Announcements

Struggling?

- Don't struggle alone
- Come talk to Pat
 - OH
 - 1-on-1 appointment calendar
 - Private message on Piazza with set of times to meet

Announcements

Assignments

- HW5
 - Fri, 2/24, 11:59 pm

Midterm

- Wed, 3/1, in-class
- Details will be coming on Piazza
 - Logistics
 - Learning objectives for Midterm 1 topics
 - Review session
 - Practice exam problems

Announcements

Struggling?

- Don't struggle alone
- Come talk to Pat
 - OH
 - 1-on-1 appointment calendar
 - Private message on Piazza with set of times to meet

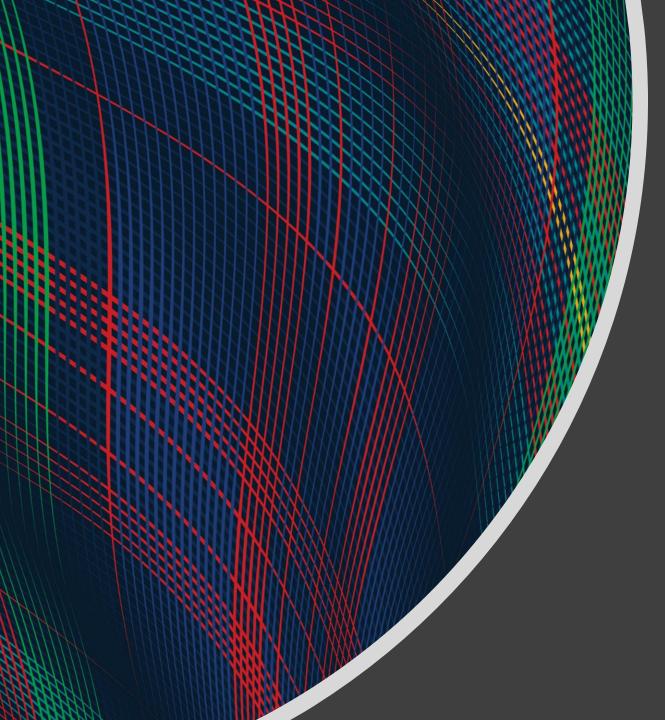
Plan

Today

- Wrap-up neural nets (for now)
- Regularization
 - Make sure they aren't too powerful ^(C)

Wrap up Neural Nets

Switch to neural nets slides



10-315 Introduction to ML

Regularization

Instructor: Pat Virtue

Poll 1

Which is model do you prefer, assuming both have zero training error? Model structure (for both models):

 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7 + \theta_8 x^8$

Model parameters:

$$\boldsymbol{\theta} = [\theta_0, \ \theta_1, \ \theta_2, \ \theta_3, \ \theta_4, \ \theta_5, \ \theta_6, \ \theta_7, \ \theta_8]^T$$

A.
$$\boldsymbol{\theta}_{A} = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^{T}$$

B. $\boldsymbol{\theta}_{B} = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^{T}$

Poll 1

Which is model do you prefer, assuming both have zero training error?

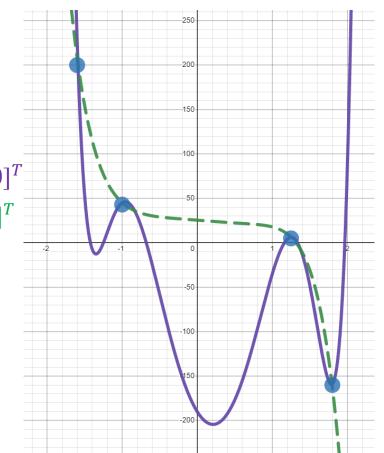
Model structure (for both models):

 $h_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+\theta_3x^3+\theta_4x^4+\theta_5x^5+\theta_6x^6+\theta_7x^7+\theta_8x^8$

Model parameters:

 $\boldsymbol{\theta} = [\theta_0, \ \theta_1, \ \theta_2, \ \theta_3, \ \theta_4, \ \theta_5, \ \theta_6, \ \theta_7, \ \theta_8]^T$

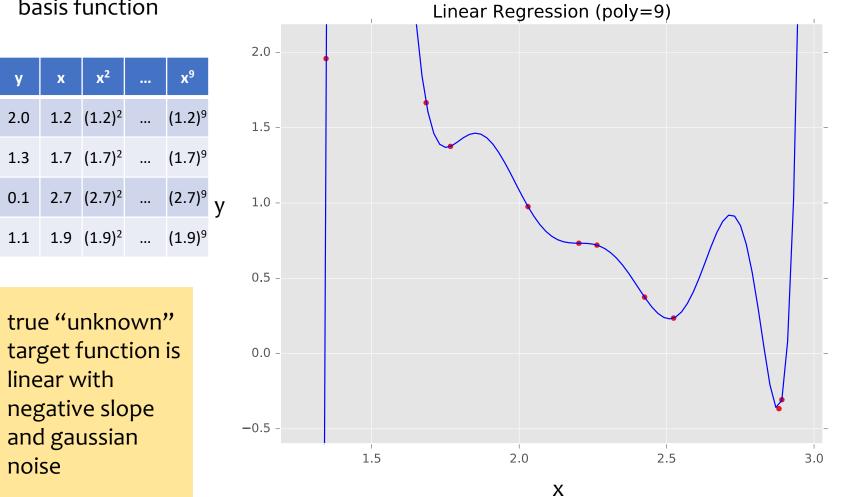
A. $\boldsymbol{\theta}_A = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^T$ *B.* $\boldsymbol{\theta}_B = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^T$



Slide credit: CMU MLD Matt Gormley

Example: Linear Regression

Goal: Learn $y = w^T f(x) + b$ where f(.) is a polynomial basis function



Symptoms of Overfitting

	M = 0	M = 1	M=3	M = 9
θ_0	0.19	0.82	0.31	0.35
$ heta_1$		-1.27	7.99	232.37
$ heta_2$			-25.43	-5321.83
$ heta_3$			17.37	48568.31
$ heta_4$				-231639.30
$ heta_5$				640042.26
$ heta_6$				-1061800.52
$ heta_7$				1042400.18
$ heta_8$				-557682.99
θ_9				125201.43

Slide credit: CMU MLD William Cohen

Model Preference

Which is model do you prefer, assuming both have zero training error? Model structure (for both models):

 $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4 + \theta_5 x_5 + \theta_6 x_6 + \theta_7 x_7 + \theta_8 x_8$

Model parameters:

$$\boldsymbol{\theta} = [\theta_0, \ \theta_1, \ \theta_2, \ \theta_3, \ \theta_4, \ \theta_5, \ \theta_6, \ \theta_7, \ \theta_8]^T$$

A.
$$\boldsymbol{\theta}_{A} = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^{T}$$

B. $\boldsymbol{\theta}_{B} = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^{T}$

What if **x** was a vector of input feature measurements (rather than polynomial features)?

Motivation: Regularization

Example: Stock Prices

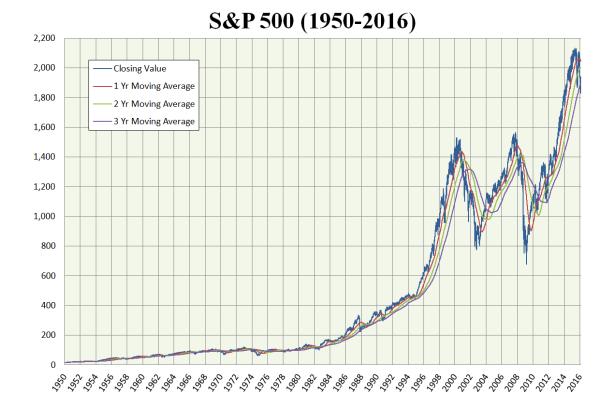
Suppose we wish to predict Google's stock price at time t+1

What features should we use?

(putting all computational concerns aside)

- Stock prices of all other stocks at times t, t-1, t-2, ..., t - k
- Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets

Do we believe that **all** of these features are going to be useful?



Slide credit: CMU MLD Matt Gormley

Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- K-NN (e.g. when k is small)
- Linear Regression (e.g. with nonlinear features or extraneous features)
- Logistic Regression (e.g. with nonlinear features or extraneous features)
- Neural networks

Motivation: Regularization

Occam's Razor: prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be **simple**?

- 1. small number of features (model selection)
- 2. small number of "important" features (shrinkage)

Key idea:

Define regularizer $r(\theta)$ that we will add to our minimization objective to keep the model simple

 $r(\theta)$ should be:

- Small for a simple model
- Large for a complex model

L2 norm: square-root of sum of squares

L1 norm: sum of absolute values

L0 norm: count of non-zero values

$\|\boldsymbol{\theta}\|_2 \qquad \|\boldsymbol{\theta}\|_1 \qquad \|\boldsymbol{\theta}\|_0$

- **A.** $\boldsymbol{\theta}_A = [6, 3, -4, -2]^T$
- **B.** $\theta_B = [0, 3, -4, 0]^T$

Poll 2

Which model do you prefer?

A. $\boldsymbol{\theta}_A = [-190.0, -135.0, 310.0, 45.0]^T$ Training error: 0.0 *B.* $\boldsymbol{\theta}_B = [0.0, 0.0, 0.0, 0.0]^T$ Training error: 34.2

Slide credit: CMU MLD Matt Gormley

Regularization

Given objective function: $J(\theta)$

Goal is to find:
$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

Example: q-norm (usually p-norm)

$$r(\boldsymbol{\theta}) = ||\boldsymbol{\theta}||_q = \left[\sum_{m=1}^M ||\boldsymbol{\theta}_m||^q\right]^{\left(\frac{1}{q}\right)}$$

q	$r(oldsymbol{ heta})$	yields parame- ters that are	name	optimization notes
0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computa- tional solutions
$\frac{1}{2}$	$egin{aligned} oldsymbol{ heta} _1 &= \sum heta_m \ (oldsymbol{ heta} _2)^2 &= \sum heta_m^2 \end{aligned}$	zero values small values	L1 reg. L2 reg.	subdifferentiable differentiable

Poll 3

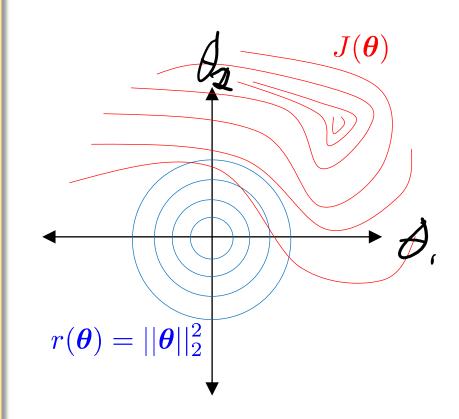
Question:

Suppose we are minimizing $J'(\theta)$ where

 $J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$

As λ increases, the minimum of J'(θ) will...

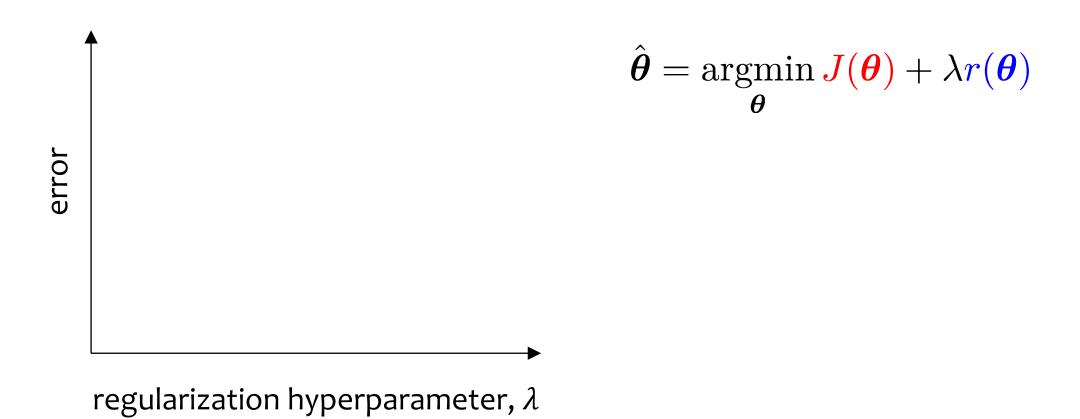
- A. ... move towards the midpoint between J'(θ) and r(θ)
- B. ... move towards the minimum of $J(\theta)$
- C. ... move towards the minimum of $r(\theta)$
- D. ... move towards a theta vector of positive infinities
- E. ... move towards a theta vector of negative infinities
- F. ... stay the same



Regularization Exercise

In-class Exercise

- Plot train error vs. regularization hyperparameter (cartoon) 1.
- Plot test error vs . regularization hyperparameter (cartoon) 2.



Poll 4

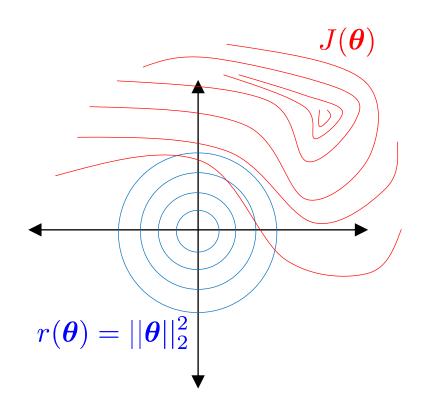
Question:

Suppose we are minimizing $J'(\theta)$ where

 $J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$

As we increase λ from zero, the **validation** error will...

- A. ... increase
- B. ... decrease
- C. ... first increase, then decrease
- D. ... first decrease, then increase
- E. ... stay the same



Don't Regularize the Bias (Intercept) Parameter

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 -- that is, the parameter for which we fixed $x_0 = 1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to *whiten* each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

Given objective function: $J(\theta)$

Goal is to find:
$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

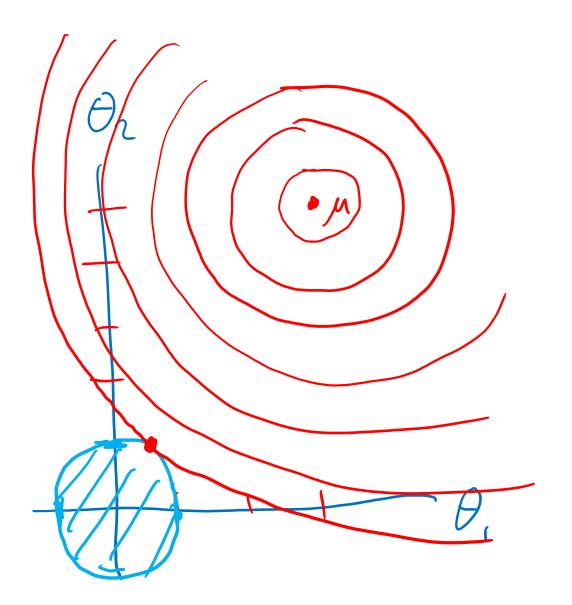
Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

Example: q-norm (usually p-norm)

$$r(\boldsymbol{\theta}) = ||\boldsymbol{\theta}||_q = \left[\sum_{m=1}^M ||\boldsymbol{\theta}_m||^q\right]^{(\frac{1}{q})}$$

q	$r(oldsymbol{ heta})$	yields parame- ters that are	name	optimization notes
0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computa- tional solutions
$\frac{1}{2}$	$egin{aligned} oldsymbol{ heta} _1 &= \sum heta_m \ (oldsymbol{ heta} _2)^2 &= \sum heta_m^2 \end{aligned}$	zero values small values	L1 reg. L2 reg.	subdifferentiable differentiable

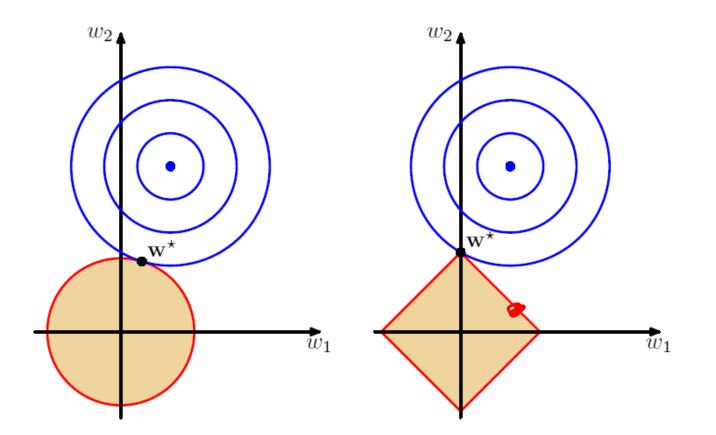


 $J(\theta, \theta) = |[\overline{\theta} - \overline{\mu}]| \qquad \mu = \begin{bmatrix} 3\\ 5 \end{bmatrix}$

min $J(\theta, \theta_1)$ θ $s.t. ||\theta||_2 \leq |$

L2 vs L1 Regularization

Combine original objective with penalty on parameters



Figures: Bishop, Ch 3.1.4

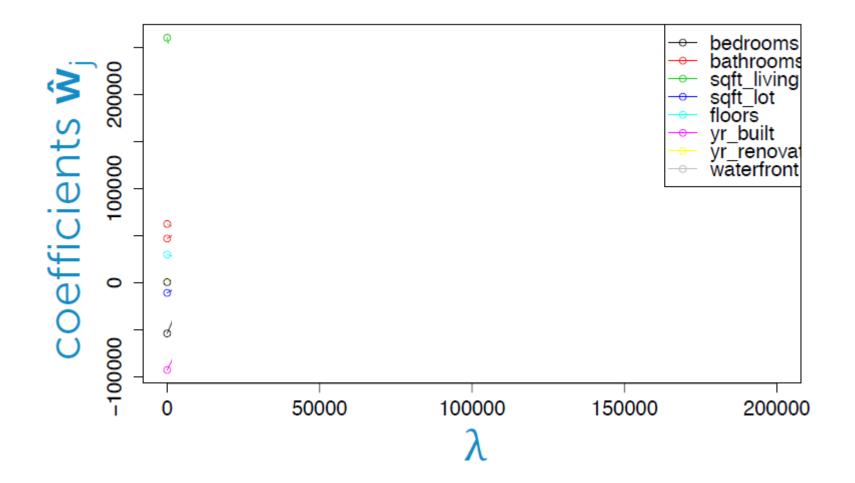


Figure: Emily Fox, University of Washington

Predict housing price from several features

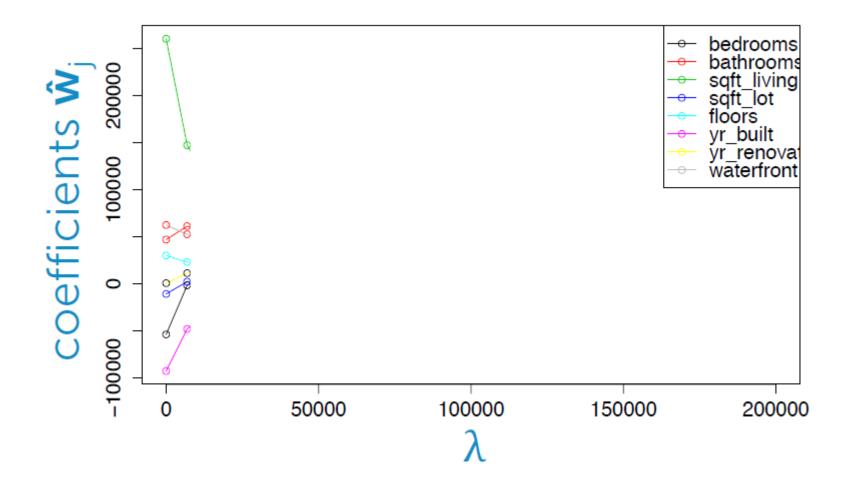


Figure: Emily Fox, University of Washington

Predict housing price from several features

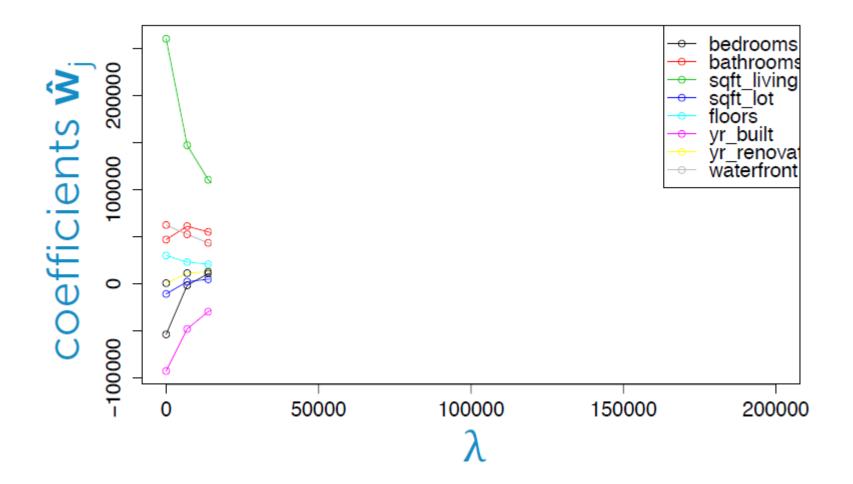


Figure: Emily Fox, University of Washington

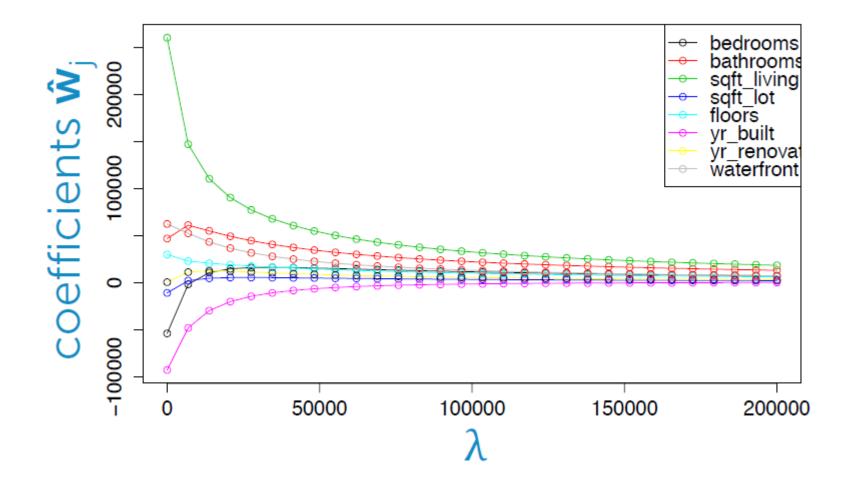
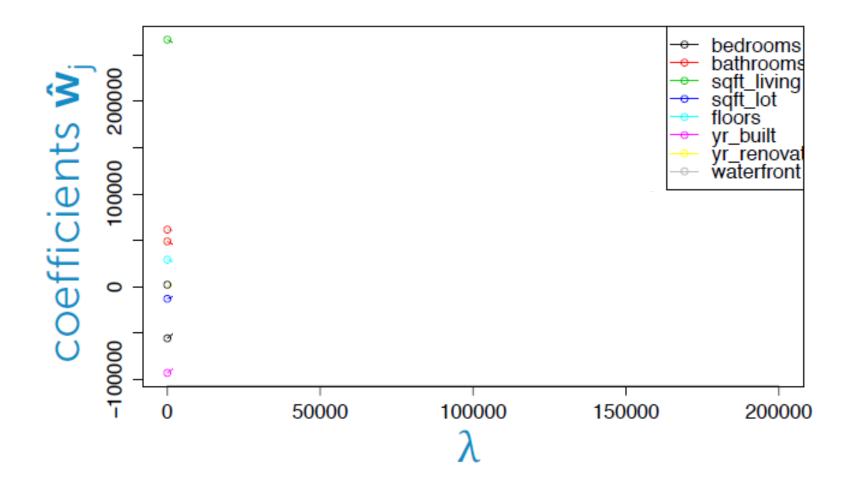
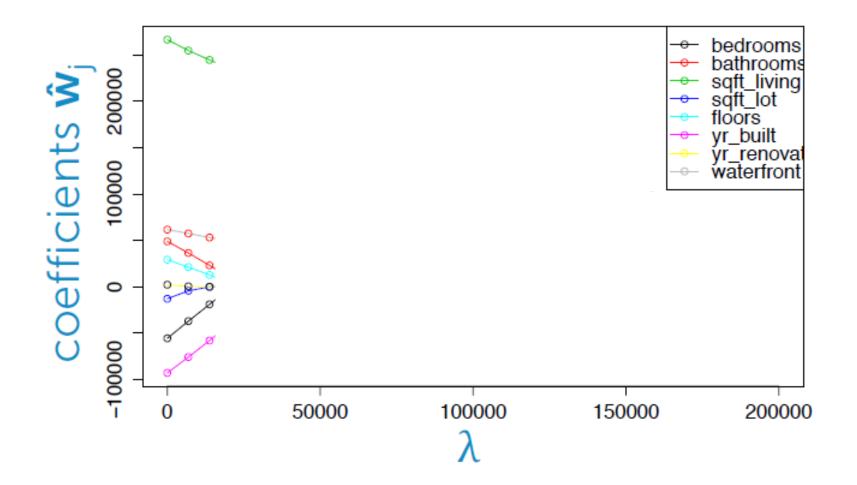
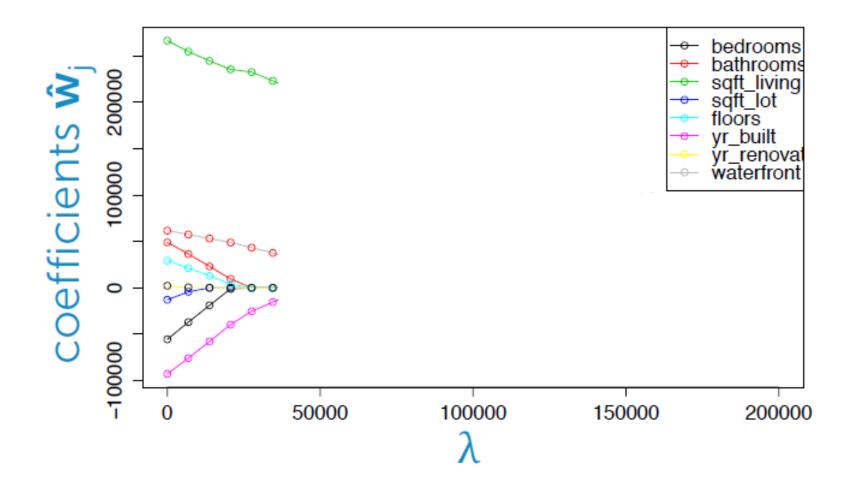
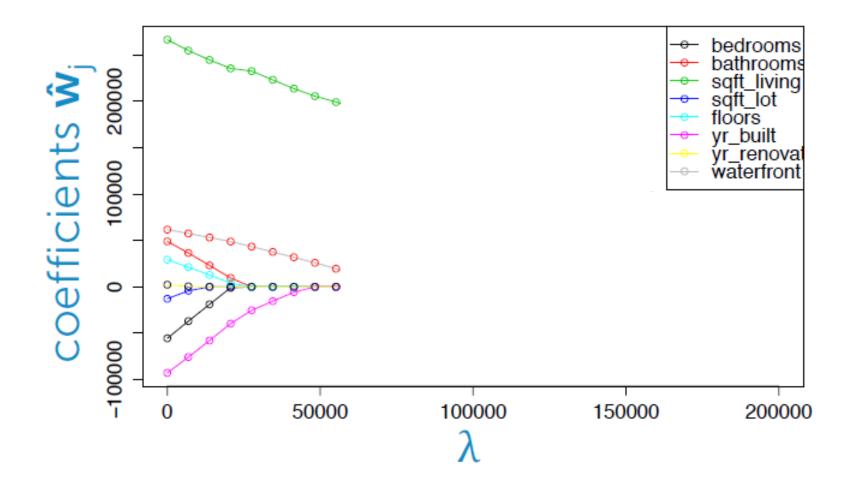


Figure: Emily Fox, University of Washington









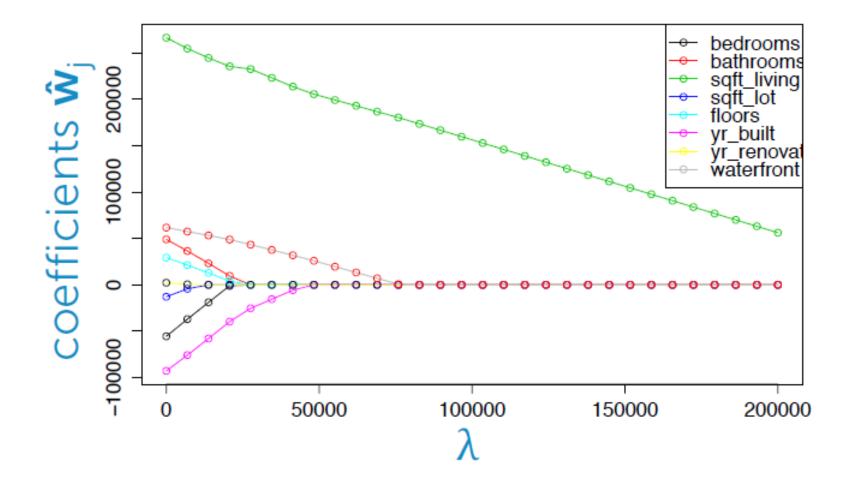


Figure: Emily Fox, University of Washington

Regularization as MAP

L1 and L2 regularization can be interpreted as **maximum a-posteriori** (MAP) estimation of the parameters

To be discussed later in the course...

Optimization

Takeaways

- Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- 2. Nonlinear features **require no changes to the model** (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4.** (Regularization and MAP estimation are equivalent for appropriately chosen priors)

Additional Slides

Logistic Regression with Nonlinear Features

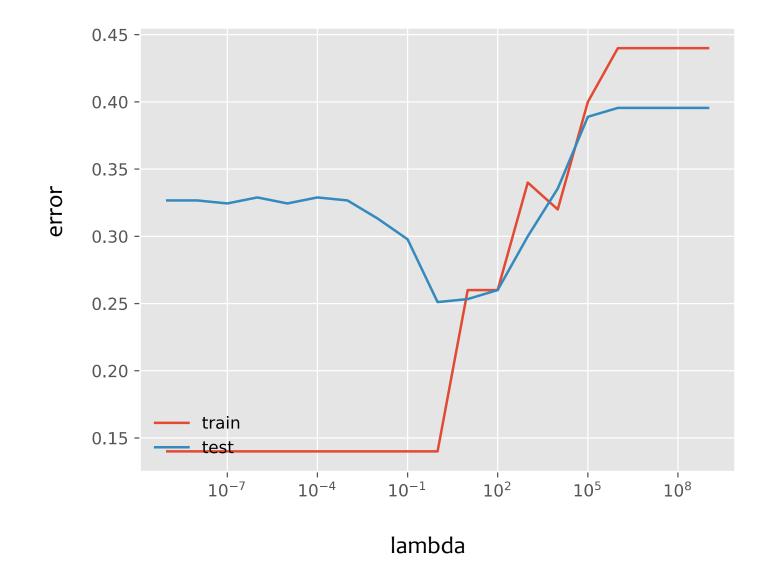
Jupyter notebook demo

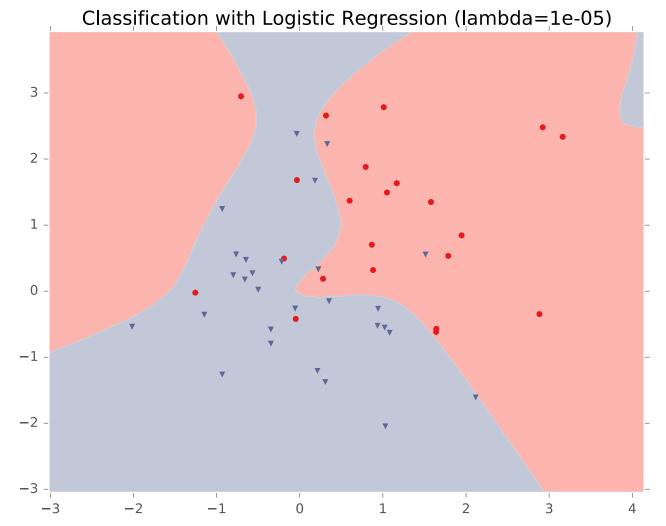
For this example, we construct **nonlinear features** (i.e. feature engineering)

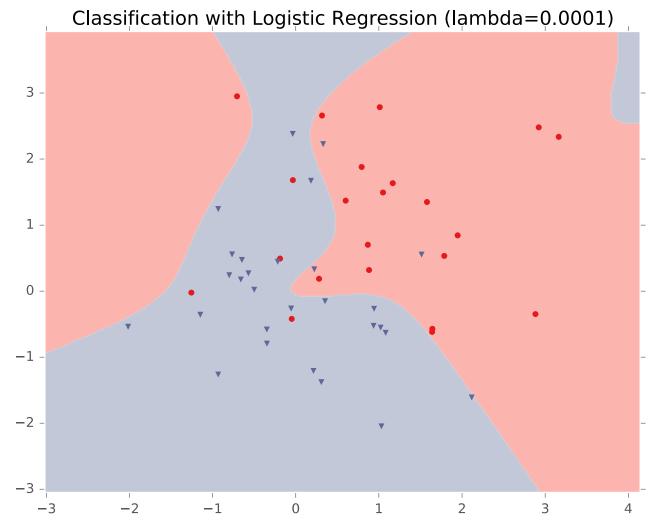
Specifically, we add **polynomials up to order 9** of the two original features x₁ and x₂

Thus our classifier is **linear** in the **high-dimensional feature space**, but the decision boundary is **nonlinear** when visualized in **low-dimensions** (i.e. the original two dimensions)

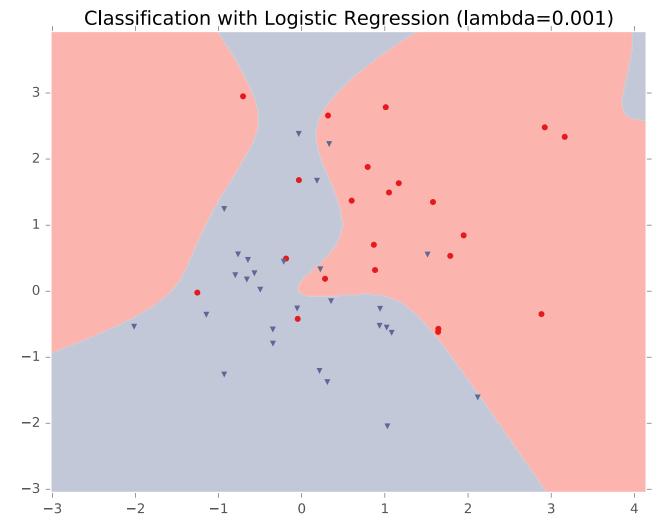
Slide credit: CMU MLD Matt Gormley

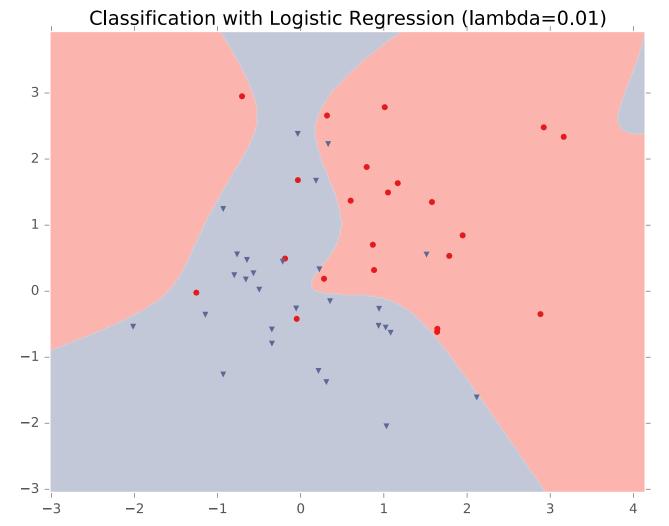






Slide credit: CMU MLD Matt Gormley





Slide credit: CMU MLD Matt Gormley

