

Announcements

Struggling?

- Don't struggle alone
- Come talk to Pat
 - OH
 - 1-on-1 appointment calendar
 - Private message on Piazza with set of times to meet

Announcements

Assignments

- HW5
 - Fri, 2/24, 11:59 pm

Midterm

- Wed, 3/1, in-class
- Details will be coming on Piazza
 - Logistics
 - Learning objectives for Midterm 1 topics
 - Review session
 - Practice exam problems

Announcements

Struggling?

- Don't struggle alone
- Come talk to Pat
 - OH
 - 1-on-1 appointment calendar
 - Private message on Piazza with set of times to meet

Plan

Today

- Wrap-up neural nets (for now)
- Regularization
 - Make sure they aren't too powerful ☺

Wrap up Neural Nets

Switch to neural nets slides

10-315
Introduction to ML

Regularization

Instructor: Pat Virtue

Poll 1

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7 + \theta_8 x^8$$

Model parameters:

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8]^T$$

A. $\boldsymbol{\theta}_A = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^T$

B. $\boldsymbol{\theta}_B = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^T$

Poll 1

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7 + \theta_8 x^8$$

Model parameters:

$$\theta = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8]^T$$

A. $\theta_A = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^T$

B. $\theta_B = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^T$

Example: Linear Regression

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$
where $f(\cdot)$ is a polynomial
basis function

y	x	x^2	...	x^9
2.0	1.2	$(1.2)^2$...	$(1.2)^9$
1.3	1.7	$(1.7)^2$...	$(1.7)^9$
0.1	2.7	$(2.7)^2$...	$(2.7)^9$
1.1	1.9	$(1.9)^2$...	$(1.9)^9$

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Symptoms of Overfitting

	$M = 0$	$M = 1$	$M = 3$	$M = 9$
θ_0	0.19	0.82	0.31	0.35
θ_1		-1.27	7.99	232.37
θ_2			-25.43	-5321.83
θ_3			17.37	48568.31
θ_4				-231639.30
θ_5				640042.26
θ_6				-1061800.52
θ_7				1042400.18
θ_8				-557682.99
θ_9				125201.43

Model Preference

Which is model do you prefer, assuming both have zero training error?

Model structure (for both models):

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4 + \theta_5 x_5 + \theta_6 x_6 + \theta_7 x_7 + \theta_8 x_8$$

Model parameters:

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8]^T$$

A. $\boldsymbol{\theta}_A = [-190.0, -135.0, 310.0, 45.0, -62.0, 90.0, -82.0, -40.0, 29.0]^T$

B. $\boldsymbol{\theta}_B = [25.5, -6.4, -0.8, 0.0, 6.6, -4.4, 0.2, -2.9, 0.1]^T$

What if \mathbf{x} was a vector of input feature measurements (rather than polynomial features)?

Motivation: Regularization

Example: Stock Prices

Suppose we wish to predict Google's stock price at time $t+1$

What features should we use?
(putting all computational concerns aside)

- Stock prices of all other stocks at times $t, t-1, t-2, \dots, t-k$
- Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets

Do we believe that **all** of these features are going to be useful?

Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- K-NN (e.g. when k is small)
- Linear Regression (e.g. with nonlinear features or extraneous features)
- Logistic Regression (e.g. with nonlinear features or extraneous features)
- Neural networks

Motivation: Regularization

Occam's Razor: prefer the simplest hypothesis

What does it mean for a hypothesis (or model) to be **simple**?

1. small number of features (**model selection**)
2. small number of “important” features (**shrinkage**)

Regularization

Key idea:

Define regularizer $r(\theta)$ that we will add to our minimization objective to keep the model simple

$r(\theta)$ should be:

- Small for a simple model
- Large for a complex model

L2 norm: square-root of sum of squares

L1 norm: sum of absolute values

L0 norm: count of non-zero values

Regularization

$$\|\theta\|_2$$

$$\|\theta\|_1$$

$$\|\theta\|_0$$

A. $\theta_A = [6, 3, -4, -2]^T$

B. $\theta_B = [0, 3, -4, 0]^T$

Poll 2

Which model do you prefer?

A. $\theta_A = [-190.0, -135.0, 310.0, 45.0]^T$ Training error: 0.0

B. $\theta_B = [0.0, 0.0, 0.0, 0.0]^T$ Training error: 34.2

Regularization

Given objective function: $J(\theta)$

Goal is to find: $\hat{\theta} = \operatorname{argmin}_{\theta} J(\theta) + \lambda r(\theta)$

Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

- Example: q-norm (usually p-norm)

$$r(\theta) = \|\theta\|_q = \left[\sum_{m=1}^M \|\theta_m\|^q \right]^{\left(\frac{1}{q}\right)}$$

q	$r(\theta)$	yields parameters that are...	name	optimization notes
0	$\ \theta\ _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computational solutions
1	$\ \theta\ _1 = \sum \theta_m $	zero values	L1 reg.	subdifferentiable
2	$(\ \theta\ _2)^2 = \sum \theta_m^2$	small values	L2 reg.	differentiable

Regularization

Poll 3

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\theta) = J(\theta) + \lambda r(\theta)$$

As λ increases, the minimum of $J'(\theta)$ will...

- A. ... move towards the midpoint between $J(\theta)$ and $r(\theta)$
- B. ... move towards the minimum of $J(\theta)$
- C. ... move towards the minimum of $r(\theta)$
- D. ... move towards a theta vector of positive infinities
- E. ... move towards a theta vector of negative infinities
- F. ... stay the same

Regularization Exercise

In-class Exercise

1. Plot train error vs. regularization hyperparameter (cartoon)
2. Plot test error vs . regularization hyperparameter (cartoon)

$$\hat{\boldsymbol{\theta}} = \operatorname{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Poll 4

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\theta) = J(\theta) + \lambda r(\theta)$$

As we increase λ from zero, the **validation** error will...

- A. ...increase
- B. ...decrease
- C. ...first increase, then decrease
- D. ...first decrease, then increase
- E. ...stay the same

Regularization

Don't Regularize the Bias (Intercept) Parameter

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 -- that is, the parameter for which we fixed $x_0 = 1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to *whiten* each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Regularization

Given objective function: $J(\theta)$

Goal is to find:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J(\theta) + \lambda \underline{r(\theta)}$$

Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

- Example: q-norm (usually p-norm)

$$r(\theta) = \|\theta\|_q = \left[\sum_{m=1}^M \|\theta_m\|^q \right]^{\left(\frac{1}{q}\right)}$$

q	$r(\theta)$	yields parameters that are...	name	optimization notes
0	$\ \theta\ _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computational solutions
1	$\ \theta\ _1 = \sum \theta_m $	zero values	L1 reg.	subdifferentiable
2	$(\ \theta\ _2)^2 = \sum \theta_m^2$	small values	L2 reg.	differentiable

Regularization

$$J(\theta_1, \theta_2) = \|\vec{\theta} - \vec{\mu}\|$$

$$\mu = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$\min_{\theta} J(\theta_1, \theta_2)$$

$$\text{s.t. } \|\theta\|_2^2 \leq 1$$

Regularization

L2 vs L1 Regularization

Combine original objective with penalty on parameters

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

L2 vs L1: Housing Price Example

Predict housing price from several features

Regularization as MAP

L1 and L2 regularization can be interpreted as **maximum a-posteriori (MAP) estimation** of the parameters

To be discussed later in the course...

Optimization

Takeaways

1. **Nonlinear basis functions** allow **linear models** (e.g. Linear Regression, Logistic Regression) to capture **nonlinear** aspects of the original input
2. Nonlinear features **require no changes to the model** (i.e. just preprocessing)
3. **Regularization** helps to avoid **overfitting**
4. **(Regularization and MAP estimation are equivalent for appropriately chosen priors)**

Additional Slides

Logistic Regression with Nonlinear Features

Jupyter notebook demo

Example: Logistic Regression

For this example, we construct **nonlinear features** (i.e. feature engineering)

Specifically, we add **polynomials up to order 9** of the two original features x_1 and x_2

Thus our classifier is **linear** in the **high-dimensional feature space**, but the decision boundary is **nonlinear** when visualized in **low-dimensions** (i.e. the original two dimensions)

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

Example: Logistic Regression

