Announcements

Struggling?

- Don't struggle alone
- Come talk to Pat
- OH
- 1-on-1 appointment calendar
- Private message on Piazza with set of times to meet

Announcements

Assignments

- HW5
- Fri, 2/24, 11:59 pm

Midterm

- Wed, $3 / 1$, in-class
- Details will be coming on Piazza
- Logistics
- Learning objectives for Midterm 1 topics
- Review session
- Practice exam problems

Announcements

Struggling?

- Don't struggle alone
- Come talk to Pat
- OH
- 1-on-1 appointment calendar
- Private message on Piazza with set of times to meet

Plan

Today

- Wrap-up neural nets (for now)
- Regularization
- Make sure they aren't too powerful ©

Wrap up Neural Nets
Switch to neural nets slides

10-315

Introduction to ML Regularization

Instructor: Pat Virtue

Poll 1

Which is model do you prefer, assuming both have zero training error?
Model structure (for both models):
$h_{\boldsymbol{\theta}}(x)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}+\theta_{5} x^{5}+\theta_{6} x^{6}+\theta_{7} x^{7}+\theta_{8} x^{8}$
Model parameters:
$\boldsymbol{\theta}=\left[\begin{array}{llllllll}\theta_{0}, & \theta_{1}, & \theta_{2}, & \theta_{3}, & \theta_{4}, & \theta_{5}, & \theta_{6}, & \theta_{7}, \\ \theta_{8}\end{array}\right]^{T}$
A. $\boldsymbol{\theta}_{A}=$

$$
[-190.0,-135.0,310.0,45.0,-62.0,90.0,-82.0,-40.0,29.0]^{T}
$$

B. $\boldsymbol{\theta}_{B}=$

$$
\left[\begin{array}{lllllllll}
B & 25.5, & -6.4, & -0.8, & 0.0, & 6.6, & -4.4, & 0.2, & -2.9, \\
0.1
\end{array}\right]^{T}
$$

Poll 1

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):
$h_{\boldsymbol{\theta}}(x)=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}+\theta_{5} x^{5}+\theta_{6} x^{6}+\theta_{7} x^{7}+\theta_{8} x^{8}$
Model parameters:
$\boldsymbol{\theta}=\left[\begin{array}{llllll}\theta_{0}, & \theta_{1}, & \theta_{2}, & \theta_{3}, & \theta_{4}, & \theta_{5},\end{array} \theta_{6}, \theta_{7}, \theta_{8}\right]^{T}$
A. $\quad \boldsymbol{\theta}_{A}=[-190.0,-135.0,310.0,45.0,-62.0,90.0,-82.0,-40.0,29.0]^{T}$
B. $\boldsymbol{\theta}_{B}=[25.5, \quad-6.4,-0.8,0.0, \quad 6.6,-4.4, \quad 0.2, \quad-2.9,0.1]^{T}$

Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

y	x	x^{2}	\ldots	x^{9}
2.0	1.2	$(1.2)^{2}$	\ldots	$(1.2)^{9}$
1.3	1.7	$(1.7)^{2}$	\ldots	$(1.7)^{9}$
0.1	2.7	$(2.7)^{2}$	\ldots	$(2.7)^{9} y$
1.1	1.9	$(1.9)^{2}$	\ldots	$(1.9)^{9}$

```
true "unknown"
target function is
linear with
negative slope
and gaussian
noise
```


Symptoms of Overfitting

	$M=0$	$M=1$	$M=3$	$M=9$
θ_{0}	0.19	0.82	0.31	0.35
θ_{1}		-1.27	7.99	232.37
θ_{2}			-25.43	-5321.83
θ_{3}			17.37	48568.31
θ_{4}				-231639.30
θ_{5}				640042.26
θ_{6}				-1061800.52
θ_{7}				1042400.18
θ_{8}				-557682.99
θ_{9}				125201.43

Model Preference

Which is model do you prefer, assuming both have zero training error?
Model structure (for both models):
$h_{\boldsymbol{\theta}}(\mathbf{x})=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3}+\theta_{4} x_{4}+\theta_{5} x_{5}+\theta_{6} x_{6}+\theta_{7} x_{7}+\theta_{8} x_{8}$
Model parameters:
$\boldsymbol{\theta}=\left[\begin{array}{lllllll}\theta_{0}, & \theta_{1}, & \theta_{2}, & \theta_{3}, & \theta_{4}, & \theta_{5}, & \theta_{6}, \\ \theta_{7} & \theta_{8}\end{array}\right]^{T}$
A. $\boldsymbol{\theta}_{A}=$

$$
[-190.0,-135.0,310.0,45.0,-62.0,90.0,-82.0,-40.0,29.0]^{T}
$$

B. $\boldsymbol{\theta}_{B}=$

$$
\left[\begin{array}{lllllllll}
B & 25.5, & -6.4, & -0.8, & 0.0, & 6.6, & -4.4, & 0.2, & -2.9, \\
0.1
\end{array}\right]^{T}
$$

What if \mathbf{x} was a vector of input feature measurements (rather than polynomial features)?

Motivation: Regularization

Example: Stock Prices

Suppose we wish to predict Google's stock price at time t+1

What features should we use?
(putting all computational concerns aside)

- Stock prices of all other stocks at times $\mathrm{t}, \mathrm{t}-1, \mathrm{t}-2$, ..., t-k
- Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets

Do we believe that all of these features are going to be useful?

Overfitting

Definition: The problem of overfitting is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- K-NN (e.g. when k is small)
- Linear Regression (e.g. with nonlinear features or extraneous features)
- Logistic Regression (e.g. with nonlinear features or extraneous features)
- Neural networks

Motivation: Regularization

Occam's Razor: prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be simple?

1. small number of features (model selection)
2. small number of "important" features (shrinkage)

Regularization

Key idea:

Define regularizer $r(\boldsymbol{\theta})$ that we will add to our minimization objective to keep the model simple
$r(\boldsymbol{\theta})$ should be:

- Small for a simple model
- Large for a complex model

L2 norm: square-root of sum of squares

L1 norm: sum of absolute values

LO norm: count of non-zero values

Regularization

$\|\boldsymbol{\theta}\|_{2} \quad\|\boldsymbol{\theta}\|_{1} \quad\|\boldsymbol{\theta}\|_{0}$
A. $\boldsymbol{\theta}_{A}=[6,3,-4,-2]^{T}$
B. $\boldsymbol{\theta}_{B}=[0,3,-4,0]^{T}$

Poll 2

Which model do you prefer?
A. $\boldsymbol{\theta}_{A}=[-190.0,-135.0,310.0,45.0]^{T}$ Training error: 0.0
B. $\boldsymbol{\theta}_{B}=\left[\begin{array}{cccc}{[} & 0.0, & 0.0, & 0.0, \\ 0.0\end{array}\right]^{T}$ Training error: 34.2

Regularization

Given objective function: $J(\theta)$
Goal is to find:

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})
$$

Key idea: Define regularizer $r(\boldsymbol{\theta})$ s.t. we tradeoff between fitting the data and keeping the model simple
Choose form of $r(\boldsymbol{\theta})$:

- Example: q-norm (usually p-norm)

$$
r(\boldsymbol{\theta})=\|\boldsymbol{\theta}\|_{q}=\left[\sum_{m=1}^{M}\left\|\theta_{m}\right\|^{q}\right]^{\left(\frac{1}{q}\right)}
$$

q	$r(\boldsymbol{\theta})$	yields parame- ters that are...	name	optimization notes		
0	$\\|\boldsymbol{\theta}\\|_{0}=\sum \mathbb{1}\left(\theta_{m} \neq 0\right)$	zero values	Lo reg.	no good computa- tional solutions		
1	$\\|\boldsymbol{\theta}\\|_{1}=\sum\left\|\theta_{m}\right\|$	zero values	L1 reg.	subdifferentiable 2		
	$\left.\\|\boldsymbol{\theta}\\|_{2}\right)^{2}=\sum \theta_{m}^{2}$	small values	L2 reg.	differentiable		

Regularization

Poll 3

Question:

Suppose we are minimizing $J^{\prime}(\theta)$ where

$$
J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})
$$

As λ increases, the minimum of $J^{\prime}(\theta)$ will...
A. ... move towards the midpoint between $J^{\prime}(\theta)$ and $r(\theta)$
B. ... move towards the minimum of $J(\theta)$
C. ... move towards the minimum of $r(\theta)$
D. ... move towards a theta vector of positive infinities
E. ... move towards a theta vector of negative infinities
F. ... stay the same

Regularization Exercise

In-class Exercise

1. Plot train error vs. regularization hyperparameter (cartoon)
2. Plot test error vs . regularization hyperparameter (cartoon)

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})
$$

$\frac{1}{\frac{1}{4}}$
regularization hyperparameter, λ

Poll 4

Question:

Suppose we are minimizing $J^{\prime}(\theta)$ where

$$
J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})
$$

As we increase λ from zero, the validation error will...
A. ... increase
B. ... decrease
C. ... first increase, then decrease
D. ... first decrease, then increase
E. ... stay the same

Regularization

Don't Regularize the Bias (Intercept) Parameter

- In our models so far, the bias / intercept parameter is usually denoted by $\theta_{0}-$ - that is, the parameter for which we fixed $x_{0}=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

Regularization

Given objective function: $J(\theta)$
Goal is to find:

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})
$$

Key idea: Define regularizer $r(\boldsymbol{\theta})$ s.t. we tradeoff between fitting the data and keeping the model simple
Choose form of $r(\boldsymbol{\theta})$:

- Example: q-norm (usually p-norm)

$$
r(\boldsymbol{\theta})=\|\boldsymbol{\theta}\|_{q}=\left[\sum_{m=1}^{M}\left\|\theta_{m}\right\|^{q}\right]^{\left(\frac{1}{q}\right)}
$$

q	$r(\boldsymbol{\theta})$	yields parame- ters that are...	name	optimization notes		
0	$\\|\boldsymbol{\theta}\\|_{0}=\sum \mathbb{1}\left(\theta_{m} \neq 0\right)$	zero values	Lo reg.	no good computa- tional solutions		
1	$\\|\boldsymbol{\theta}\\|_{1}=\sum\left\|\theta_{m}\right\|$	zero values	L1 reg.	subdifferentiable 2		
	$\left.\\|\boldsymbol{\theta}\\|_{2}\right)^{2}=\sum \theta_{m}^{2}$	small values	L2 reg.	differentiable		

Regularization

$$
\begin{aligned}
& J\left(\theta_{1}, \theta_{2}\right)=\|\vec{\theta}-\vec{\mu}\| \quad \mu=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
& \min J\left(\theta, \theta_{2}\right) \\
& \theta \\
& \text { s.t. }\|\theta\|_{2}^{2} \leq 1
\end{aligned}
$$

Regularization

L2 vs L1 Regularization

Combine original objective with penalty on parameters

Figures: Bishop, Ch 3.1.4

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

Figure: Emily Fox, University of Washington

Regularization as MAP

L1 and L2 regularization can be interpreted as maximum a-posteriori (MAP) estimation of the parameters
To be discussed later in the course...

Optimization

Takeaways

1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
2. Nonlinear features require no changes to the model (i.e. just preprocessing)
3. Regularization helps to avoid overfitting
4. (Regularization and MAP estimation are equivalent for appropriately chosen priors)

Additional Slides

Logistic Regression with Nonlinear Features

Jupyter notebook demo

Example: Logistic Regression

For this example, we construct nonlinear features (i.e. feature engineering)
Specifically, we add polynomials up to order 9 of the two original features x_{1} and x_{2}
Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in lowdimensions (i.e. the original two dimensions)

Example: Logistic Regression

Example: Logistic Regression

Classification with Logistic Regression (Iambda=1e-05)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.0001)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.001)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

Example: Logistic Regression

Classification with Logistic Regression (Iambda=1)

Example: Logistic Regression

Classification with Logistic Regression (Iambda=10)

Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

Example: Logistic Regression

Classification with Logistic Regression (lambda=10000)

Example: Logistic Regression

Classification with Logistic Regression (lambda=100000)

Example: Logistic Regression

Classification with Logistic Regression (lambda=1e+06)

Example: Logistic Regression

Example: Logistic Regression

