Announcements

Struggling?
= Don’t struggle alone

= Come talk to Pat
= OH
= 1-on-1appointment calendar
" Private message on Piazza with set of times to meet



Announcements

Assignments

= HWS5
= Fri,2/24, 11:59 pm

Midterm
| = Wed, 3/1, in-class

= Details will be coming on Piazza
" |Logistics — SCO}OG
" Learning objectives for Midterm 1 topics
= Review session

\_ " Practice exam problems
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Plan

Today
P Wrap-up neural nets (for now)
= Regularization
= Make sure they aren’t too powerful ©



Wrap up Neural Nets

Switch to neural nets slides



10-315
Introduction to ML

Regularization

Instructor: Pat Virtue




Poll 1

Which is model do you prefer, assuming both have zero training error?
Model structure (for both models): -

ho(x) = 0 + 01x + 0,x% +03x3 + 0,x* +0:x° +0¢x° +0,x7 +0gx°

Model parameters:
92[60, 91, 92; 93; 64; 65; 96) 971 HS]T

A. BA —

[—190.0, —135.0, 310.0, 45.0, —62.0, 90.0, —82.0, —40.0, 29.0]"
B. BB —

| 25.5, —-64, -—-08, 0.0, 6.6, —44 0.2, -2.9, O.l]T



Poll 1

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):
}[ —hg(x) = 0y + 01x + 0,x% +05x3 + O,x* +05x° +05x® +0,x7 +05x® ‘ >/

Model parameters: | | s | *
9=[90, 01, 02, 93, 94, 05, 96' 97, HS]T

A 0, =[-190.0, —135.0, 310.0, 45.0, —62.0, 90.0, —82.0, —40.0, 29.0]7
B 6z=[ 255, —64, —08, 00, 6.6, —44, 02, -29, 0.1]7




Example: Linear Regression

Goal: Learny =w' f(x) + b
where f(.) is a polynomial

basis function

1.2 (1.2)2 ..
1.3 1.7 (.72 ..
01 27 (2.7 ..

1.1 1.9 (1.92 ..

(1.2)°
(1.7)°
(2.7)°

(1.9)°

true “unknown”
target function is

linear with
negative slope
and gaussian
noise

y

0.5 -

-0.5 -

Linear Regression (poly=9)




Symptoms of Overfitting

M=0 M=1 M= M =9
6o 0.19 082 0.3l 0.35
6, 127 7.99 9232.37
6, -25.43 -5321.83
” 17.37 48568.31
6, -231639.30
B 640042.26
B -1061800.52
6, 1042400.18
s -557682.99
s 125201.43




Model Preference
Which is model do you prefer, assuming both have zero training error?
Model structure (for both models):

he(x — 60 + lel + szz +93X3 +04_X4 +85x5 +06x6 +97x7 +H8x8

—_—

Model parameters:
0=[901 91; 92' 93) 04' 05' 96' 97' 98]T

A. BA — |
[—190.0, —135.0, 310.0, 45.0, —62.0, 90.0, —82.0, —40.0, 29.0]"
B. BB —
| 25.5, —-64, -—-08, 0.0, 6.6, —44 0.2, -2.9, 0.1]T

_
What if X was a vector of input feature measurements (rather than

polynomial features)?



Motivation: Regularization

Example: Stock Prices

Suppose we wish to predict Google’s stock
price at time t+1

What features should we use?
(putting all computational concerns aside)

= Stock prices of all other stocks at times t, t-1, t-2,
otk

= Mentions of Google with positive / negative
sentiment words in all newspapers and social
media outlets

Do we believe that all of these features are
going to be useful?

S&P 500 (1950-2016)

I

2,000 —— Closing Value

1,800

1,600

—— 1 Yr Moving Average
—— 2 Yr Moving Average
— 3 Yr Moving Average

1,400

1,200

1,000

800

600

400

200
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Overfitting

Definition: The problem of overfitting is when the model captures the
noise in the training data instead of the underlying structure

Overfitting can occur in all the models we’ve seen so far:
" Decision Trees (e.g. when tree is too deep)
= K-NN (e.g. when k is small)

" Linear Regression (e.g. with nonlinear features or extraneous features)

" Logistic Regression (e.g. with nonlinear features or extraneous features)
=" Neural networks

13



Motivation: Regularization

Occam’s Razor: prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be simple?

1. small number of features (model selection)
2. small number of “important” features (shrinkage)

3, Small magpiio o Features

14



Regularization

Key idea:

Define regularizer (@) that we will add to our minimization
objective to keep the model simple

r(0) should be:
* Small for a simple model

= lLarge for a complex model
L2 norm: square-root of sum of squares 1 (QB; ( [ é)((’L

L1 nhorm: sum of absolute values

e

LO norm: count of non-zero values

<

= éA (é’(.g&
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Regularization
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Poll 2
Which model do you prefer?

A 6, =[-190.0, —135.0, 310.0, 45.0]" Training error: 0.0

<

B. 6;=[ 0.0, 0.0, 0.0, 0.0]" Training error: 34.2

o (9) eg. 14, J(6)=RM

Mpde) (ompler -3y traraing ef =0




Regularization [/ N>J@ + X ()
Given- obje.ctive function: J(0) / / { (Q/

Goal is to find: 9 _ argminJ(G) 4 )\7‘
9 ——

Key idea: Define regularizer r(0) s.t. we tradeoff between fitting
the data and keeping the model simple

Choose form of r(0):

= Example: g-norm (usually p-norm) (2)

r(8) = [18]lq = {Z ||9m||q}

q 1(0) yields parame- name  optimization notes
ters that are...

0 [|8]lo =>_1(0,, #0) zerovalues Loreg. no good computa-
tional solutions
1 ||6]]1 =) |0ml] zero values Lireg. subdifferentiable

2 (||8]]2)% = > 02, small values L2reg. differentiable

18
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Poll 3

Question:
Suppose we are minimizing J’(6) where

T'(8) = J(0) + \r(6)

As A increases, the minimum of J’(0) will...

A. ...move towards the midpoint between J’(0)
and r(0)

B. ...move towards the minimum of{J(6

@ ...move towards the minimum oﬁ r(0)

D. ...move towards a theta vector of positive
infinities

E. ...move towards a theta vector of negative
infinities

F. ...staythesame




Regularization Exercise

In-class Exercise
1. Plot train error vs. regularization hyperparameter (cartoon)

S —

2. Plot test error vs . regularization hyperparameter (cartoon)

S

0 = argmin J(0) + A\r(0)
6

W\&‘elf\' Hu,\j

>

regularization hyperparameter, A
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Poll 4

Question:
Suppose we are minimizing J’(6) where
J'(0) = J(0)+ \r(0)

As we increase A from zero, the validation error
will...

A. ...increase

B. ...decrease

C. ...firstincrease, then decrease

.. first decrease, then increase

E. ...staythe same




Regularization

Don’t Regularize the Bias (Intercept) Parameter

* |n our models so far, the bias / intercept parameter is usually
denoted by 8, -- that is, the parameter for which we fixed

xO — 1
* Regularizers always avoid penalizing this bias / intercept
parameter

 Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

mening Data

* It's common to whiten each feature by subtracting its mean
and dividing by its variance

* For regularization, this helps all the features be penalized in

the same units
(e.g. convert both centimeters and kilometers to z-scores)




Regularization

Given objective function: J(8)
Goal is to find: é _ argman(G) 4+ A’T‘(g)
9 ——
Key idea: Define regularizer r(0) s.t. we tradeoff between fitting
the data and keeping the model simple

Choose form of r(0):

= Example: g-norm (usually p-norm)

r(8) = [18]lq = {Z ||9m||q}

q 1(0) yields parame- name  optimization notes
ters that are...
——>0 ||8]lo=31(6,, #0) zero values Loreg. no good computa-

tional solutions

1 ||6]]1 =) |0ml] zero value Lireg. subdifferentiable
— 52 (||6]]2) =62 @all v‘a@ L2reg. differentiable

(3)

Aot Convex
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Regularization




Regularization




L2 vs L1 Regularization

Combine original objective with penalty on parameters

w9 A wao A

® (&
N

Figures: Bishop, Ch 3.1.4
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L2 vs L1: Housing Price Example

Predict housing price from several features
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Figure: Emily Fox, University of Washington




L2 vs L1: Housing Price Example

Predict housing price from several features
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L2 vs L1: Housing Price Example

Predict housing price from several features
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L2 vs L1: Housing Price Example

Predict housing price from several features
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L2 vs L1: Housing Price Example

Predict housing price from several features

| —=— bedrooms
— —=— bathrooms
,:3 S —=— sqft_living
g — —— sqft_lot
floors
) —=— yr_built
+ 7 yr_renovat
- ‘g waterfront
D g-
U T I g = S
— hlﬁ'""ﬂ,
@ °1
9, 8 L,,;'c:";+
g - NI. [ | |
i 0 20000 100000 150000 200000

A

Figure: Emily Fox, University of Washington



L2 vs L1: Housing Price Example

Predict housing price from several features
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L2 vs L1: Housing Price Example

Predict housing price from several features
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L2 vs L1: Housing Price Example

Predict housing price from several features
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Regularization as MAP

L1 and L2 regularization can be interpreted as maximum a-posteriori
(MAP) estimation of the parameters

To be discussed later in the course...
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Takeaways

1. Nonlinear basis functions allow linear models (e.g. Linear
Regression, Logistic Regression) to capture nonlinear aspects of the
original input

2. Nonlinear features require no changes to the model (i.e. just
preprocessing)

3. Regularization helps to avoid overfitting

4. (Regularization and MAP estimation are equivalent for
appropriately chosen priors)

Slide credit: CMU MLD Matt Gormley
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Additional Slides



Logistic Regression with Nonlinear Features

Jupyter notebook demo 7 CtdO\ /O ﬁ 9T

g—
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Example: Logistic Regression

Training

Data 1-

For this example, we construct
nonlinear features (i.e. feature
engineering)

: : Specifically, we add polynomials up
SRl I to order 9 of the two original
' * features x, and x,

Thus our classifier is linear in the
high-dimensional feature space,
but the decision boundary is
nonlinear when visualized in low-
dimensions (i.e. the original two
dimensions)

44



Example: Logistic Regression

error

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

1077

1074

1071

lambda

102

10°

108
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Example: Logistic Regression /

Classification with Logistic Regression (lambda=1e-05)

Slide credit: CMU MLD Matt Gormley

le—5
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.0001)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.001)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Slide credit: CMU MLD Matt Gormley

Classification with Logistic Regression (lambda=10000)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100000)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression ¢« e 6

Classification with Logistic Regression (lambda=1e+06)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+07)

Slide credit: CMU MLD Matt Gormley
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Example: Logistic Regression

error

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

1077

1074

1071

lambda

102

10°

108
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