

# Announcements

## Struggling?

- Don't struggle alone
- Come talk to Pat
  - OH
  - 1-on-1 appointment calendar
  - Private message on Piazza with set of times to meet

# Announcements

## Assignments

- HW5
  - Fri, 2/24, 11:59 pm

## Midterm

- Wed, 3/1, in-class
- Details will be coming on Piazza
  - Logistics — *Scope*
  - Learning objectives for Midterm 1 topics
  - Review session
  - Practice exam problems

# Announcements

## Struggling?

- Don't struggle alone
- Come talk to Pat
  - OH
  - 1-on-1 appointment calendar
  - Private message on Piazza with set of times to meet

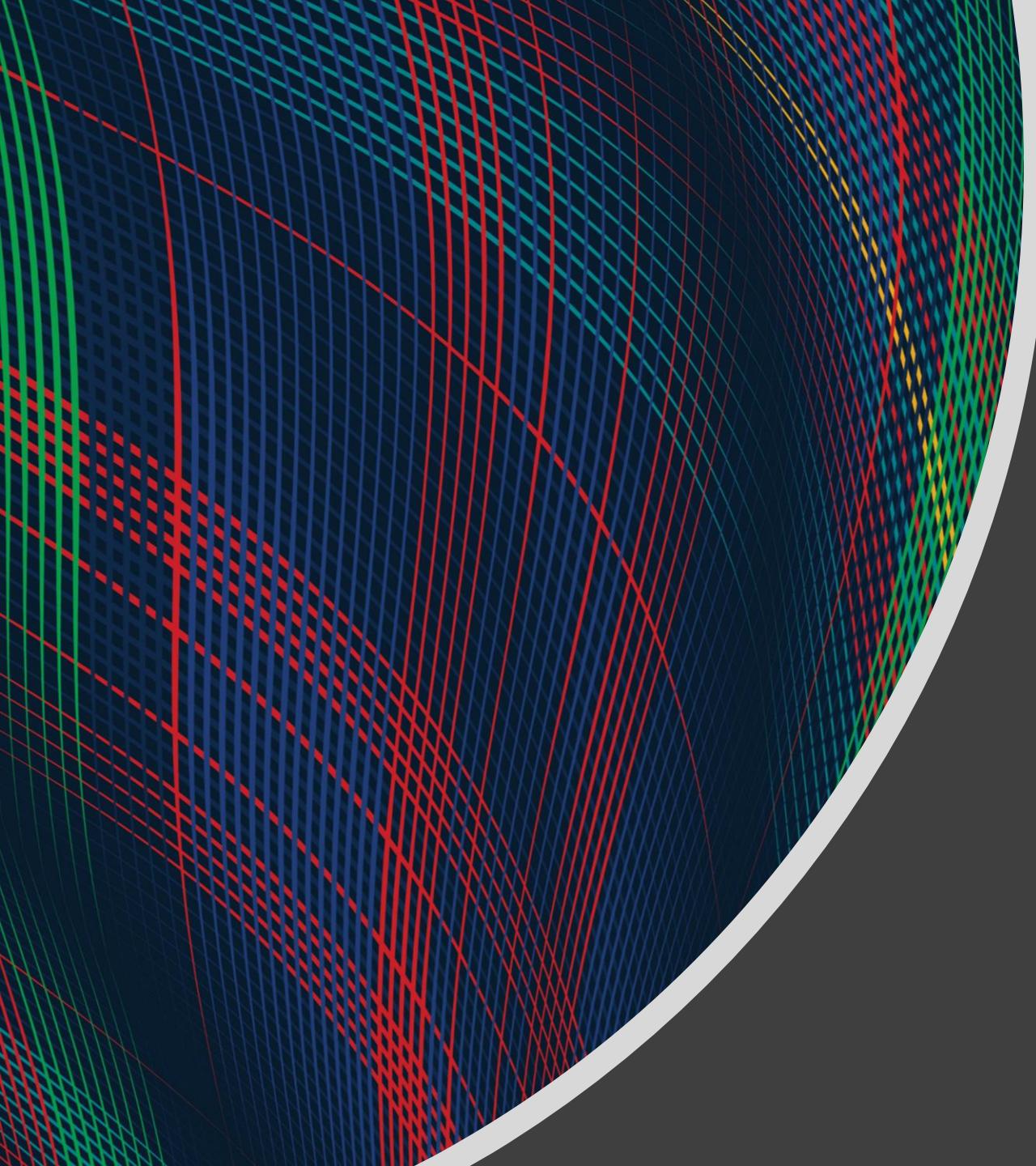
# Plan

## Today

- Wrap-up neural nets (for now)
- Regularization
  - Make sure they aren't too powerful ☺

# Wrap up Neural Nets

Switch to neural nets slides



10-315  
Introduction to ML

Regularization

Instructor: Pat Virtue

## Poll 1

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7 + \theta_8 x^8$$

Model parameters:

$$\theta = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8]^T$$

A.  $\theta_A = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^T$

B.  $\theta_B = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^T$

# Poll 1

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

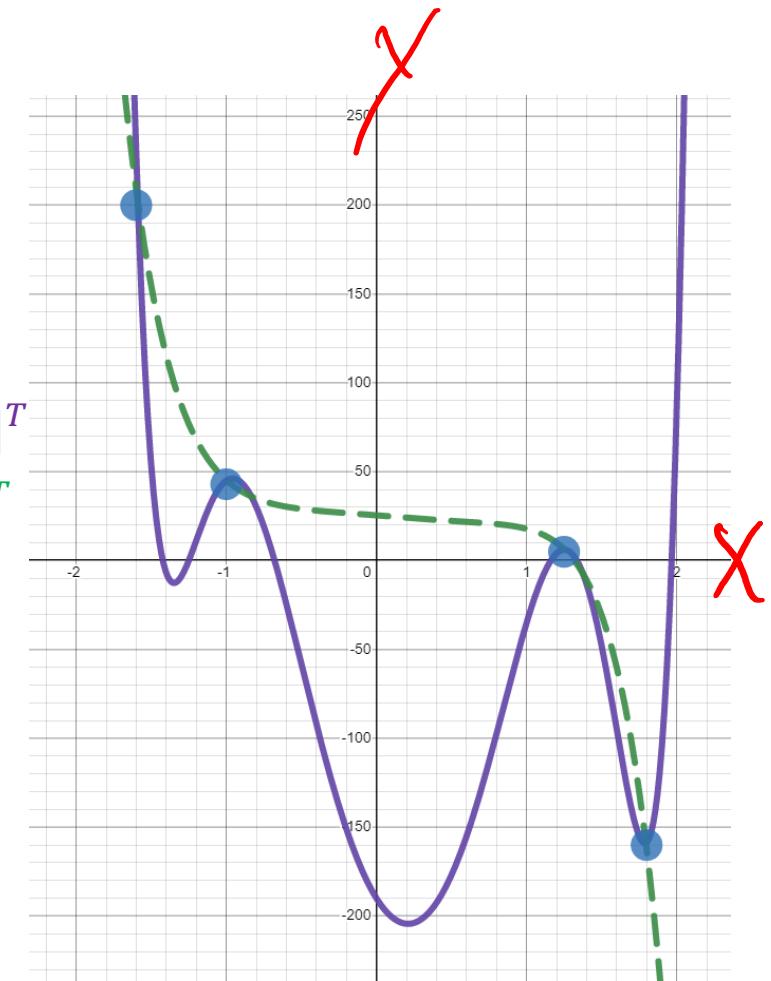
$$y = h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7 + \theta_8 x^8$$

Model parameters:

$$\theta = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8]^T$$

A.  $\theta_A = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^T$

B.  $\theta_B = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^T$

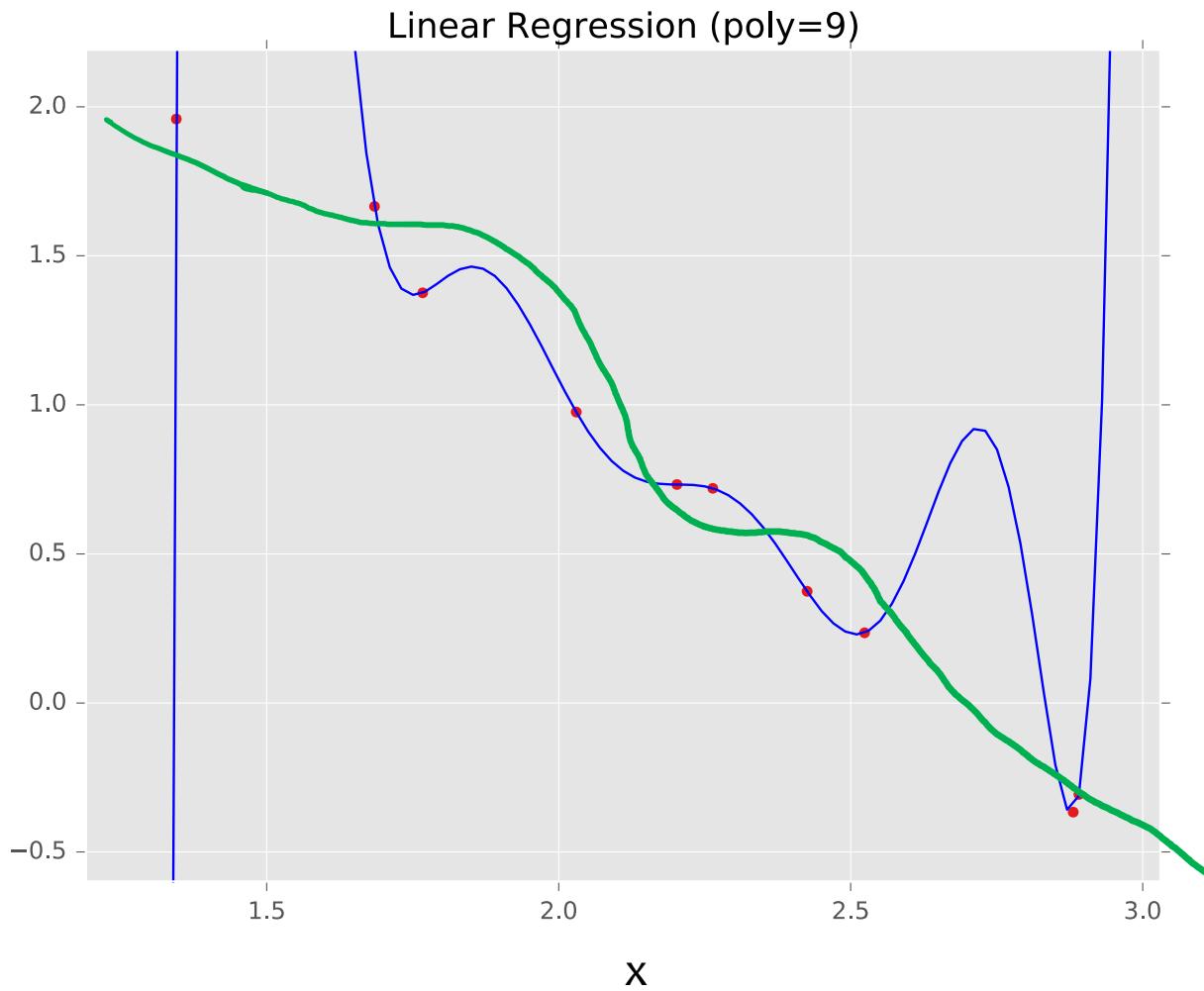


# Example: Linear Regression

**Goal:** Learn  $y = \mathbf{w}^T f(\mathbf{x}) + b$   
where  $f(\cdot)$  is a polynomial  
basis function

| $y$ | $x$ | $x^2$     | ... | $x^9$     |
|-----|-----|-----------|-----|-----------|
| 2.0 | 1.2 | $(1.2)^2$ | ... | $(1.2)^9$ |
| 1.3 | 1.7 | $(1.7)^2$ | ... | $(1.7)^9$ |
| 0.1 | 2.7 | $(2.7)^2$ | ... | $(2.7)^9$ |
| 1.1 | 1.9 | $(1.9)^2$ | ... | $(1.9)^9$ |

true “unknown”  
target function is  
linear with  
negative slope  
and gaussian  
noise



# Symptoms of Overfitting

|            | $M = 0$ | $M = 1$ | $M = 3$ | $M = 9$     |
|------------|---------|---------|---------|-------------|
| $\theta_0$ | 0.19    | 0.82    | 0.31    | 0.35        |
| $\theta_1$ |         | -1.27   | 7.99    | 232.37      |
| $\theta_2$ |         |         | -25.43  | -5321.83    |
| $\theta_3$ |         |         | 17.37   | 48568.31    |
| $\theta_4$ |         |         |         | -231639.30  |
| $\theta_5$ |         |         |         | 640042.26   |
| $\theta_6$ |         |         |         | -1061800.52 |
| $\theta_7$ |         |         |         | 1042400.18  |
| $\theta_8$ |         |         |         | -557682.99  |
| $\theta_9$ |         |         |         | 125201.43   |

# Model Preference

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \underline{x_1} + \theta_2 \underline{x_2} + \underline{\theta_3 x_3} + \theta_4 x_4 + \theta_5 x_5 + \theta_6 x_6 + \theta_7 x_7 + \theta_8 x_8$$

~~1~~

Model parameters:

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8]^T$$

A.  $\boldsymbol{\theta}_A =$  [  
[-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]<sup>T</sup>

B.  $\boldsymbol{\theta}_B =$  ]  
[ 25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]<sup>T</sup>

What if  $\mathbf{x}$  was a vector of input feature measurements (rather than polynomial features)?

# Motivation: Regularization

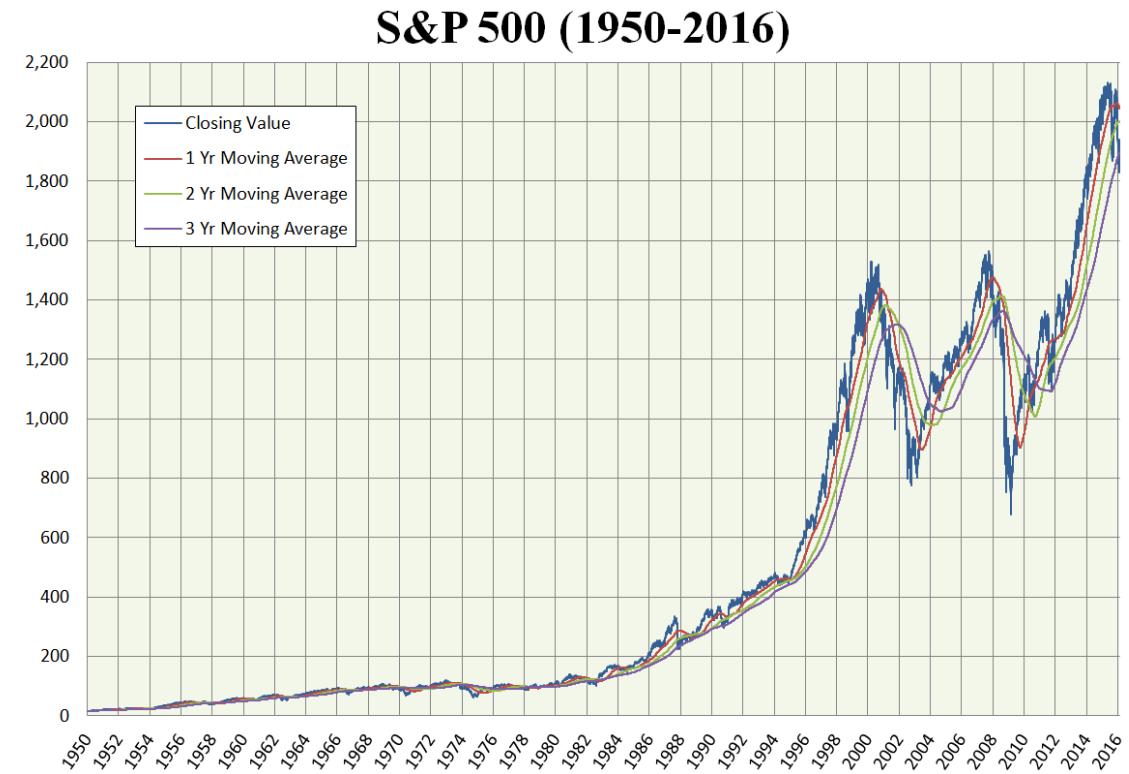
## Example: Stock Prices

Suppose we wish to predict Google's stock price at time  $t+1$

**What features should we use?**  
(putting all computational concerns aside)

- Stock prices of all other stocks at times  $t, t-1, t-2, \dots, t-k$
- Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets

Do we believe that **all** of these features are going to be useful?



# Overfitting

**Definition:** The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- K-NN (e.g. when  $k$  is small)
- Linear Regression (e.g. with nonlinear features or extraneous features)
- Logistic Regression (e.g. with nonlinear features or extraneous features)
- Neural networks

# Motivation: Regularization

**Occam's Razor:** prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be **simple**?

1. small number of features (**model selection**)
2. small number of “important” features (**shrinkage**)
3. *Small magnitude of features*

# Regularization

Key idea:

Define regularizer  $r(\theta)$  that we will add to our minimization objective to keep the model simple

$r(\theta)$  should be:

- Small for a simple model
- Large for a complex model

L2 norm: square-root of sum of squares

L1 norm: sum of absolute values

L0 norm: count of non-zero values

$$r(\theta) = \|\theta\|_2 = \left( \sum_{i=1}^M (\theta_i)^2 \right)^{1/2}$$

# Regularization

|                                                                                  | $\ \theta\ _2$ | $\ \theta\ _1$ | $\ \theta\ _0$ |
|----------------------------------------------------------------------------------|----------------|----------------|----------------|
| A. $\theta_A = [\underline{6}, \underline{3}, \underline{-4}, \underline{-2}]^T$ | 8.06           | 15             | 4              |
| B. $\theta_B = [0, 3, -4, 0]^T$                                                  | 5              | 7              | 2              |

## Poll 2

Which model do you prefer?

A.  $\theta_A = [-190.0, -135.0, 310.0, 45.0]^T$  Training error: 0.0

B.  $\theta_B = [0.0, 0.0, 0.0, 0.0]^T$  Training error: 34.2

$r(\theta)$  e.g.  $\|\theta\|_2$   
model complex:  $\dagger$

$J(\theta) = \hat{R}(h)$   
training error

Regularization  $(1-\alpha) J(\theta) + \alpha r(\theta)$

Given objective function:  $J(\theta)$

Goal is to find:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \underline{J(\theta)} + \lambda r(\theta)$$

Key idea: Define regularizer  $r(\theta)$  s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of  $r(\theta)$ :

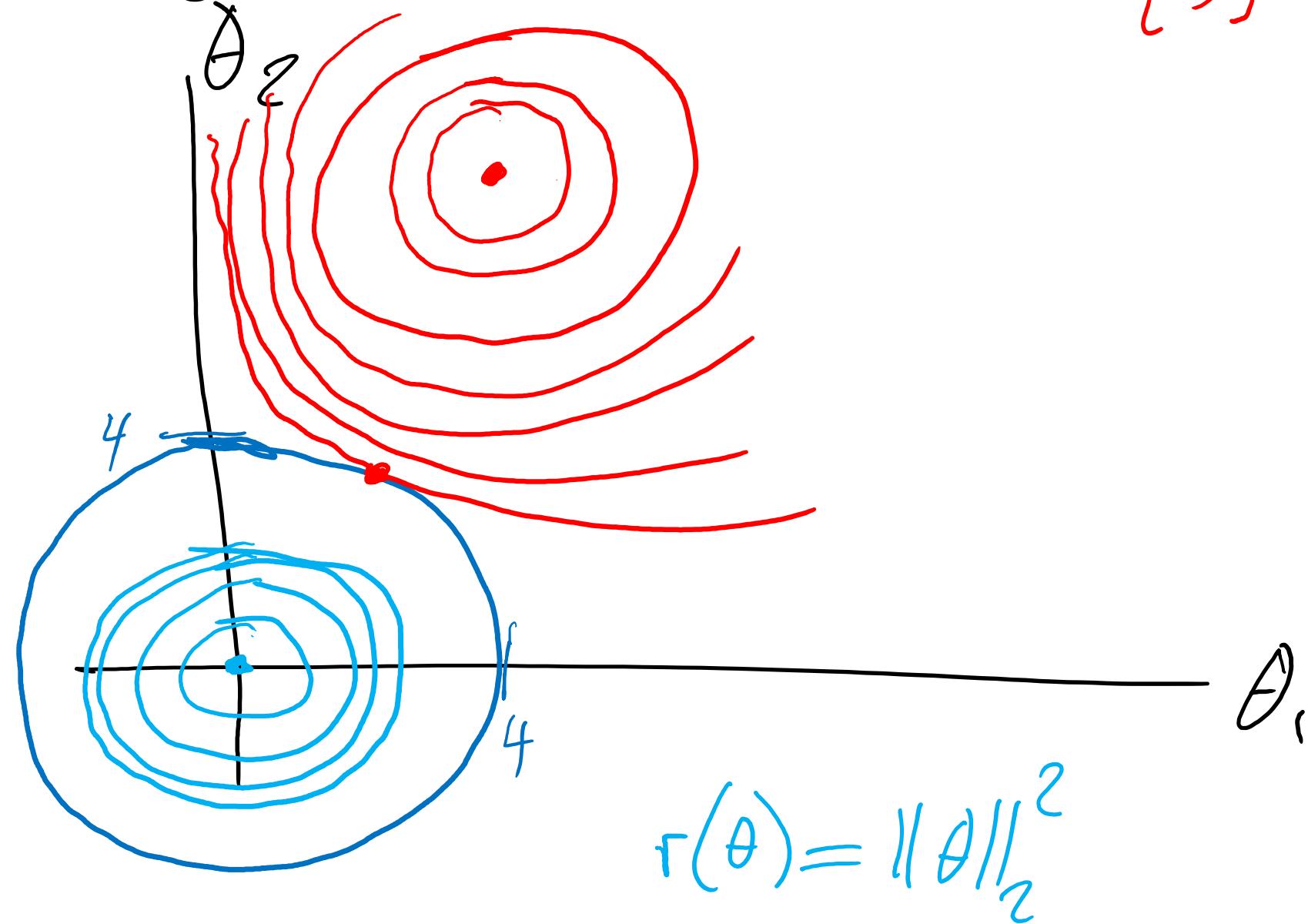
- Example: q-norm (usually p-norm)

$$r(\theta) = \|\theta\|_q = \left[ \sum_{m=1}^M \|\theta_m\|^q \right]^{\left(\frac{1}{q}\right)}$$

| $q$ | $r(\theta)$                                       | yields<br>parameters that are... | name    | optimization notes              |
|-----|---------------------------------------------------|----------------------------------|---------|---------------------------------|
| 0   | $\ \theta\ _0 = \sum \mathbb{1}(\theta_m \neq 0)$ | zero values                      | Lo reg. | no good computational solutions |
| 1   | $\ \theta\ _1 = \sum  \theta_m $                  | zero values                      | L1 reg. | subdifferentiable               |
| 2   | $(\ \theta\ _2)^2 = \sum \theta_m^2$              | small values                     | L2 reg. | differentiable                  |

Regularization

$$J(\theta) \quad \theta = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$



# Poll 3

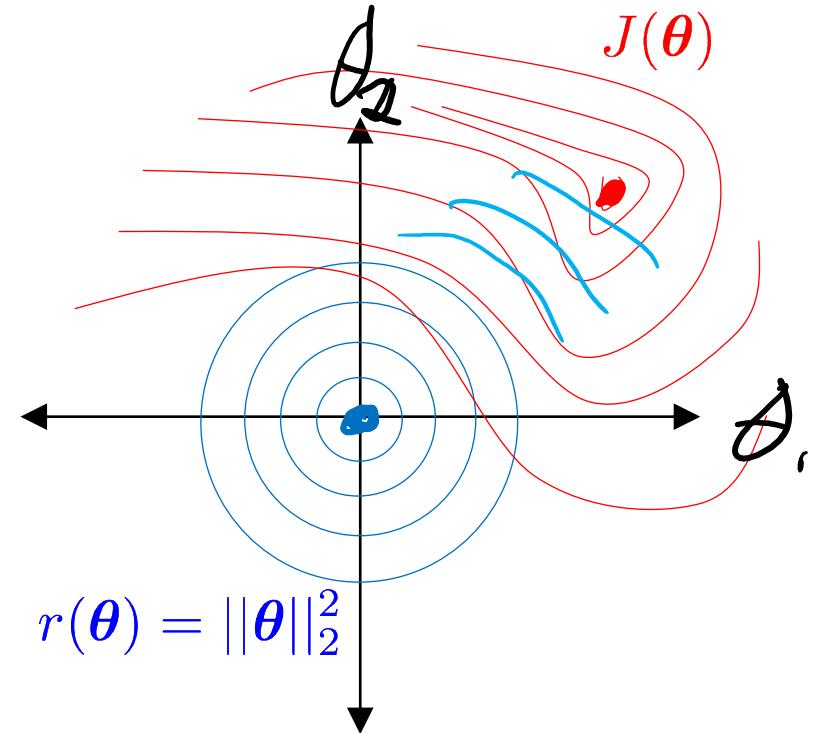
## Question:

Suppose we are minimizing  $J'(\theta)$  where

$$J'(\theta) = J(\theta) + \lambda r(\theta)$$

As  $\lambda$  increases, the minimum of  $J'(\theta)$  will...

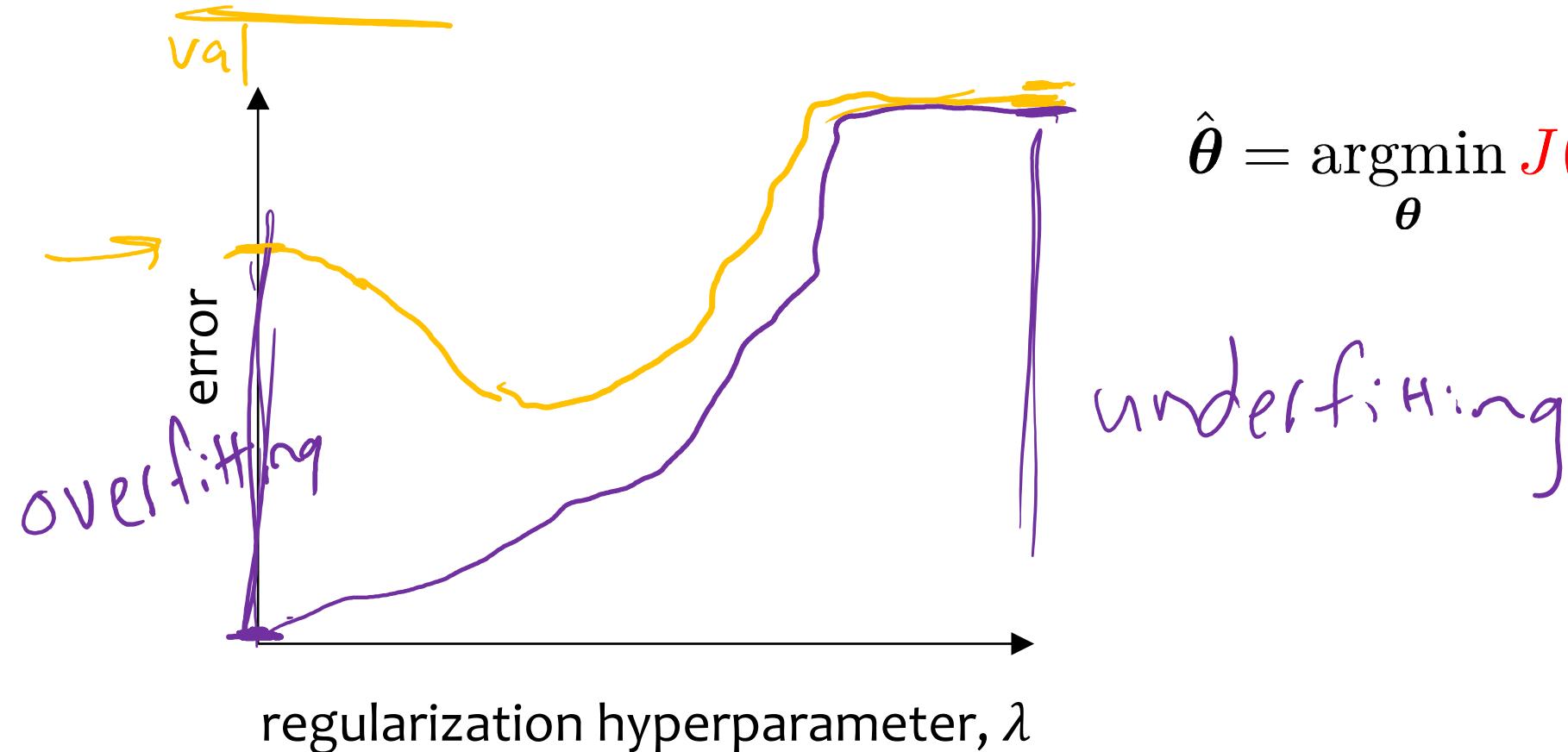
- A. ... move towards the midpoint between  $J(\theta)$  and  $r(\theta)$
- B. ... move towards the minimum of  $J(\theta)$
- C.** ... move towards the minimum of  $r(\theta)$
- D. ... move towards a theta vector of positive infinities
- E. ... move towards a theta vector of negative infinities
- F. ... stay the same



# Regularization Exercise

## In-class Exercise

1. Plot train error vs. regularization hyperparameter (cartoon)
2. Plot test error vs. regularization hyperparameter (cartoon)



$$\hat{\theta} = \operatorname{argmin}_{\theta} J(\theta) + \lambda r(\theta)$$

# Poll 4

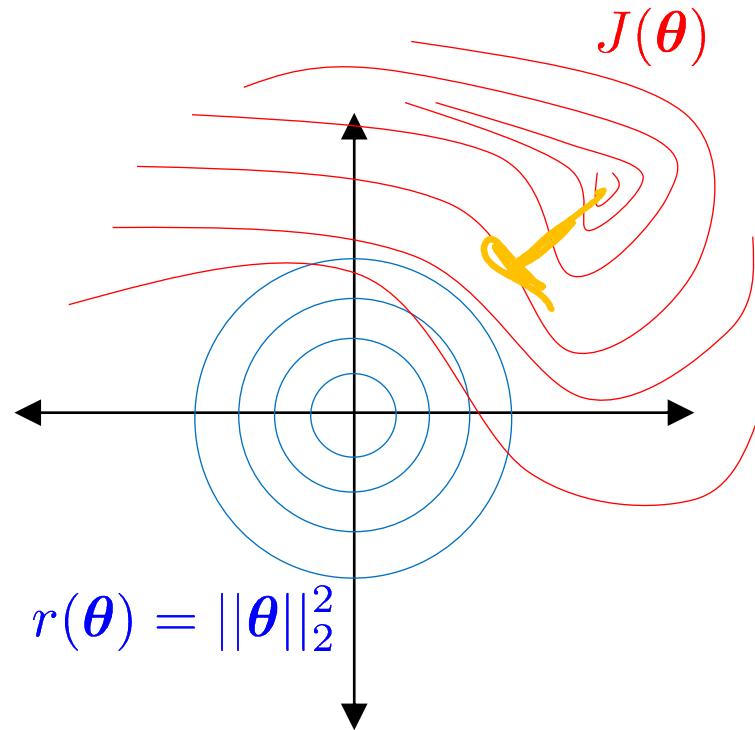
## Question:

Suppose we are minimizing  $J'(\theta)$  where

$$J'(\theta) = J(\theta) + \lambda r(\theta)$$

As we increase  $\lambda$  from zero, the **validation** error will...

- A. ...increase
- ~~B. ...decrease~~
- C. ...first increase, then decrease
- D. ...first decrease, then increase
- E. ...stay the same



# Regularization

## Don't Regularize the Bias (Intercept) Parameter

- In our models so far, the bias / intercept parameter is usually denoted by  $\theta_0$  -- that is, the parameter for which we fixed  $x_0 = 1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

## Whitening Data

- It's common to *whiten* each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

# Regularization

Given objective function:  $J(\theta)$

Goal is to find:

$$\hat{\theta} = \operatorname{argmin}_{\theta} J(\theta) + \lambda \underline{r(\theta)}$$

Key idea: Define regularizer  $r(\theta)$  s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of  $r(\theta)$ :

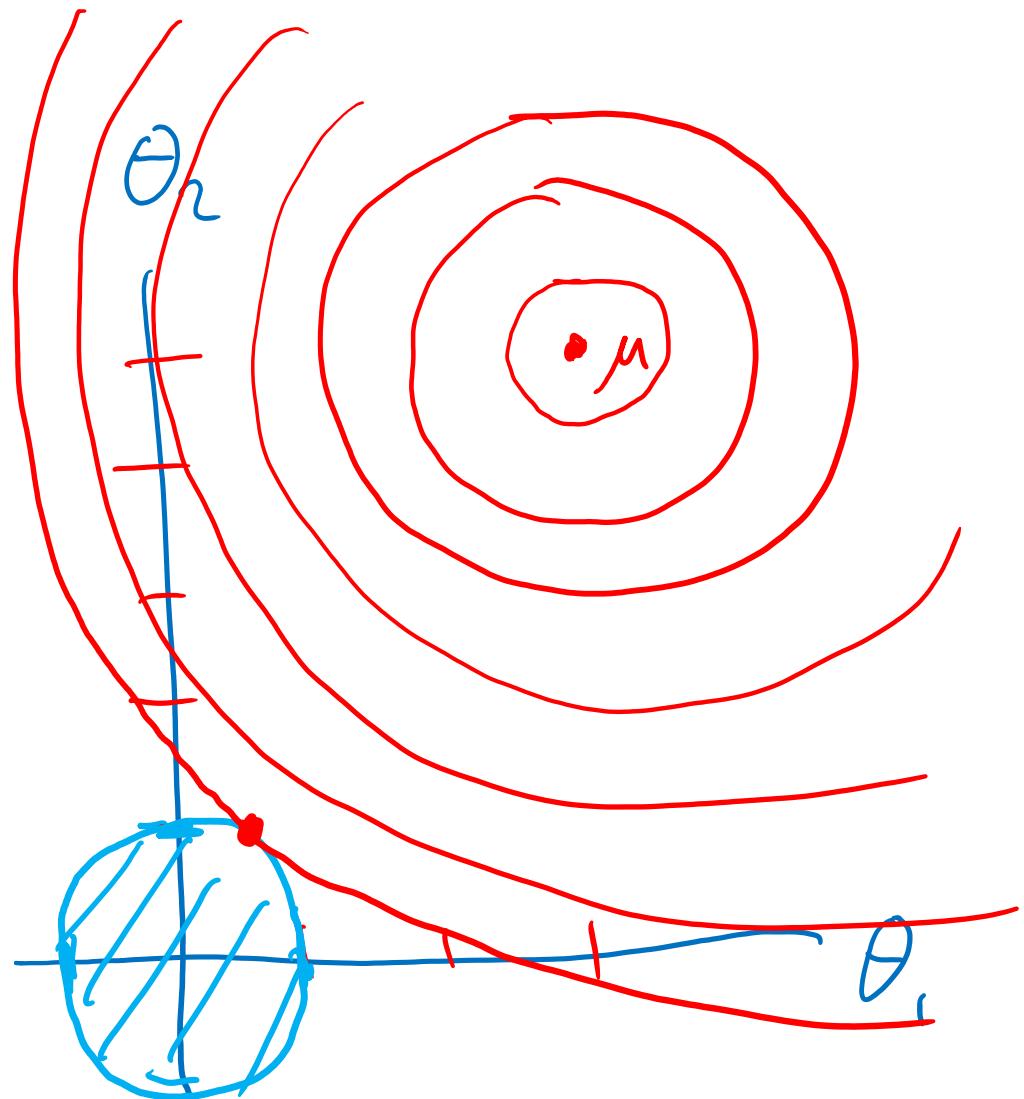
- Example: q-norm (usually p-norm)

$$r(\theta) = \|\theta\|_q = \left[ \sum_{m=1}^M \|\theta_m\|^q \right]^{\left(\frac{1}{q}\right)}$$

| $q$ | $r(\theta)$                                       | yields<br>parameters that are... | name    | optimization notes              |
|-----|---------------------------------------------------|----------------------------------|---------|---------------------------------|
| 0   | $\ \theta\ _0 = \sum \mathbb{1}(\theta_m \neq 0)$ | zero values                      | Lo reg. | no good computational solutions |
| 1   | $\ \theta\ _1 = \sum  \theta_m $                  | zero values                      | L1 reg. | subdifferentiable               |
| 2   | $(\ \theta\ _2)^2 = \sum \theta_m^2$              | small values                     | L2 reg. | differentiable                  |

not convex

# Regularization



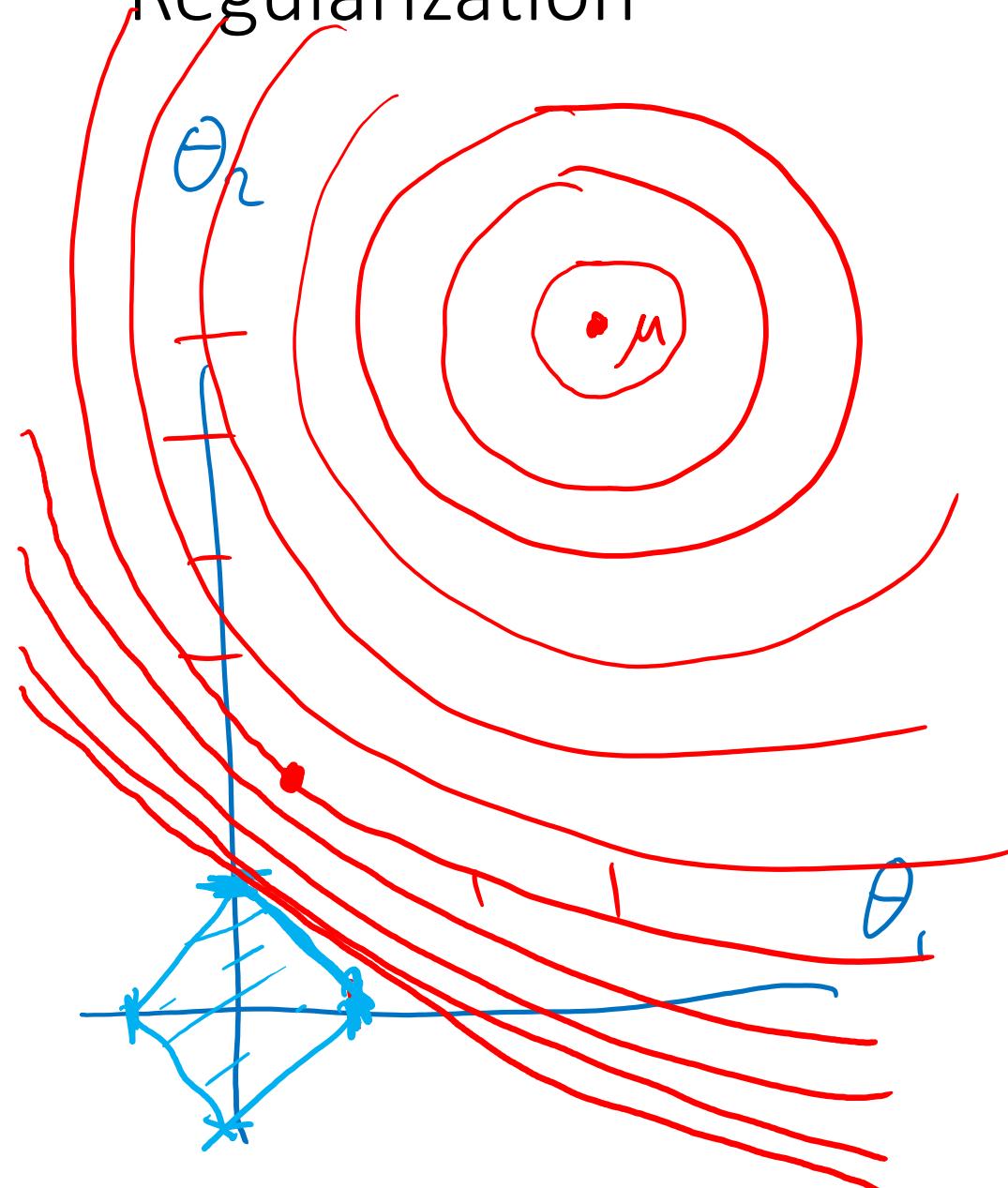
$$J(\theta_1, \theta_2) = \|\vec{\theta} - \vec{\mu}\|$$

$$\mu = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$\min_{\theta} J(\theta_1, \theta_2)$$

$$\text{s.t. } \|\theta\|_2^2 \leq 1$$

# Regularization



$$J(\theta_1, \theta_2) = \|\vec{\theta} - \vec{\mu}\|$$

$$\mu = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

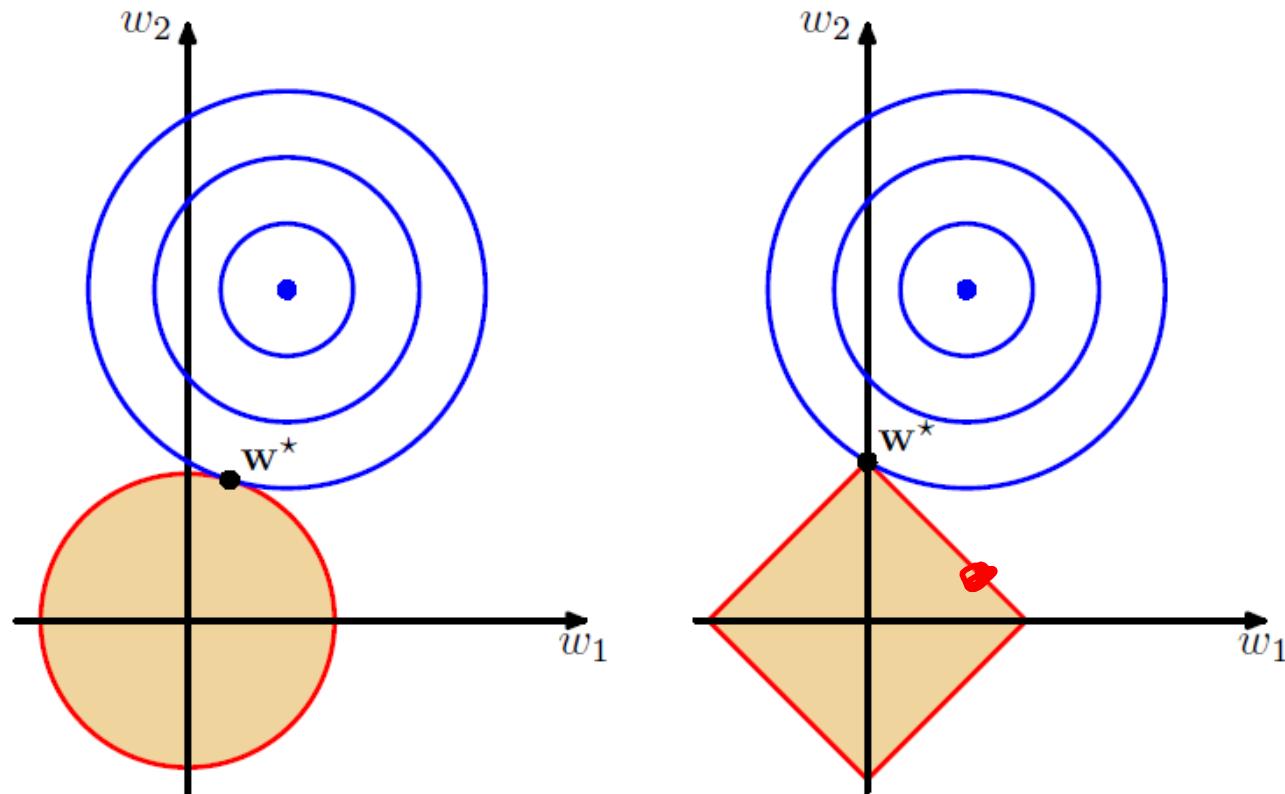
$$\min_{\theta} J(\theta_1, \theta_2)$$

$$\text{s.t. } \|\theta\|_1 \leq 1$$

$$|\theta_1| + |\theta_2|$$

# L2 vs L1 Regularization

Combine original objective with penalty on parameters



# L2 vs L1: Housing Price Example

Predict housing price from several features

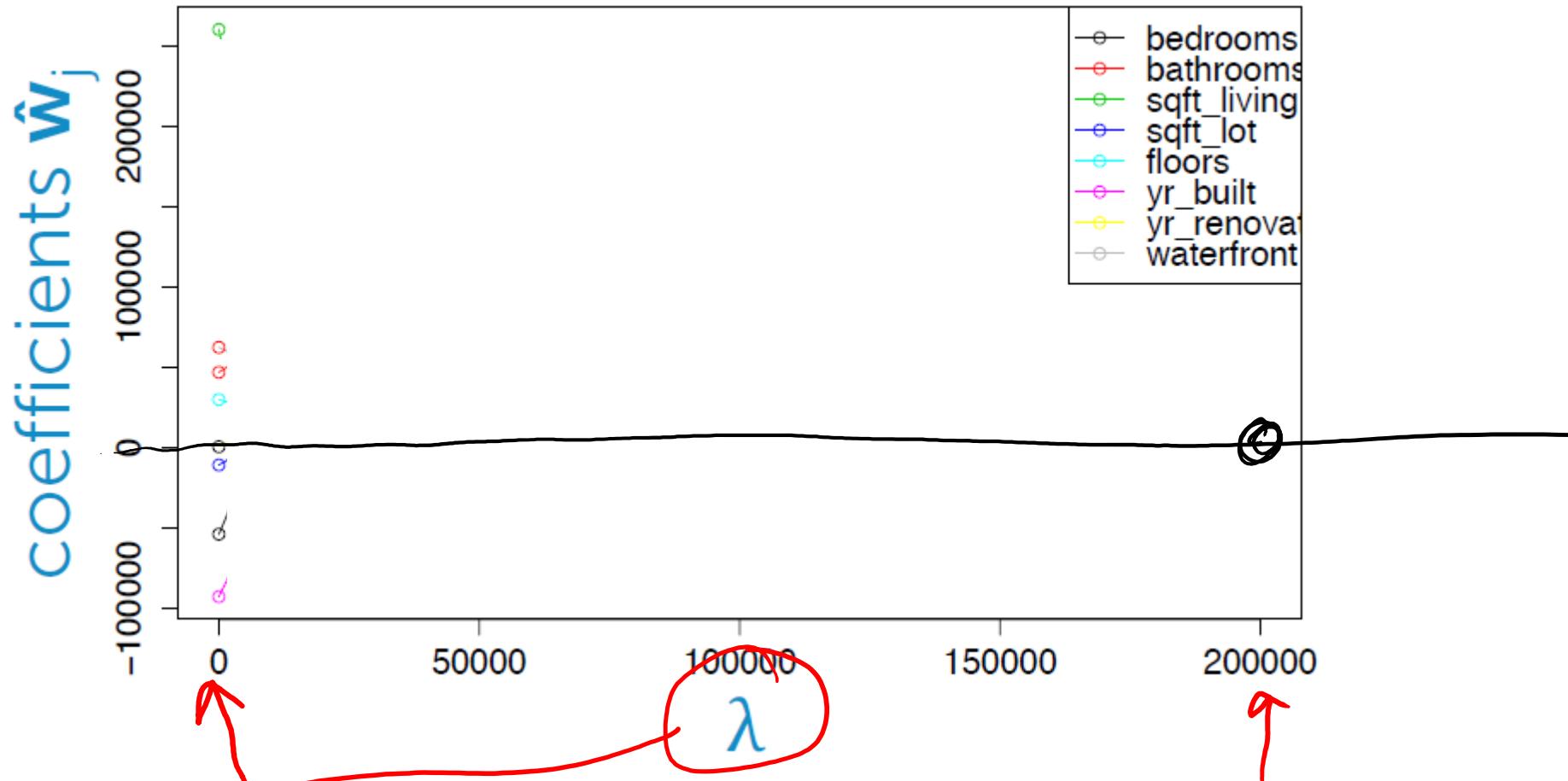
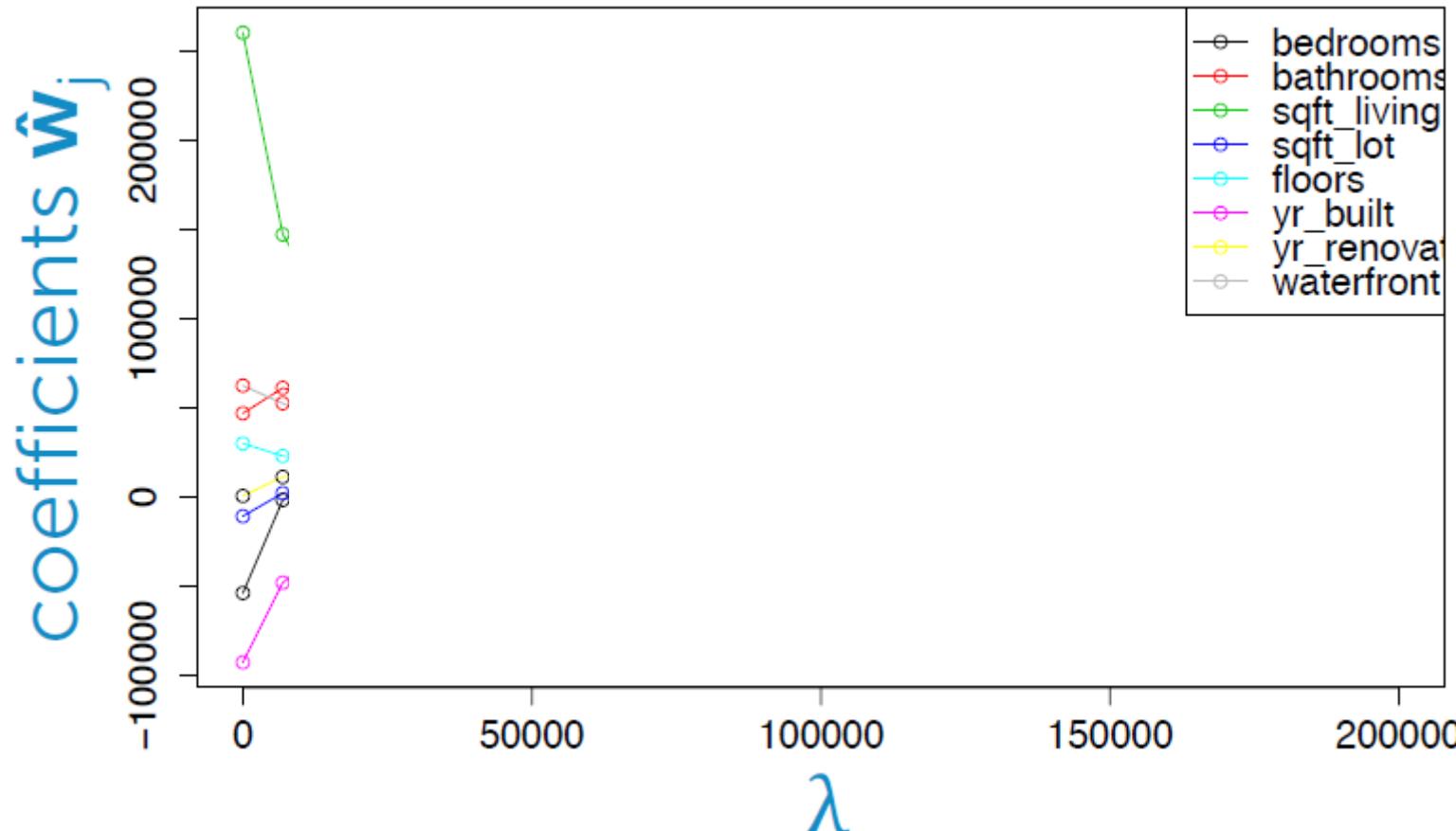


Figure: Emily Fox, University of Washington

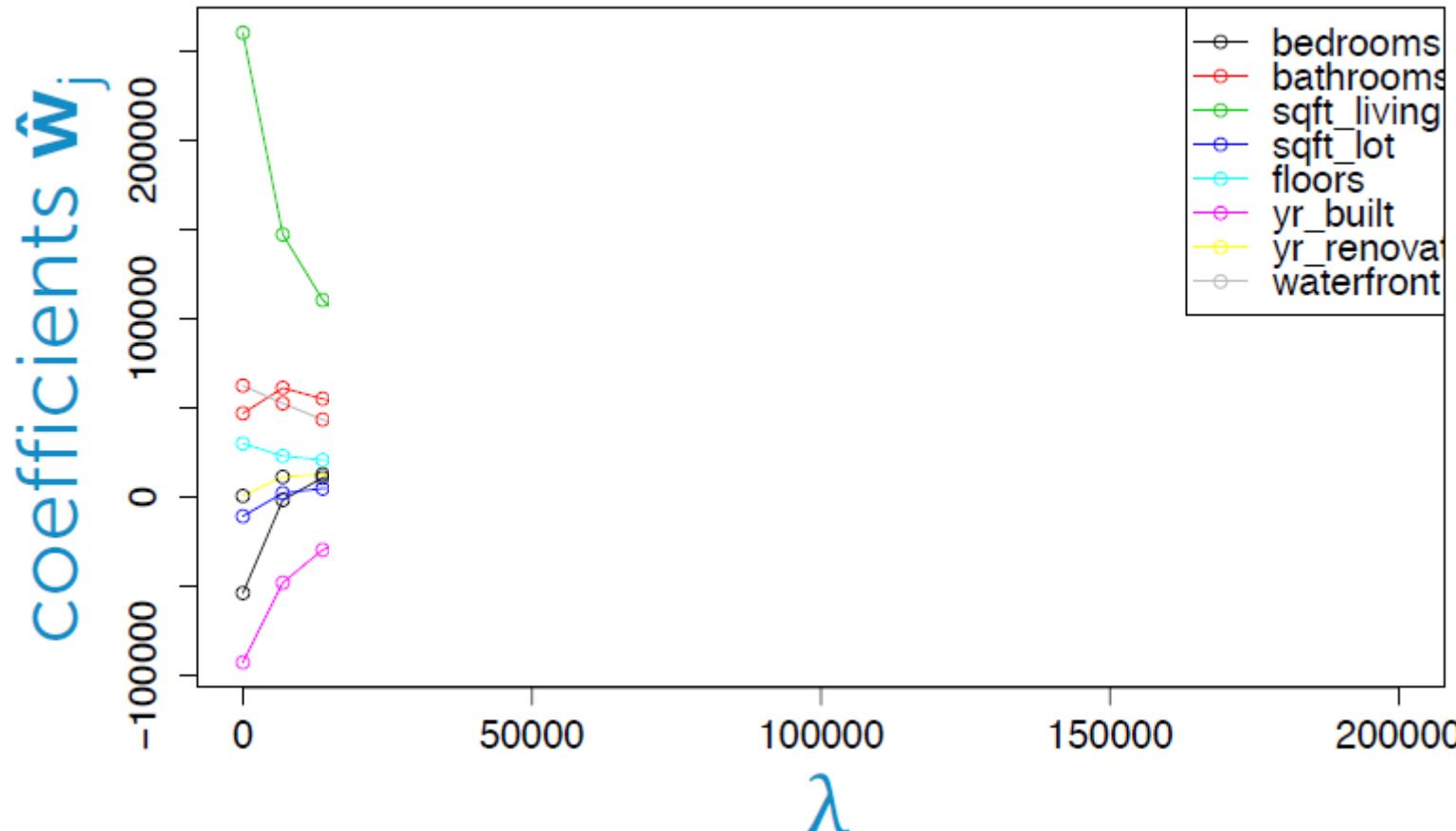
# L2 vs L1: Housing Price Example

Predict housing price from several features



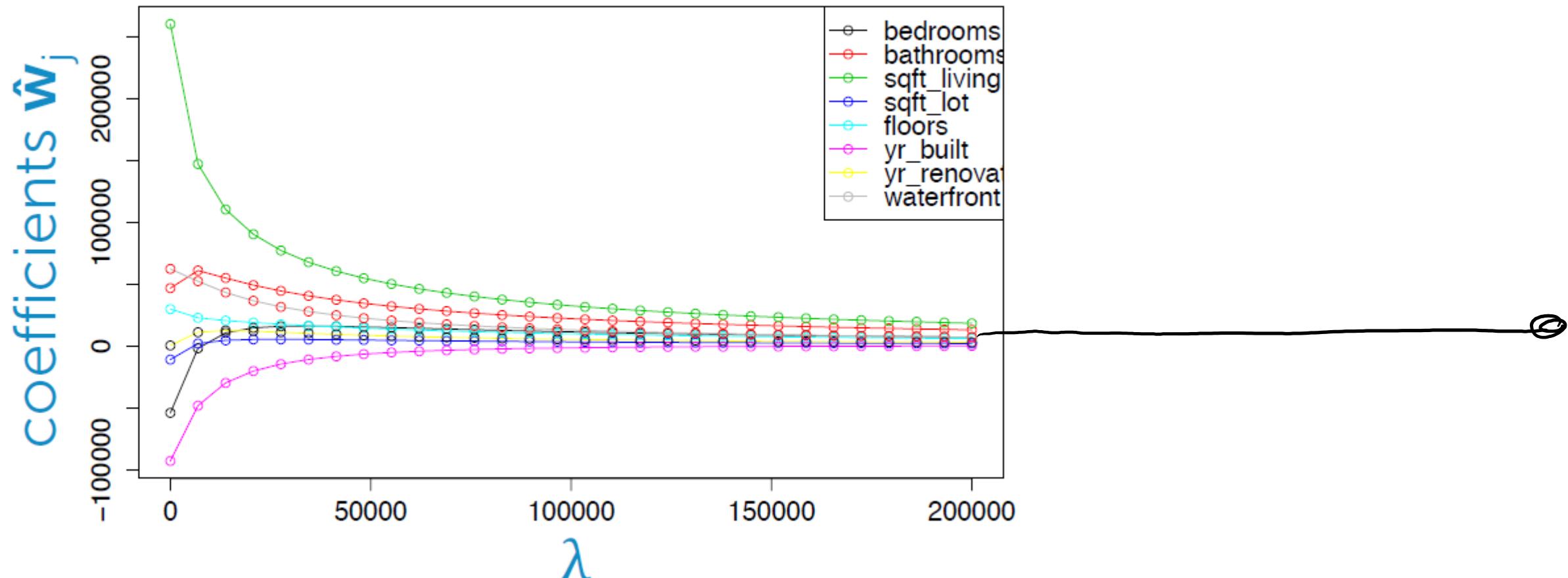
# L2 vs L1: Housing Price Example

Predict housing price from several features



# L2 vs L1: Housing Price Example

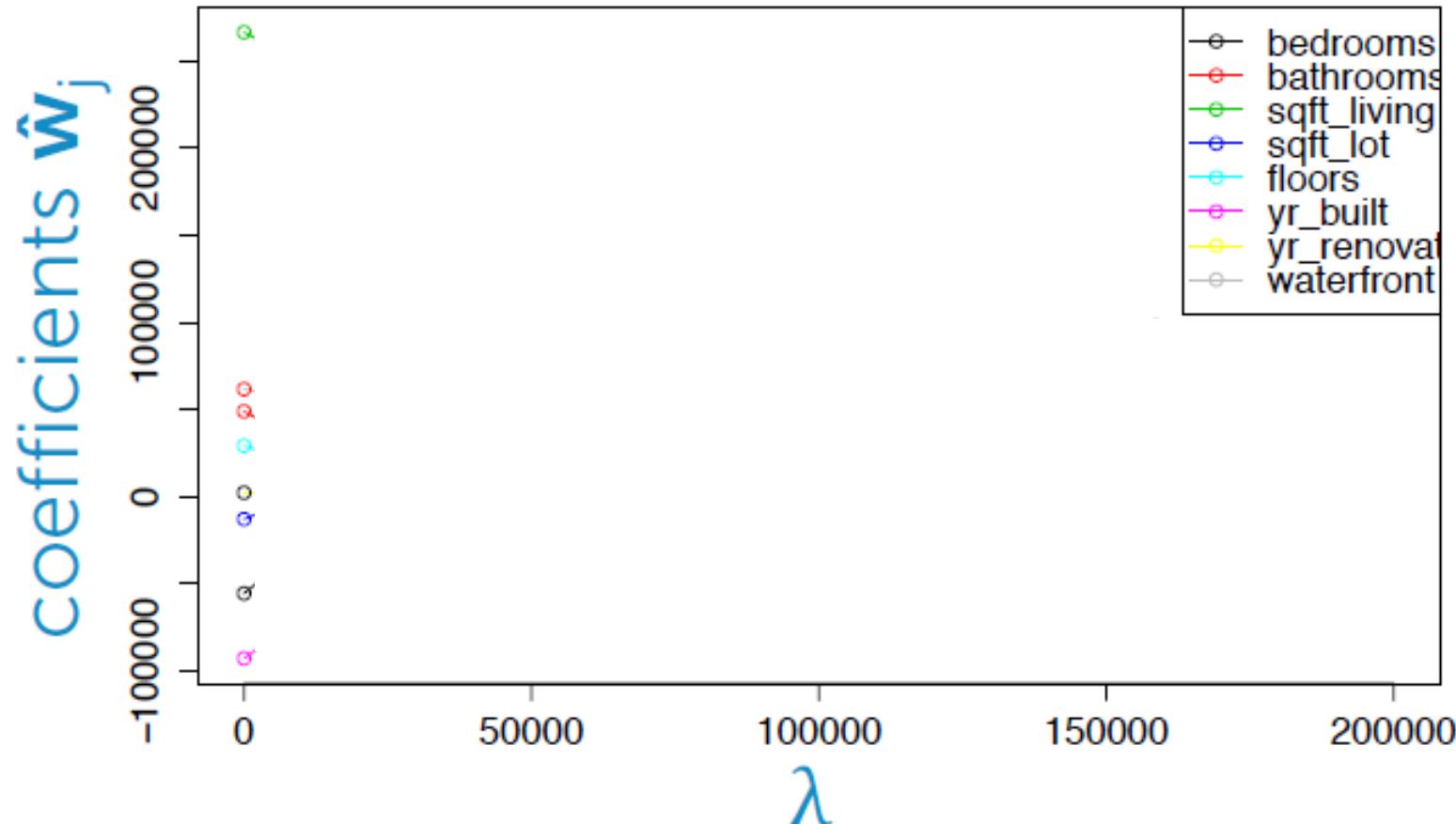
Predict housing price from several features



# L2 vs L1: Housing Price Example

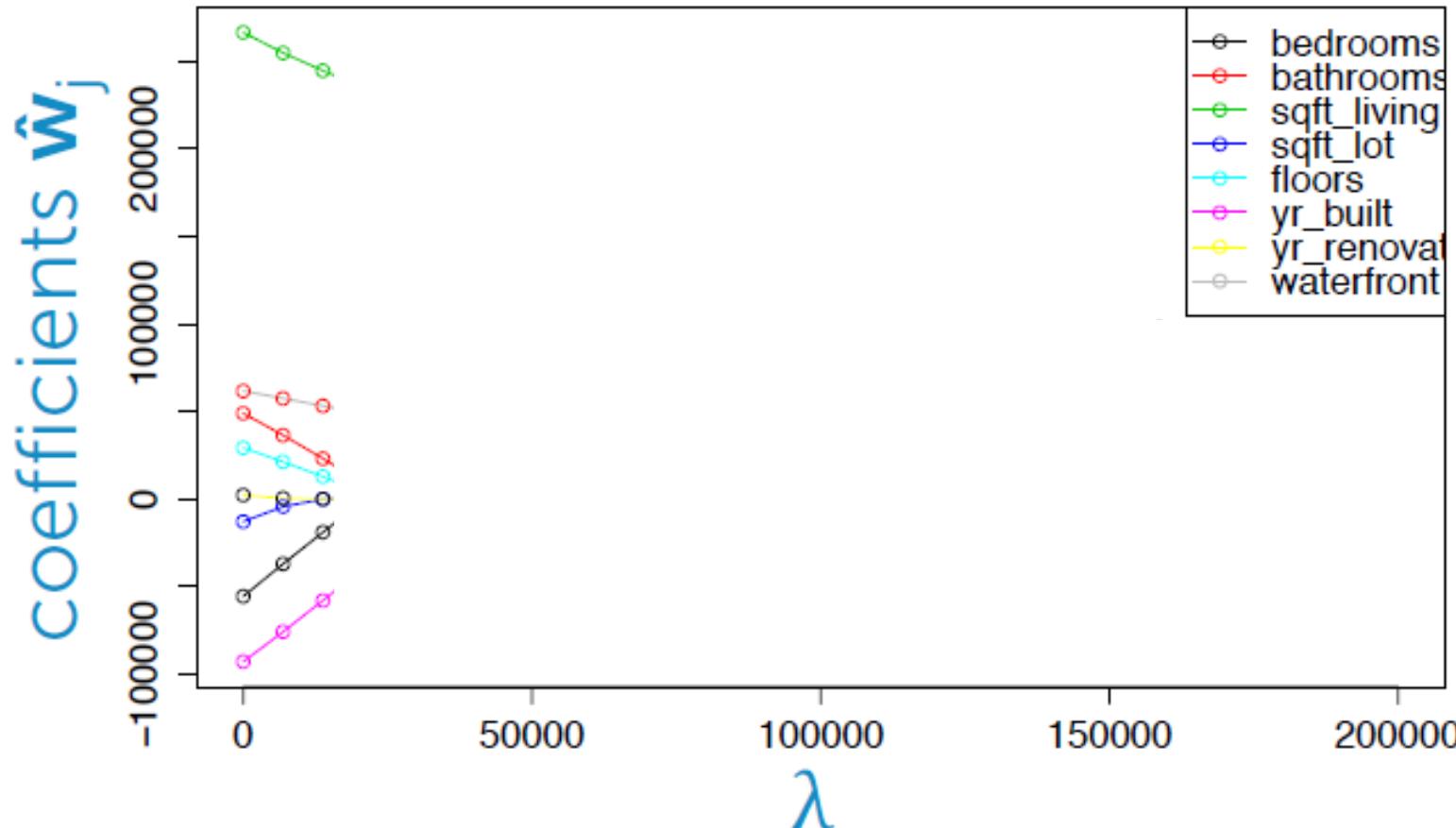
Predict housing price from several features

$$J(\theta) + \lambda \|\vec{w}\|_1$$



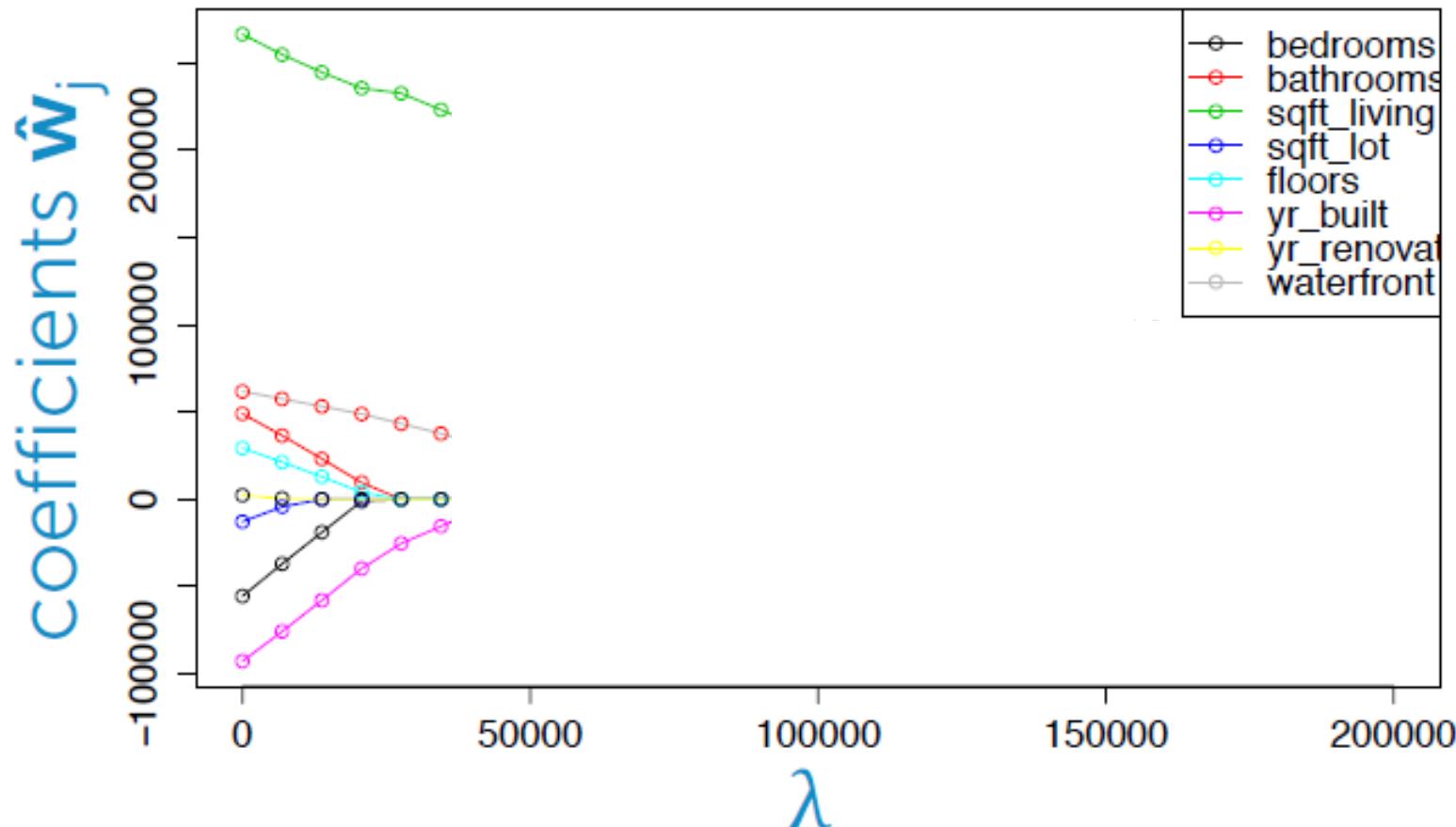
# L2 vs L1: Housing Price Example

Predict housing price from several features



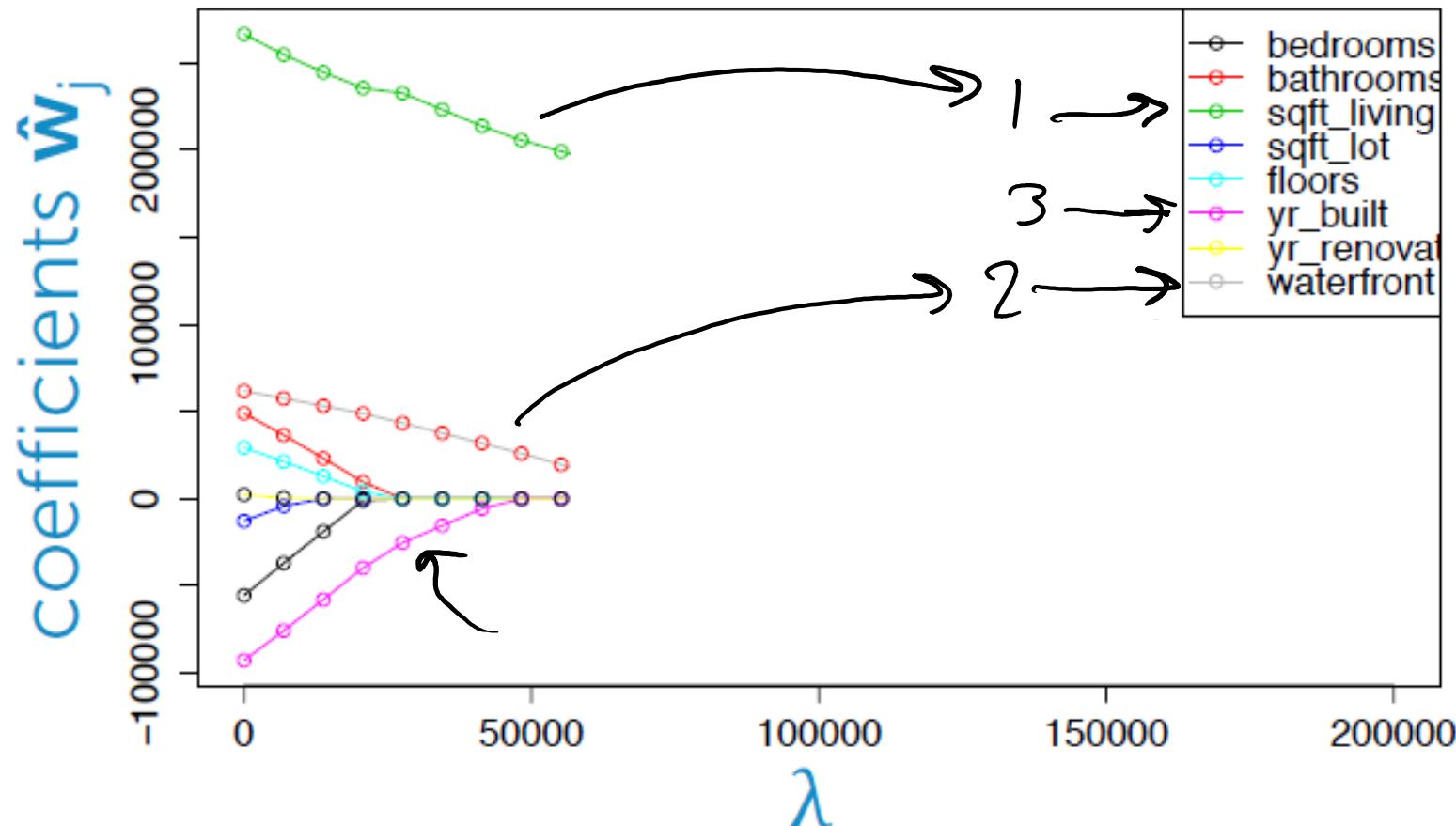
# L2 vs L1: Housing Price Example

Predict housing price from several features



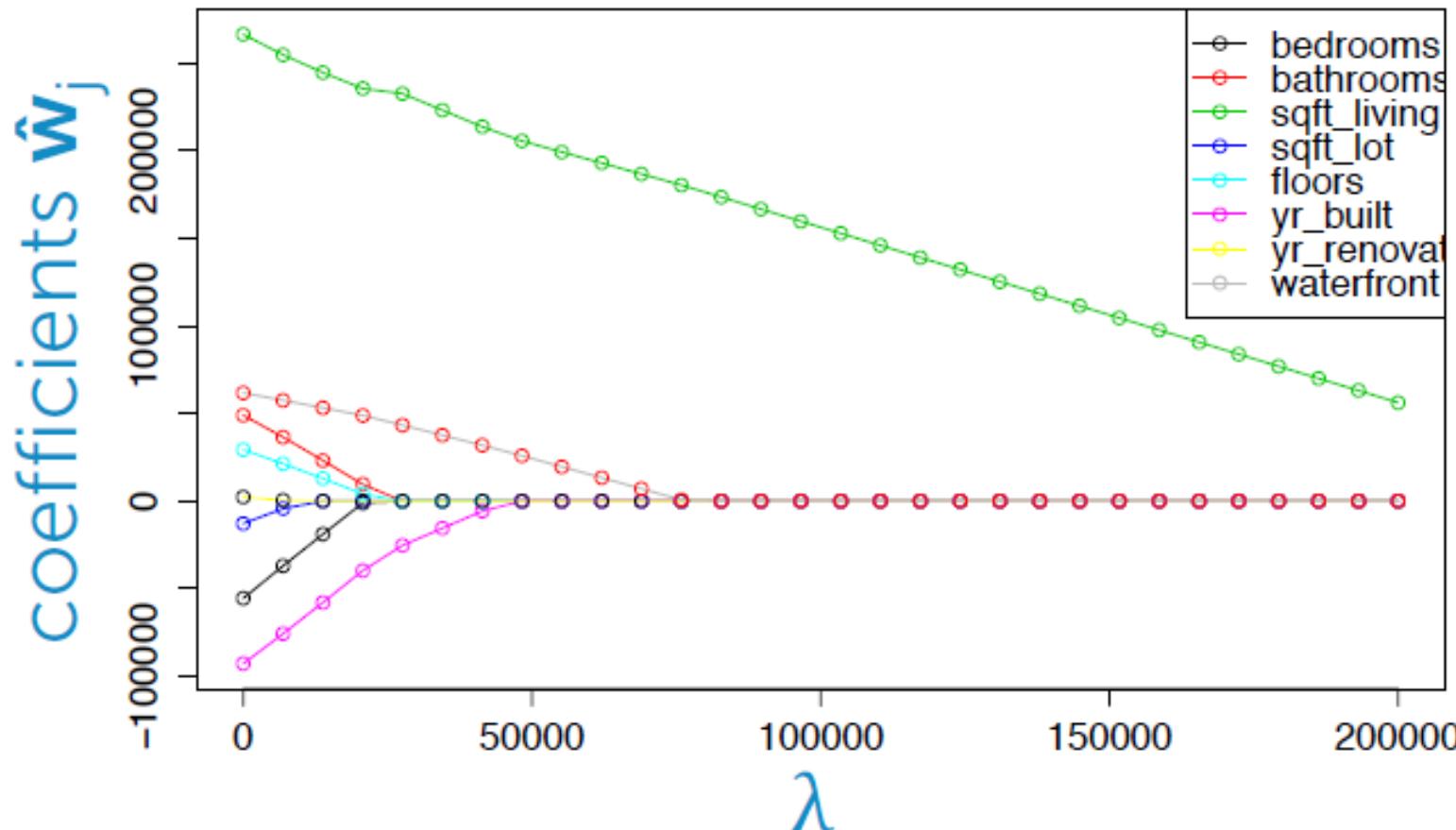
# L2 vs L1: Housing Price Example

Predict housing price from several features



# L2 vs L1: Housing Price Example

Predict housing price from several features



# Regularization as MAP

L1 and L2 regularization can be interpreted as **maximum a-posteriori (MAP) estimation** of the parameters

To be discussed later in the course...

# Optimization

# Takeaways

1. **Nonlinear basis functions** allow **linear models** (e.g. Linear Regression, Logistic Regression) to capture **nonlinear** aspects of the original input
2. Nonlinear features **require no changes to the model** (i.e. just preprocessing)
3. **Regularization** helps to avoid **overfitting**
4. **(Regularization and MAP estimation are equivalent for appropriately chosen priors)**

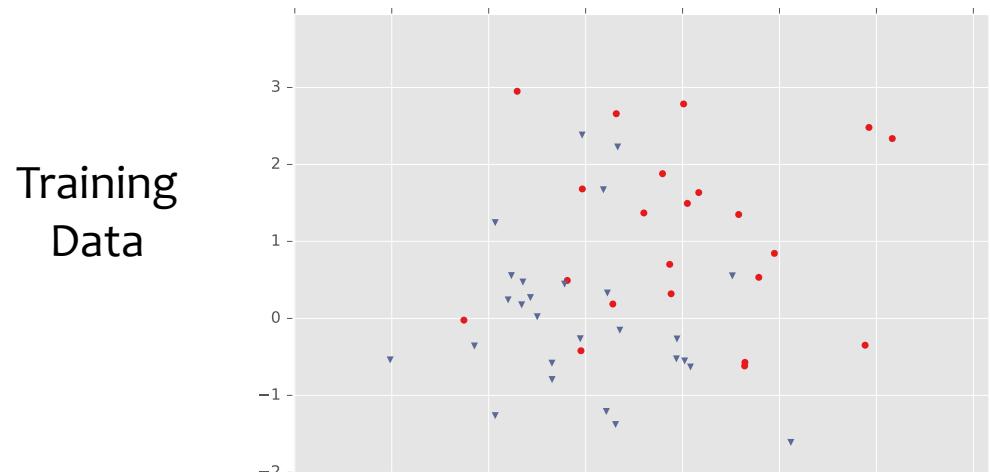
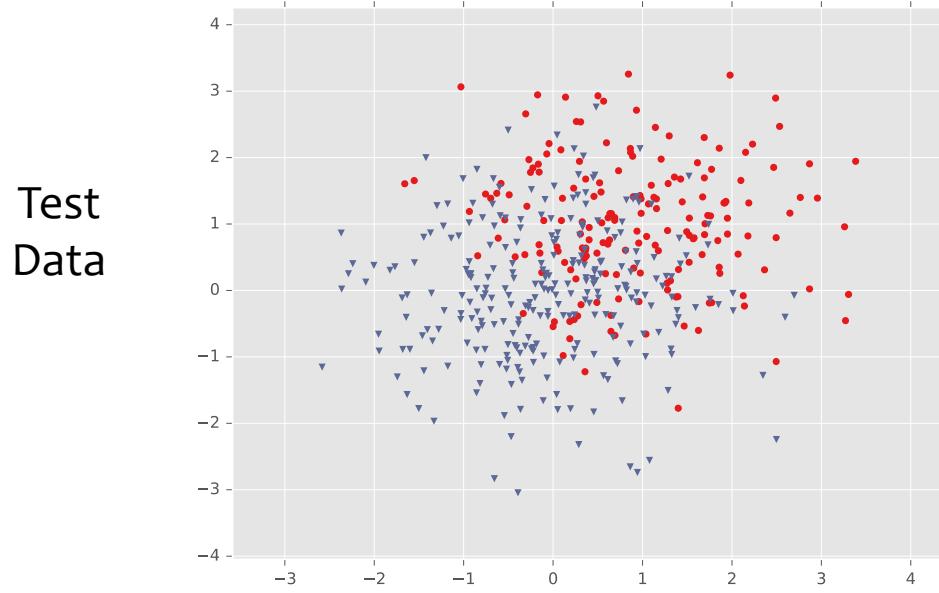
# Additional Slides

# Logistic Regression with Nonlinear Features

Jupyter notebook demo

quad logist

# Example: Logistic Regression

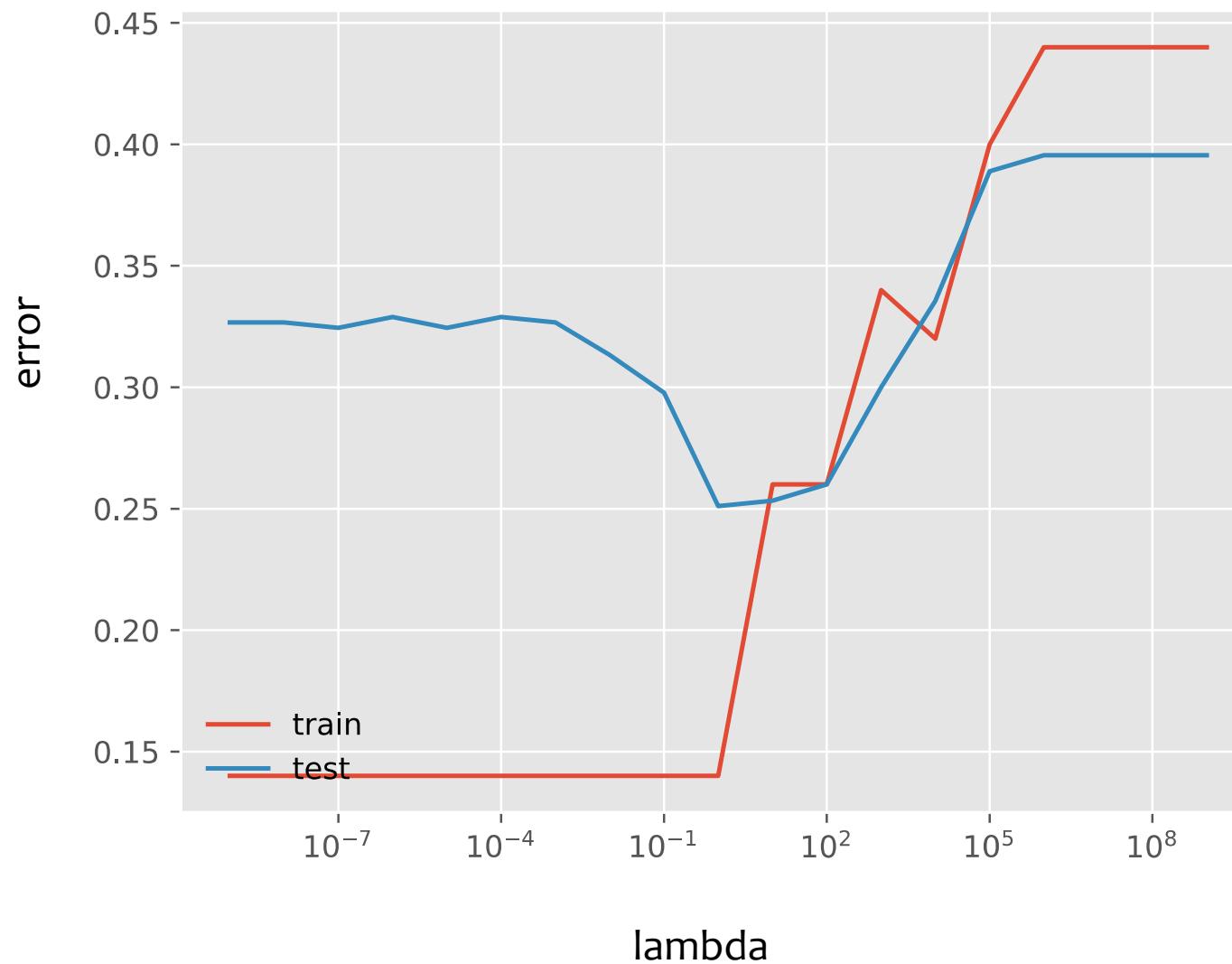


For this example, we construct **nonlinear features** (i.e. feature engineering)

Specifically, we add **polynomials up to order 9** of the two original features  $x_1$  and  $x_2$

Thus our classifier is **linear** in the **high-dimensional feature space**, but the decision boundary is **nonlinear** when visualized in **low-dimensions** (i.e. the original two dimensions)

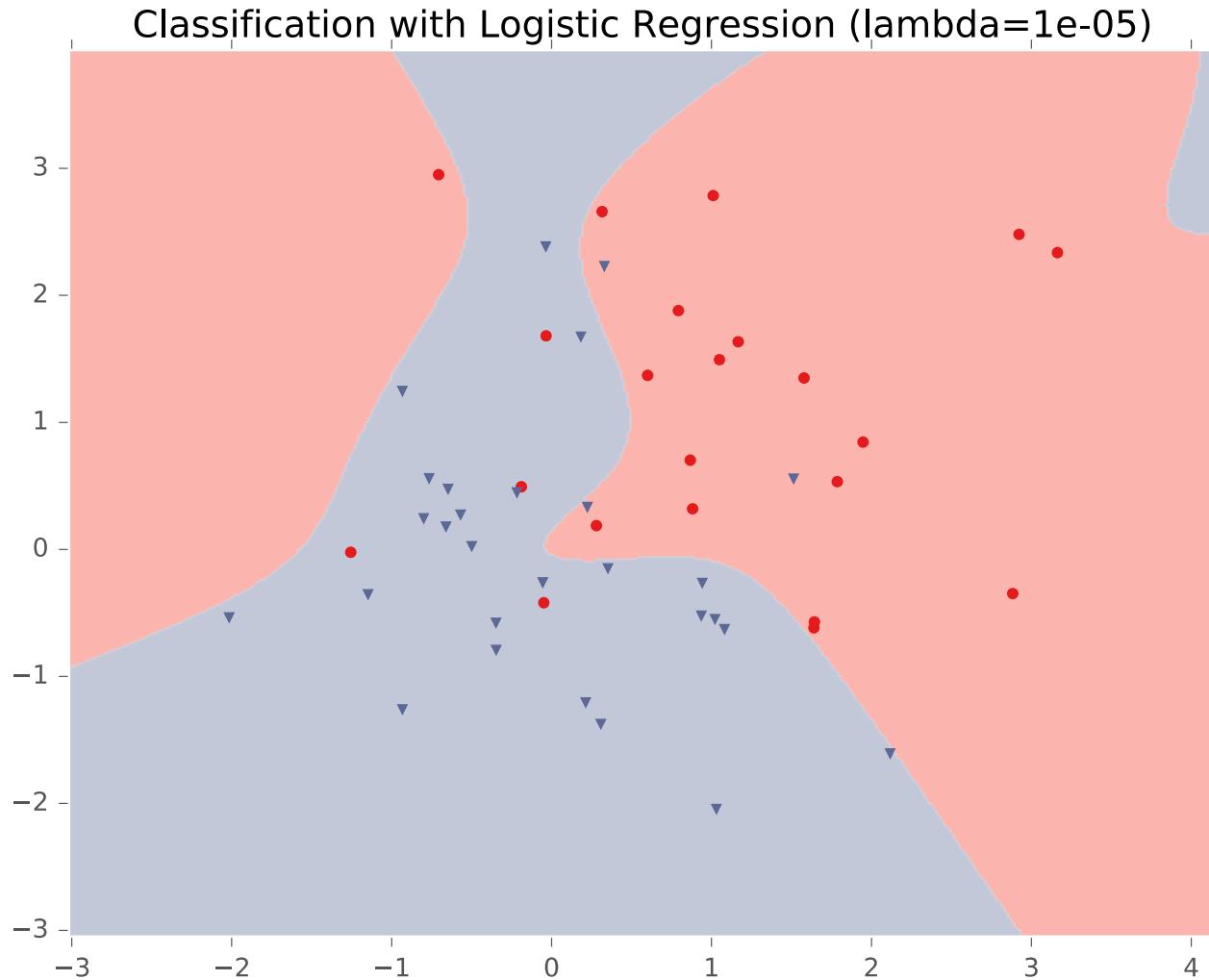
# Example: Logistic Regression



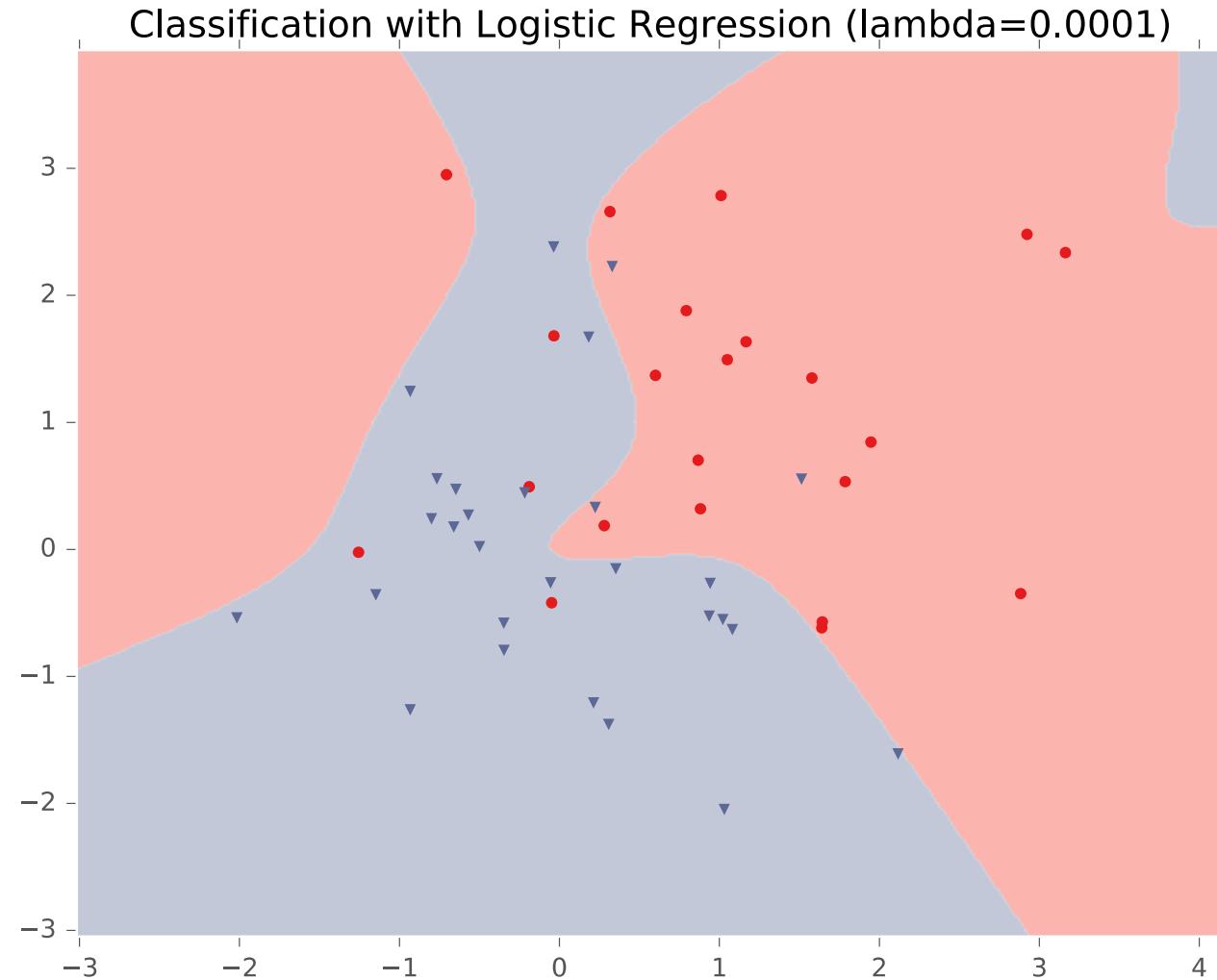
# Example: Logistic Regression

↗

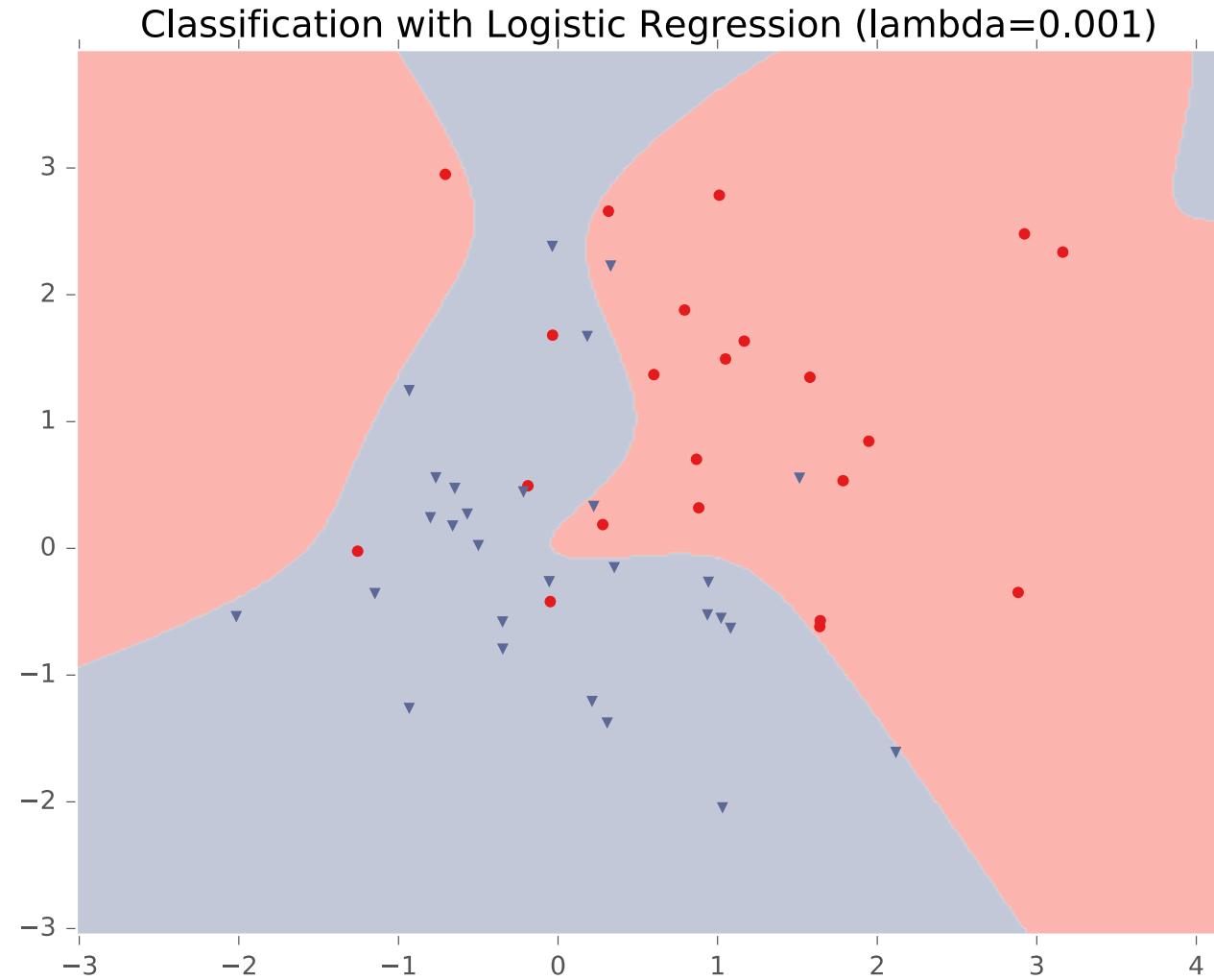
$1e-5$



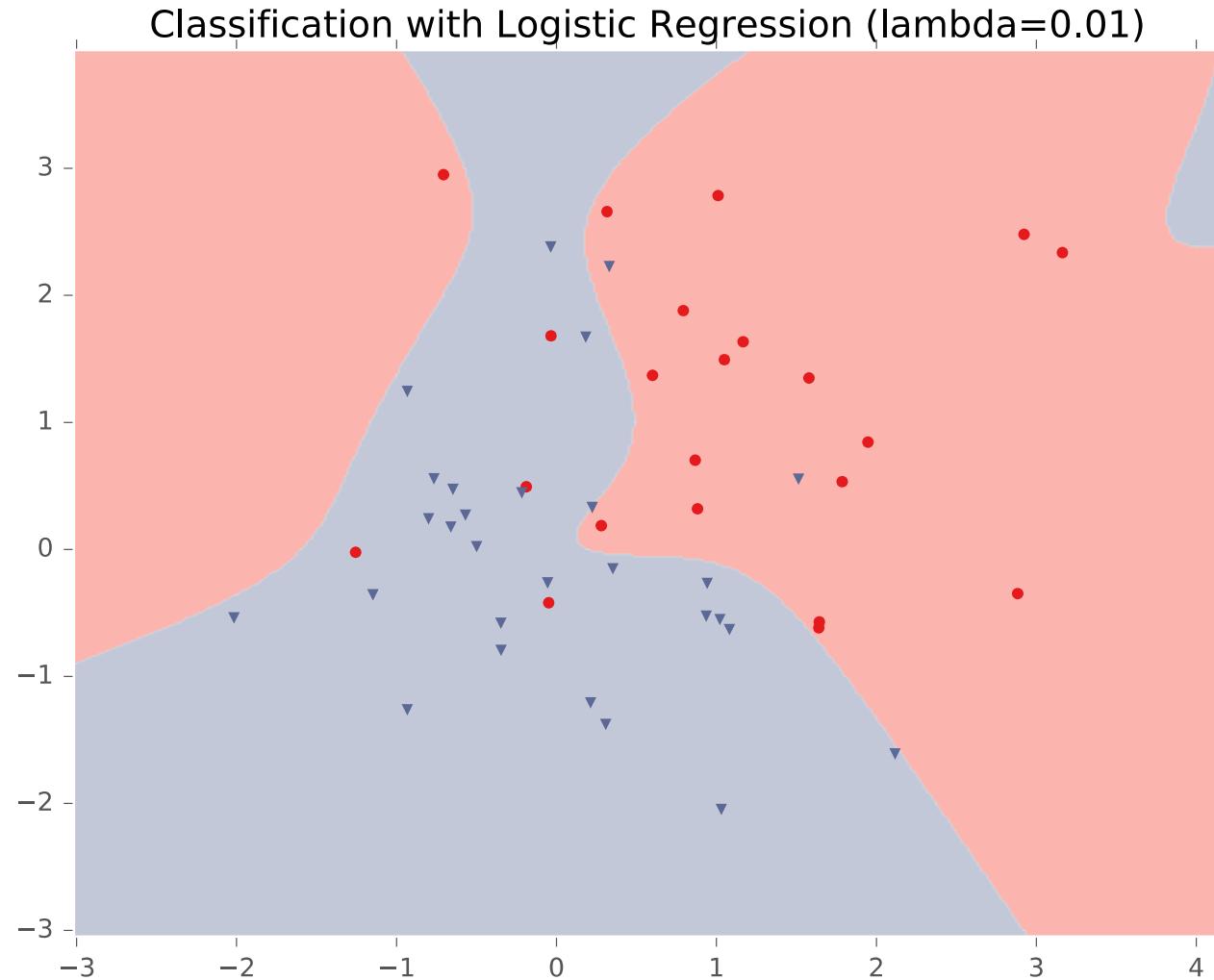
# Example: Logistic Regression



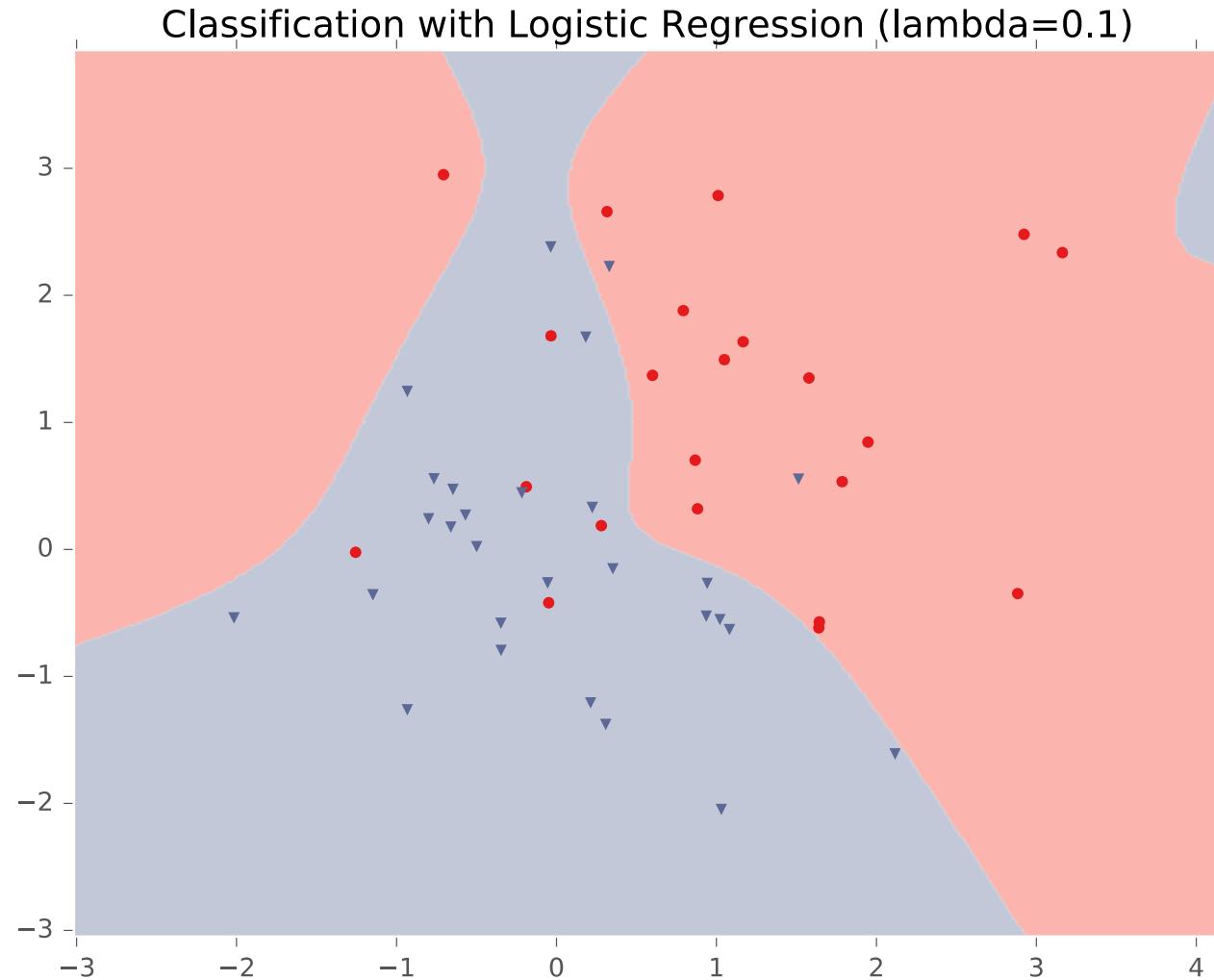
# Example: Logistic Regression



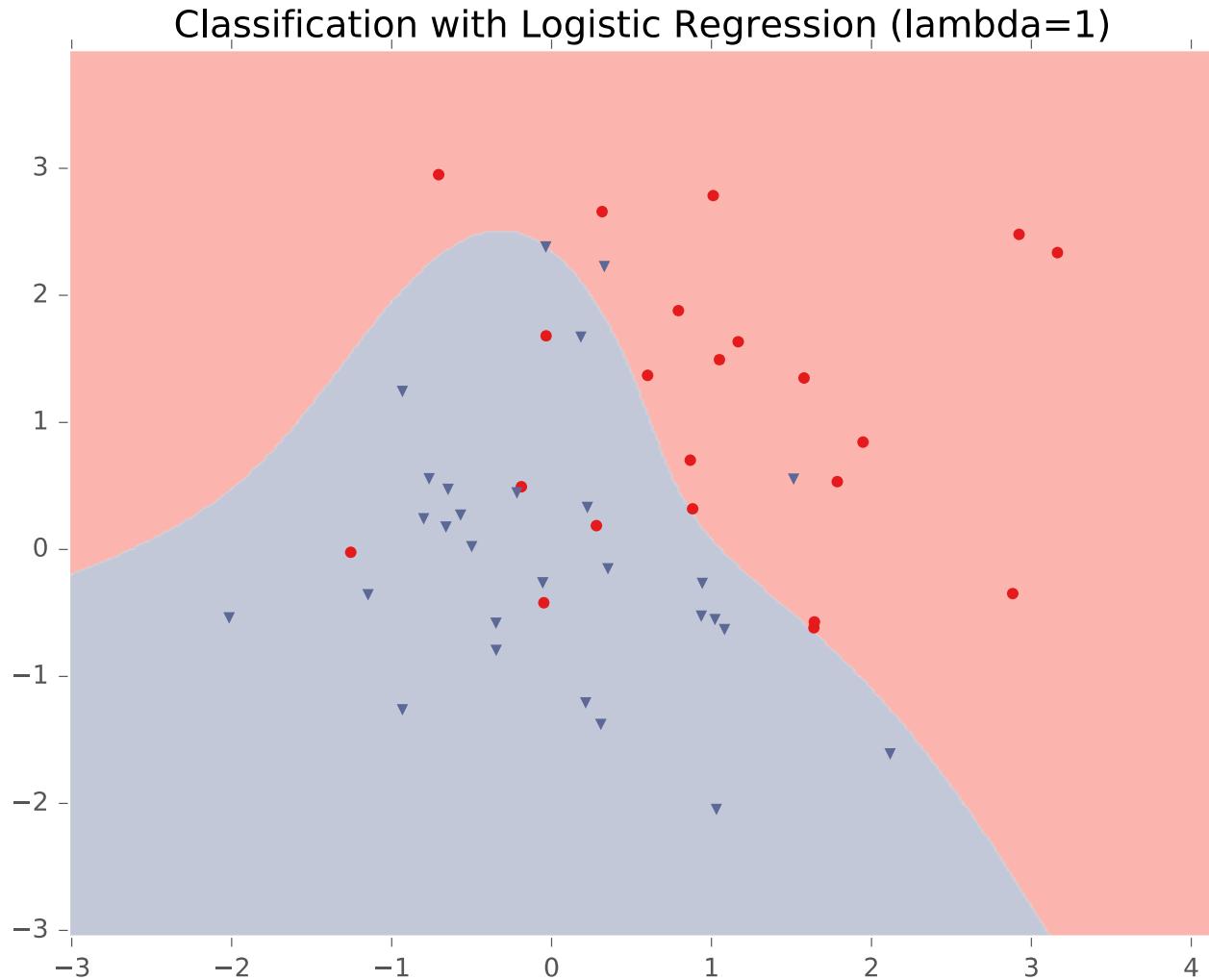
# Example: Logistic Regression



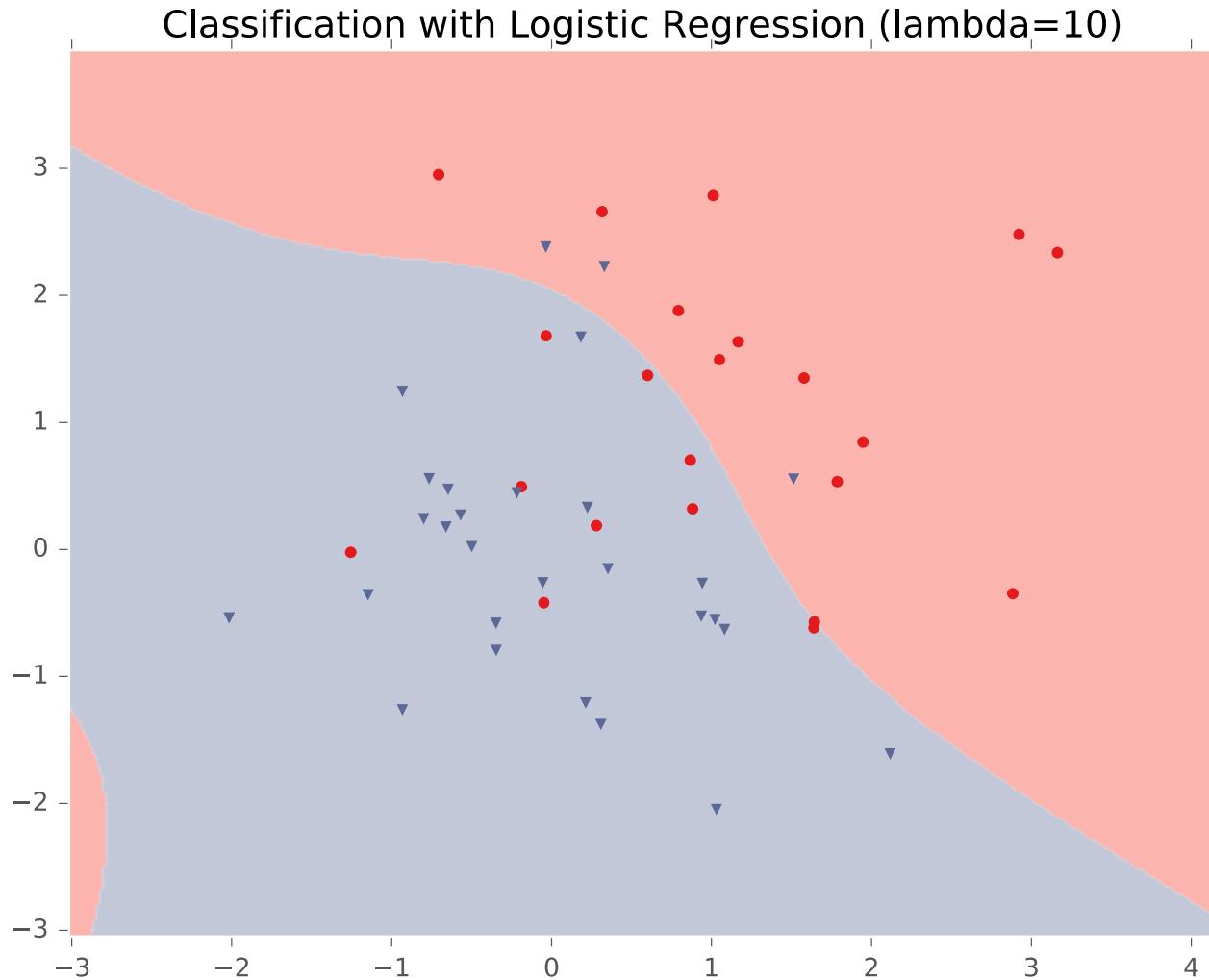
# Example: Logistic Regression



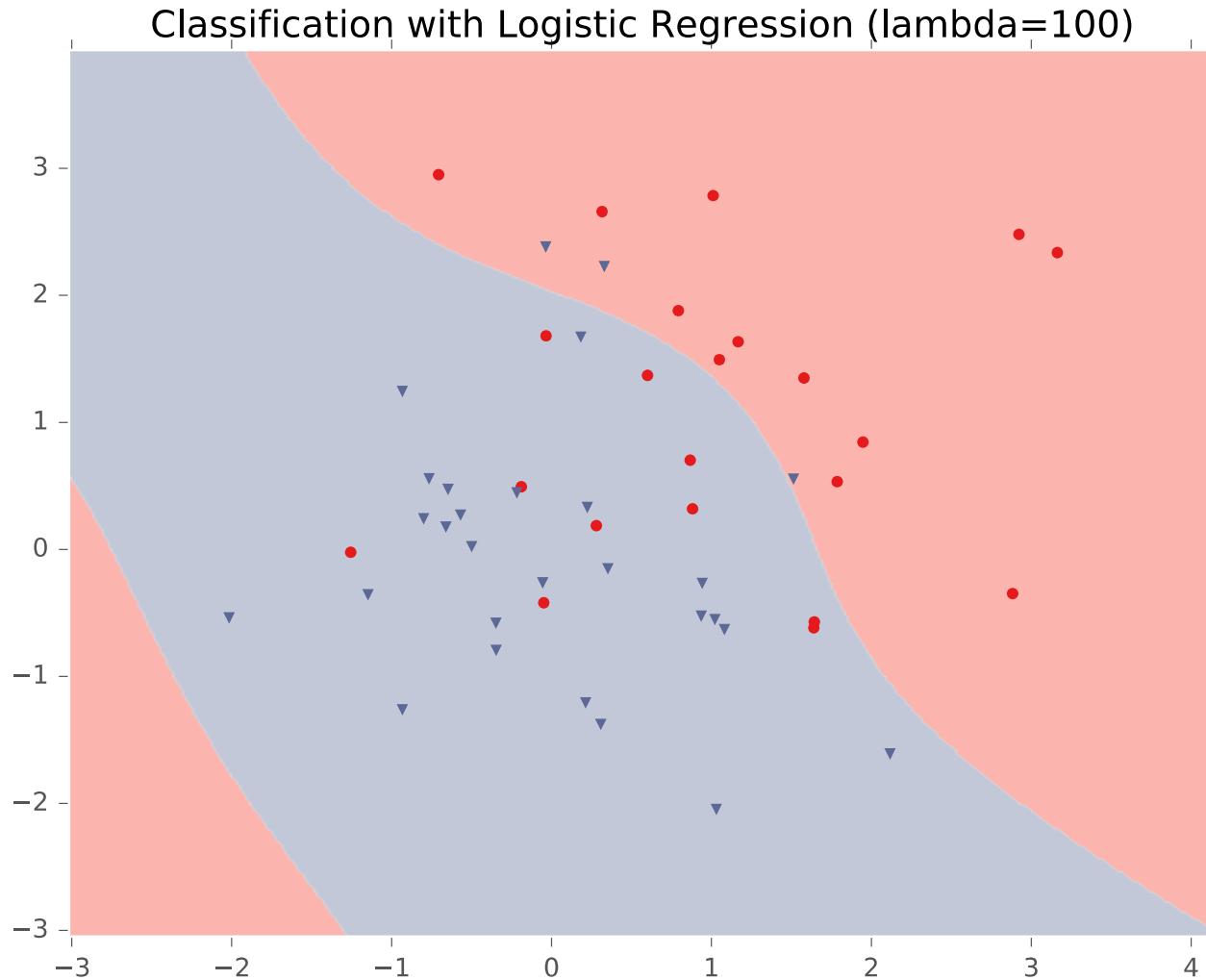
# Example: Logistic Regression



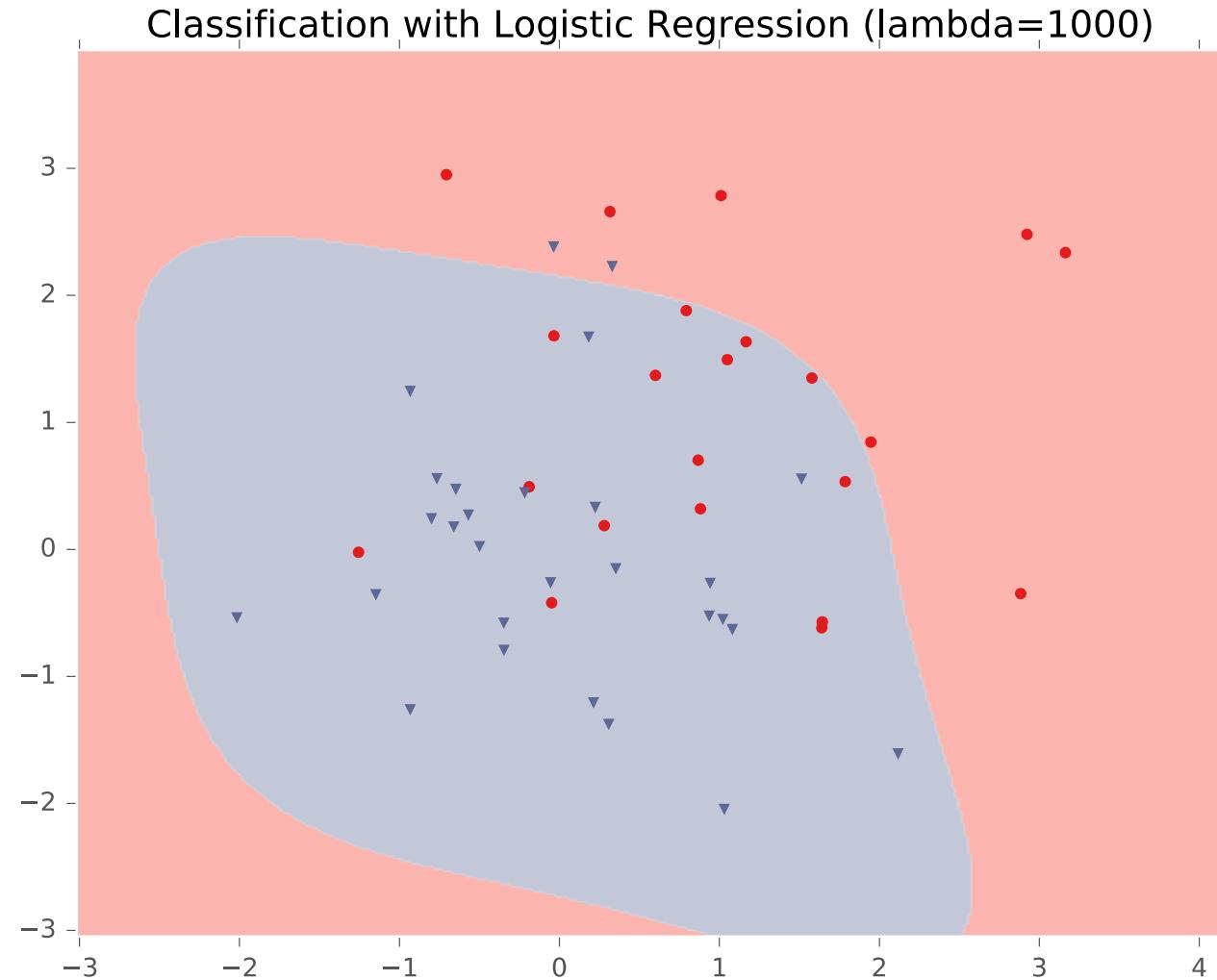
# Example: Logistic Regression



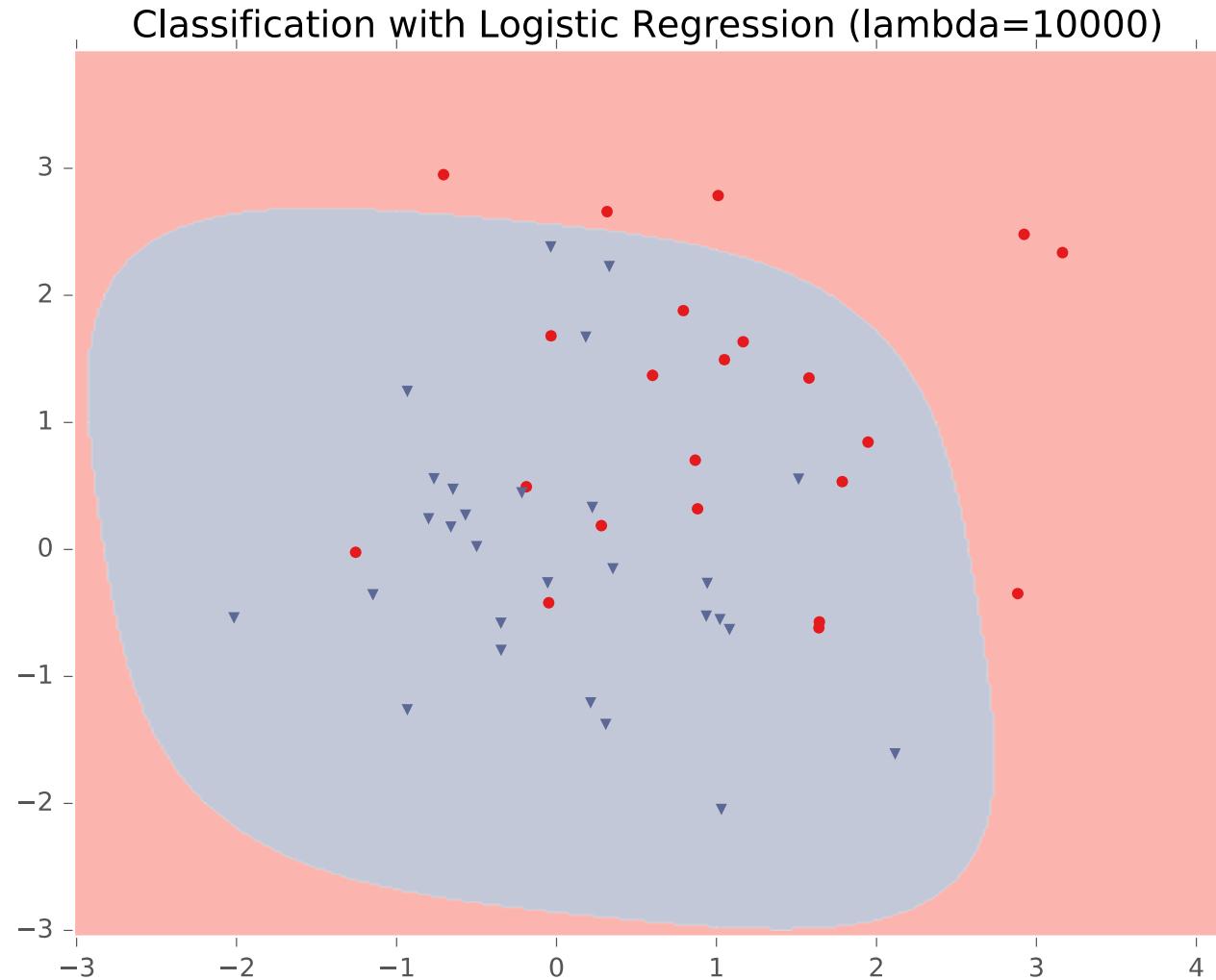
# Example: Logistic Regression



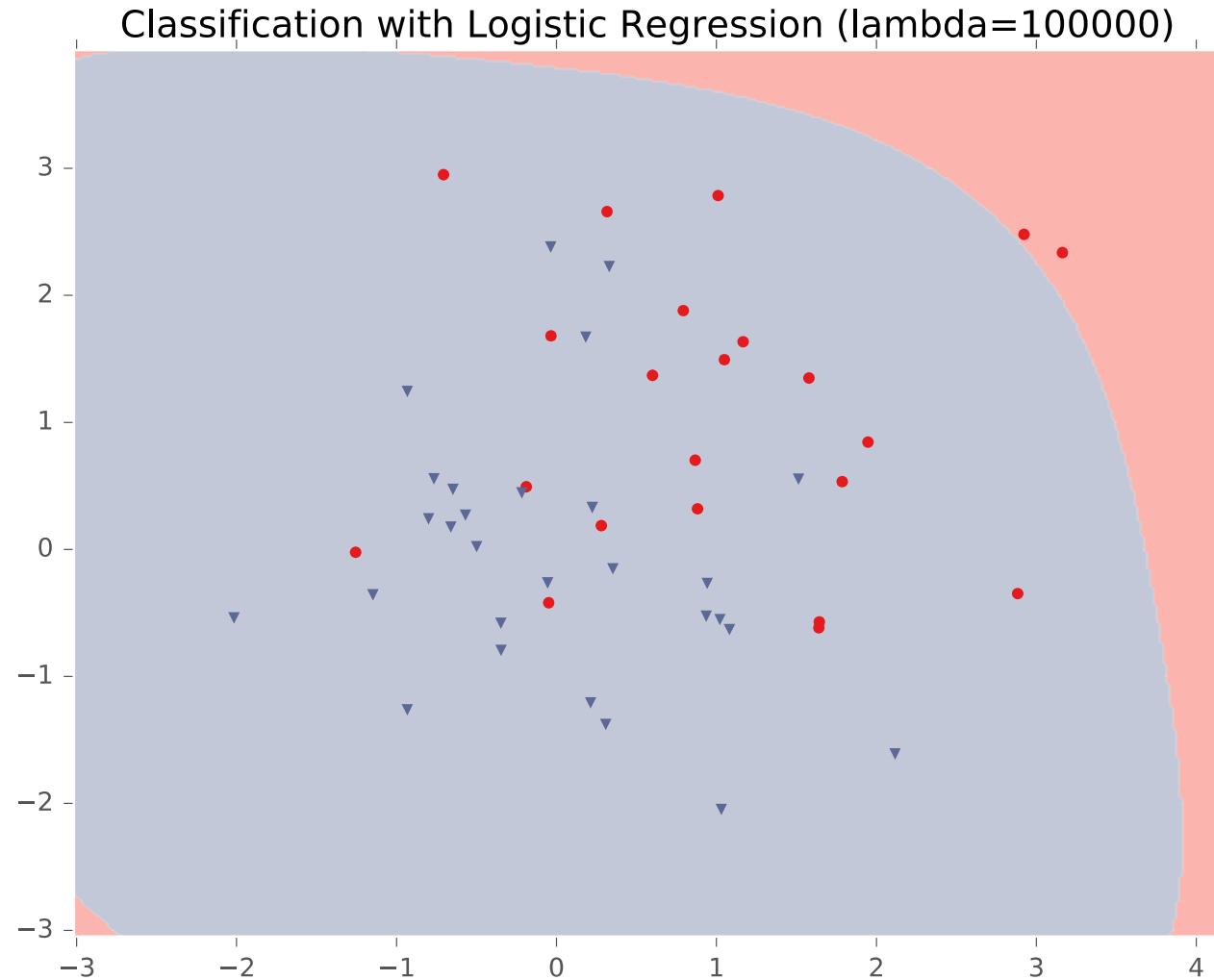
# Example: Logistic Regression



# Example: Logistic Regression

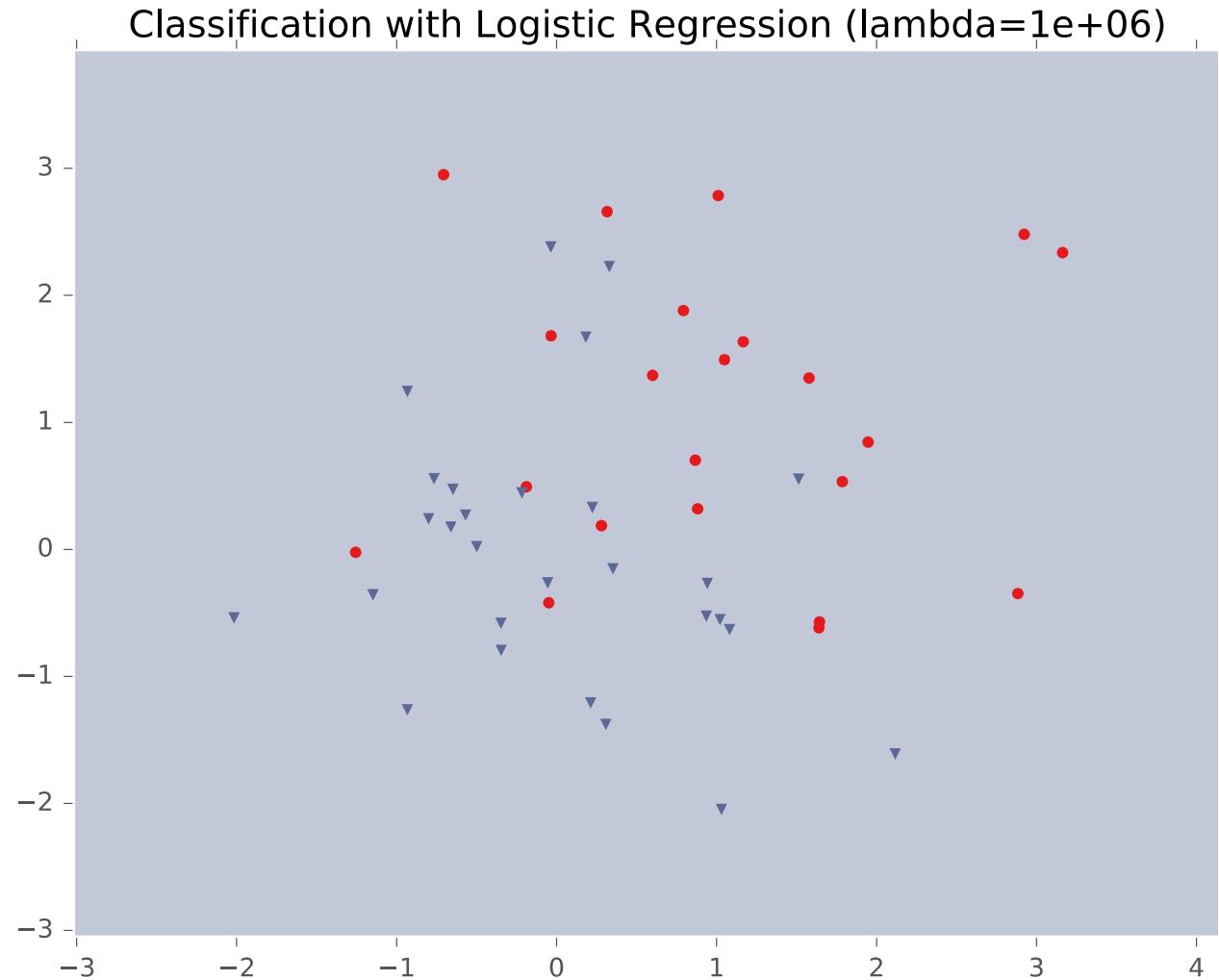


# Example: Logistic Regression

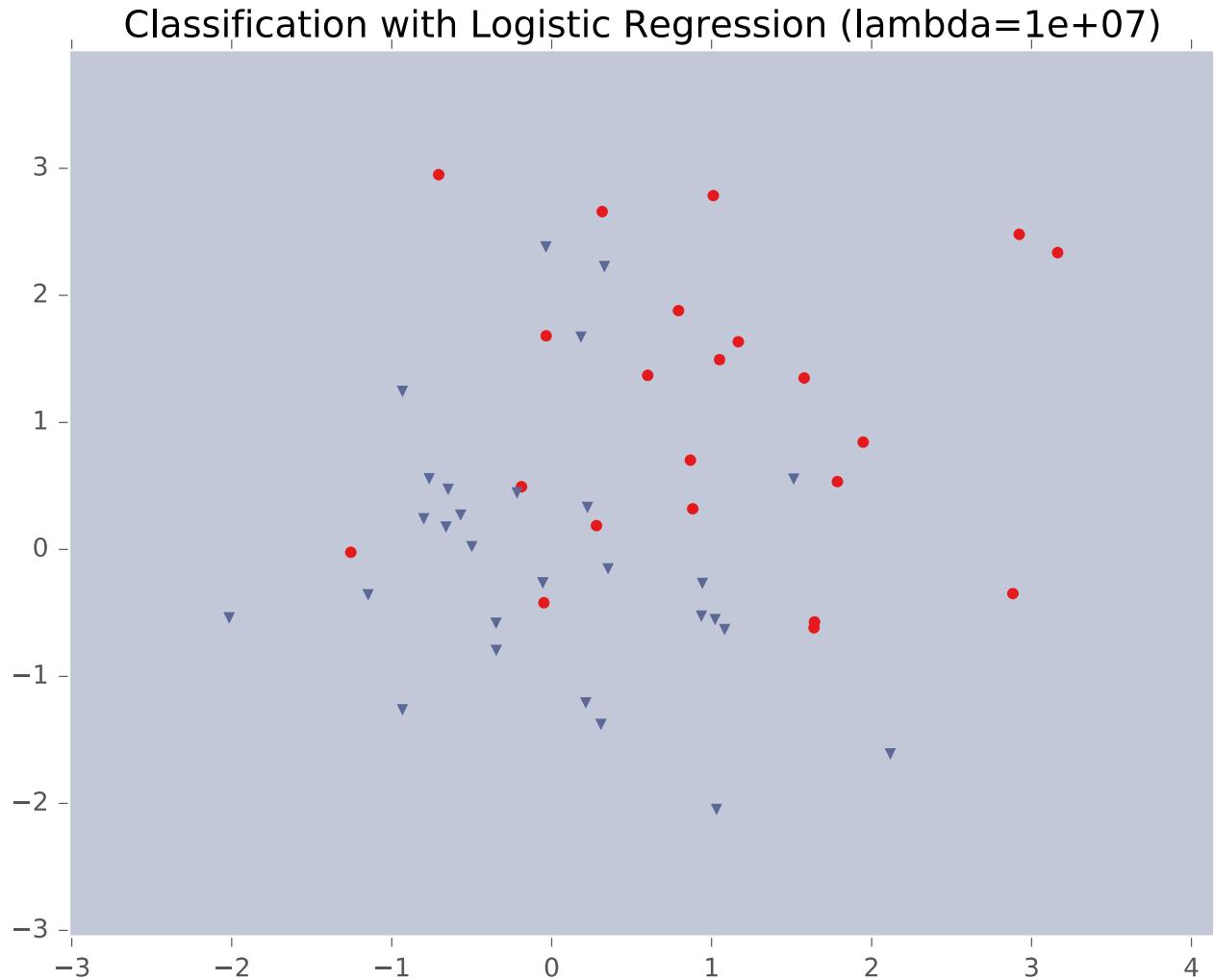


# Example: Logistic Regression

1e6 ↙



# Example: Logistic Regression



# Example: Logistic Regression

