Plan

Today

= Wrap-up regularization (for now)
= MLE

= Probability / likelihood
= Maximum likelihood estimation
" Probabilistic formulation of linear and logistic regression



Wrap up Neural Nets

Switch to regression slides



10-315
Introduction to ML

MILE anc
Probabilistic Formulation
of Machine Learning

Instructor: Pat Virtue




Poll 1: Exercise

Implement a function in Python for the pdf of a Gaussian distribution.
Python numpy or math packages are fine, no scipy, etc.

—(x—p)?

1
f(x)=We 207




Exercises

Calculate the probability of these event sequences happening

Coin
Fair:H, H, T, H

Biased, ¢ = 3/4 heads: H,H, T, H

4-sided die with sides: A, B, C, D
Fair: A, B, D, D, A

Weighted, [¢4, b5, dc, dp] = [1/10, 2/10, 3/10, 4/10]
A, B,D,D, A



Probability



Probability Vocab

Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable
Continuous random variable
Probability mass function
Probability density function
Parameters



Example

Random variable for spinach or no spinach

Random variable Distribution

Sample space —)  \/alues —_—) Probabilities or
Densities

Icons: CC, https://openclipart.org/detail/296791/pizza-slice



Example

Random variable for spinach or no spinach

Random variable Distribution

Sample space —)  \/alues —_—) Probabilities or
Densities

Icons: CC, https://openclipart.org/detail/296791/pizza-slice



Example

Random variable for topping type with
three categories: none, non-meat, meat
Random variable

Sample space —)  \/alues

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Distribution

—

Probabilities or
Densities



Example

Random variable for topping type with
three categories: none, non-meat, meat
Random variable

Sample space —)  \/alues

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Distribution

—

Probabilities or
Densities



Example

Random variable for number of heads after
two flips of a fair coin

Random variable Distribution

Sample space —)  \/alues —_— Probabilities or
Densities



Example

Random variable for number of heads after
two flips of a biased coin that lands heads 75%

Random variable Distribution

Sample space —)  \/alues —_— Probabilities or
Densities



Example

Random variable for cat in picture or not

Random variable Distribution

Sample space —) \/alues —_— Probabilities or
Densities



Example

Random variable for animal species in picture assuming
one animal picture and available species: dog, cat, pig

Random variable Distribution

Sample space —)  \/alues —_— Probabilities or
Densities



Example

Random variable for height of student

Random variable Distribution

Sample space —) \/alues —_— Probabilities or
Densities



Probability Vocab

Outcomes

Sample space

Events

Probability

Random variable

Discrete random variable
Continuous random variable
Probability mass function
Probability density function
Parameters



Example Discrete Distributions

Bernoulli

Categorical

Binomial
Multinomial
Uniform



Example Continuous Distributions

Gaussian

Beta

Laplace



Probability Vocab

Margina

Joint

Conditional



Notation

Dataset

Parameters, generically 6
p(D|0),p(D; 0)

Random variables
Capital

Values

lower case
Random variable: function that maps events to values
Y is rand variable that maps the event of a coin toss being heads to value one

and the event of a coin toss being tails to zero

P(Y=1|¢)= 3/4, where¢p =3/4
PY=1)=3/4

Sometimes even

P(Y = heads) = 3/4



Probability Toolbox

" Algebra
" Three axioms of probability
" Theorem of total probability

= Definition of conditional
probability

" Product rule

" Bayes’ theorem

" Chain rule

" Independence

" Conditional independence



Probability Tools Summary

Adding to the toolbox

P(A,B)
1. Definition of conditional probability P(A|B) =
P(B)

2. Chain Rule P(A,B) = P(A| B)P(B)

) P(A| B)P(B)
3. Bayes’ theorem P(BlA) =

(B14) = =5

4. Chain Rule...

N
P(Ay, - Ay) = P(A7) ) P(A; | Ai_y)
=2



Likelihood



Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.



Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

Grades

1 _(y_ﬂ)z
Gaussian PDF: p(y | p,02) = e 2




Likelihood

Trick coin: comes up heads only 1/3 of the time

1 flip: H probability: %
2 flips: H,H probability: %%
3 flips: H,H,T probability: %% (1 — %)

But why can we just multiply these?



Likelihood and i.i.d

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

i.i.d.: Independent and identically distributed



Bernoulli Likelihood

Bernoulli distribution:

Y ~Bern(¢)  p(yl¢) = {f'_(,,, fvj)

What is the likelihood for three i.i.d. samples, given parameter ¢:
D={yM =1,y@ =1,y8) =)

Hliv=1 p(Y = y(i) | )
=¢-¢p-(1—¢)



MLE

Maximum likelihood estimation



From Probability to Statistics



Poll 2

Assume that exam scores are drawn independently from the same
Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is a
better fit (a higher likelihood)?

A) Mean 80, standard deviation 3
B) Mean 85, standard deviation 7

Use a calculator/computer.

1 _(y_ﬂ)z

Gaussian PDF: p(y | p,02) =

202



Likelihood

Trick coin



Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a
Bernoulli random variable:

Y ~ Bern(¢)
o, y =1 (Heads)

Py 1 4) = {1 — o, y =0 (Tails)

Given the ordered sequence of coin flip outcomes:
11,0,1, 1]

What is the estimate of parameter ¢?



Estimating Parameters with Likelihood

We model the outcome of a single mysterious weighted-coin flip as a
Bernoulli random variable:

Y ~ Bern(¢)
o, y =1 (Heads)

Py 1 4) = {1 — o, y =0 (Tails)

Given the ordered sequence of coin flip outcomes:
11,0,1, 1]

What is the estimate of parameter ¢?

p(Dlp)=¢d-¢-(1—=¢) ¢
=¢°(1—¢)°



Likelihood and Maximum Likelihood Estimation

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many
different values of the parameters)

Maximum Likelihood Estimation (MLE): Find the parameter value that
maximizes the likelihood.



MLE as Data Increases

Given the ordered sequence of coin flip outcomes:
11,0,1, 1]

N
p@1¢)=| [p(y@ 1) = ¢M=1(1- @)=

What happens as we flip more coins?



MLE for Gaussian

Gaussian distribution:
Y ~ N(u, 02)

1 _(ZV_N)Z

p(yluo?)= o€ 2

What is the log likelihood for three i.i.d. samples, given parameters y, 0%?
D = {yM =65,y =95, y3) = g5}

N 1 _(y(i)_“)z

N
2) — 2] — (0
L(/,t,a ) = HWQ 202 Opie = argglax Up(y 2 0)

=1




MLE for Gaussian

Assume that exam scores are drawn independently from the same
Gaussian (Normal) distribution.

Given three exam scores 75, 80, 90, which pair of parameters is the
best fit (the highest likelihood)?

N ; 2
1 _(y(l)—li)
p(D|,u,02) = 1_[ e 20°

V2mo?

=1



MLE

Suppose we have data D = {z(V} V|

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. N .
""" = argmax Hp(x(z) 0)
0

1=1
Maximum Likelihood Estimate (MLE)

A

/:\ue)

>

|
1
eMLE



Likelihood and Log Likelihood

Likelihood: The probability (or density) of random variable Y taking on
value y given the distribution parameters, 6.

Likelihood function: The value of likelihood as we change theta

(same as likelihood, but conceptually we are considering many
different values of the parameters)



Recipe for Estimation

MLE

1. Formulate the likelihood, p(D | 8)

2. Set objective J(0) equal to negative log of likelihood
J(8) = —logp(D|6O)

3. Compute derivative of objective, d/ /060

4. Find 8, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



MLE for Gaussian

Gaussian distribution:
Y ~ N(u, 02)

1 _(y_ﬂ)z

p(yluo?)= o€ 2

What is the log likelihood for three i.i.d. samples, given parameters y, 0%?
D = {yM =65,y =95, y3) = g5}

1 (yO-p)’ . § .
L(,Ll,az) = ‘ ‘ We 202 Oure = argglax ‘ ‘ p(y(l) | 0)
i=1 i

N

) _ )2 u |
f(ﬂ:az) = z —logy/ 2mo? — (y ZO'ZH) Omie = arglglax ZIOg p(y(l) | 9)
i

=1




Probabilistic Formulation for ML
MLE for Linear and Logistic Regression



Using Statistics for Machine Learning



Recipe for Estimation

MLE

1. Formulate the likelihood, p(D | 8)

2. Set objective J(0) equal to negative log of likelihood
J(8) = —logp(D|6O)

3. Compute derivative of objective, d/ /060

4. Find 8, either

a. Set derivate equal to zero and solve for 6
b. Use (stochastic) gradient descent to step towards better 6



M(C)LE for Logistic Regression

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the

input of just one test results, X, and Xp _
N 1 H(y(i)zl) ]](y(l):())

HMLE — argmaX
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M(C)LE for Logistic Regression

Learn to predict if a patient has cancer (Y = 1) or not (Y = 0) given the
input of just one test results, X, and 1{,(3

OmLe = argmax l_[p(y“) | x®,0)
l




M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k, Y3, , given
input X, P(Y, =11X,04,...,0y)

—~ e
@MLE = dI'gmadax 1 [1 [ -
0 i K B{x(l)




M(C)LE for Multi-class Logistic Regression

Learn to predict if probability of output belonging to class k, Y3, , given
input X, P(Y, =11X,04,...,0y)

N K

L(6;D) :1 H [ Ke k);lTxa)

i Tk ). €




M(C)LE for Linear Regression

Probabilistic interpretation of linear re%ression

OmLe = argimax Hp(y(” | x9,0)
[



M(C)LE for Linear Regression

Probabilistic interpretation of linear regression

N
L(O:D) = Hp(y(i) ‘ x(i),g)
L
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