(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$