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1 [34 pts] Example Feed Forward and Backpropagation
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Figure 1.1: A One Hidden Layer Neural Network

This entire problem is set up in denominator layout. Please answer each of the subparts using
denominator layout

Network Overview Consider the neural network with one hidden layer shown in Figure 1.1. The input
layer consists of 6 features x = [x1, ..., x6]

T , the hidden layer has 4 nodes z = [z1, ..., z4]
T , and the output

layer is a probability distribution y = [y1, y2, y3]
T over 3 classes. We also allow for a bias term by adding a

constant one to the input, x0 = 1 and a constant one to the hidden layer z0 = 1.

α is the matrix of weights from the inputs to the hidden layer and β is the matrix of weights from the hidden
layer to the output layer.

αj,i represents the weight going to the node zj in the hidden layer from the node xi in the input layer (e.g.
α1,2 is the weight from x2 to z1), and β is defined similarly. We will use a sigmoid activation function for
the hidden layer and a softmax for the output layer.

Network Details Equivalently, we define each of the following.

The input:

x = [x1, x2, x3, x4, x5, x6]
T (1.1)

Linear combination at the first (hidden) layer:

aj = αj,0 +

6∑
i=1

αj,i · xi, ∀j ∈ {1, . . . , 4} (1.2)
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Activation at the first (hidden) layer:

zj = σ(aj) =
1

1 + exp(−aj)
, ∀j ∈ {1, . . . , 4} (1.3)

Equivalently, we can write this as vector operation where the sigmoid activation is applied individually to
each element of the vector a:

z = σ(a) (1.4)

Linear combination at the second (output) layer:

bk = βk,0 +
4∑
j=1

βk,j · zj , ∀k ∈ {1, . . . , 3} (1.5)

Activation at the second (output) layer:

ŷk =
exp(bk)
3∑
l=1

exp(bl)

, ∀k ∈ {1, . . . , 3} (1.6)

Note that the linear combination equations can be written equivalently as the product of the weight matrix
with the input vector. We can even fold in the bias term α0 by thinking of x0 = 1, and fold in βj,0 by
thinking of z0 = 1.

Loss We will use cross entropy loss, `(ŷ,y). If y represents our target output, which will be a one-hot
vector representing the correct class, and ŷ represents the output of the network, the loss is calculated by:

`(ŷ,y) = −
3∑
i=1

yi log(ŷi) (1.7)

For the below questions use natural log in the equation.

Objective In this assignment, we’ll just be doing stochastic gradient descent. The objective function for
data point i is:

J (i)
(
α,β;y(i),x(i)

)
= `

(
ŷ(i),y(i)

)
Prediction When doing prediction, we will predict the argmax of the output layer. For example, if ŷ1 =
0.3, ŷ2 = 0.2, ŷ3 = 0.5 we would predict class 3. If the true class from the training data was 2 we would
have a one-hot vector y with values y1 = 0, y2 = 1, y3 = 0.

1. In the following questions you will derive the matrix and vector forms of the previous equations which
define our neural network. These are what you should hope to program in order to keep your program
under the Gradescope time-out.
When working these out it is important to keep a note of the vector and matrix dimensions in order
for you to easily identify what is and isn’t a valid multiplication. Suppose you are given an training
example: x(1) = [x1, x2, x3, x4, x5, x6]

T with label class 2, so y(1) = [0, 1, 0]T . We initialize the
network weights as:

3
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α∗ =


α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,1 α4,2 α4,3 α4,4 α4,5 α4,6



β∗ =

β1,1 β1,2 β1,3 β1,4
β2,1 β2,2 β2,3 β2,4
β3,1 β3,2 β3,3 β3,4


We want to also consider the bias term and the weights on the bias terms (αj,0 and βk,0). To account
for these we can add a new column to the beginning of our initial weight matrices.

α =


α1,0 α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,0 α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,0 α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,0 α4,1 α4,2 α4,0 α4,4 α4,5 α4,6



β =

β1,0 β1,1 β1,2 β1,3 β1,4
β2,0 β2,1 β2,2 β2,3 β2,4
β3,0 β3,1 β3,2 β3,3 β3,4


And we can set our first value of our input vectors to always be 1 (x(i)0 = 1), so our input becomes:

x(1) = [1, x1, x2, x3, x4, x5, x6]
T

a) [1 pts] By examining the shapes of the initial weight matrices, how many neurons do we have
in the first hidden layer of the neural network? (Not including the bias neuron)

Your Answer

b) [1 pts] How many output neurons will our neural network have?

Your Answer

c) [1 pts] What is the vector a whose elements are made up of the entries aj in Equation 1.2. Write
your answer in terms of α and x(1).

Your Answer
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d) [1 pts] Select one: We cannot take the matrix multiplication of our weights β and our vector z
since they are not compatible shapes. Which of the following would allow us to take the matrix
multiplication of β and z such that the entries of the vector b = βz are equivalent to the values
of bk in Equation 1.5?

A) Remove the last column of β

B) Remove the first row of z

C) Append a value of 1 to be the first entry of z

D) Append an additional column of 1’s to be the first column of β

E) Append a row of 1’s to be the first row of β

F) Take the transpose of β

e) [2 pts] What are the entries of the output vector ŷ? Your answer should be written in terms of
b1, b2, b3.

ŷ

5
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2. We will now derive the matrix and vector forms for the backpropagation algorithm.

We start by recalling the following matrix derivatives. Given ` ∈ R, α ∈ RD×M , y ∈ RM , and
x ∈ RD:

∂J

∂α
=


∂J
∂α10

∂J
∂α11

. . . ∂J
∂α16

∂J
∂α20

∂J
∂α21

. . . ∂J
∂α26

...
...

. . .
...

∂J
∂α40

∂J
∂α41

. . . ∂J
∂α46

 and
∂y

∂x
=


∂y1
∂x1

∂y2
∂x1

. . . ∂yM∂x1
∂y1
∂x2

∂y2
∂x2

. . . ∂yM∂x2
...

. . .
∂y1
∂xD

∂y2
∂xD

. . . ∂yM∂xD


We also note below the multivariate chain rule, which will be very helpful in solving these problems.

∂`

∂x
=
∂y

∂x

∂`

∂y
or

∂`

∂xi
=

M∑
j=1

∂yj
∂xi

∂`

∂yj

Tip: You should always be examining the shape of the matrices and vectors and making sure that
you are comparing your matrix elements with calculations of individual derivatives to make sure they
match (e.g. the element of the matrix (∂J∂α)2,1 should be equal to ∂`

∂α2,1
).

a) [4 pts] The derivative of the softmax function with respect to bk is as follows:

∂ŷl
∂bk

= ŷl(I[k = l]− ŷk)

where I[k = l] is an indicator function such that if k = l then it returns value 1 and 0 otherwise.
Here, ŷi is the ith component in the softmax output described in Eq. 1.6, while bj is the jth
component in the output of the linear layer described in Eq. 1.5.

Using this, write the derivative ∂`
∂bk

in a smart way such that you do not need this indicator
function. Write your solutions in terms of ŷk, yk. Show your work below. (Here, ` is a scalar
representing the loss as defined in Eq. 1.7.)
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∂`/∂bk
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b) [1 pts] What are the elements of the vector ∂`
∂b? (Recall that y(1) = [0, 1, 0]T )

∂`/∂b

c) [2 pts] What is the derivative ∂J
∂β ? Your answer should be in terms of ∂`

∂b and z.

You should first consider a single entry in this matrix: ∂J
∂βkj

.

∂J/∂β

d) [1 pts] Explain in one short sentence why we must go back to using the matrix β∗ (the matrix β
without the first column of ones) when calculating the matrix ∂J

∂α?

Your Answer

8
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e) [2 pts] What is the derivative ∂`
∂z? Your answer should be in terms of ∂`

∂b and β∗.

∂`/∂z

f) [2 pts] What is the derivative ∂`
∂aj

in terms of ∂`
∂zj

and zj?

∂`/∂aj

g) [2 pts] What is the matrix ∂J
∂α? Your answer should be in terms of ∂`

∂a and x(1).

∂J/∂α
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3. Now you will put these equations to use in an example with numerical values. You should use the
answers you get here to debug your code.
You are given a training example x(1) = [1, 1, 0, 0, 1, 1]T with label class 2, so y(1) = [0, 1, 0]T . We
initialize the network weights as:

α∗ =


1 2 −3 0 1 −3
3 1 2 1 0 2
2 2 2 2 2 1
1 0 2 1 −2 2



β∗ =

1 2 −2 1
1 −1 1 2
3 1 −1 1


We want to also consider the bias term and the weights on the bias terms (αj,0 and βj,0). Lets say they
are all initialized to 1. To account for this we can add a column of 1’s to the beginning of our initial
weight matrices.

α =


1 1 2 −3 0 1 −3
1 3 1 2 1 0 2
1 2 2 2 2 2 1
1 1 0 2 1 −2 2



β =

1 1 2 −2 1
1 1 −1 1 2
1 3 1 −1 1


And we can set our first value of our input vectors to always be 1 (x(i)0 = 1), so our input becomes:

x(1) = [1, 1, 1, 0, 0, 1, 1]T

Using the initial weights, run the feed-forward of the network over this example (rounding to 4 decimal
places during the calculation) and then answer the following questions. In your responses, round to
four decimal places—if the answer is an integer you need not include trailing zeros.

Showing your work in these questions is optional, but it is recommended to help us understand where
any misconceptions may occur.

a) [1 pts] What is a1?

a1 Work

10
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b) [1 pts] What is a2?

a2 Work

c) [1 pts] What is z1?

z1 Work

d) [1 pts] What is z3?

z3 Work

e) [1 pts] What is b1?

b1 Work

11
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f) [1 pts] What is b2?

b2 Work

g) [1 pts] What is ŷ2?

ŷ2 Work

h) [1 pts] Which class would we predict on this example? Your answer should just be an integer
∈ {1, 2, 3}.

Class Work

i) [1 pts] What is the total loss on this example?

Loss Work

12
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4. Now use the results of the previous question to run backpropagation over the network and update the
weights. Use learning rate η = 1.

Do your backpropagation calculations rounding to 4 decimal places then answer the following questions.
Showing your work in these questions is optional, but it is recommended to help us understand where
any misconceptions may occur.

a) [1 pts] What is the value of ∂J
∂β1,0

?

∂J/∂β1,0 Work

b) [1 pts] What is the updated value of the weight β1,0?

β1,0 Work

c) [1 pts] What is the updated value of the weight α3,4?

α3,4 Work

13
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d) [2 pts] What is the updated weight of the input layer bias term applied to z2 (i.e. α2,0)?

α2,0 Work

14
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2 [45 pts] Neural Network Implementation
Summary In this section, you will build a handwriting recognition system using a neural network. Use the
written component of this assignment (Q1) as a guide to lead you through an example of how to implement
a neural network. Then, you will implement an end-to-end system that learns to perform handwritten
letter classification. You will implement all of the functions needed to initialize, train, evaluate, and make
predictions with the network.

Begin by opening Jupyter Notebook, hw5.ipynb, (in Google Colab, preferrably) provided in the handout.
This contains the skeleton code and data for this assignment. It also includes an autograder for you to
grade your code on your machine by running the grader.check(...) cells. You may ignore the
run and test* and check * functions as those are used by the autograder for running tests. However,
feel free to use those functions for debugging, but do not modify them!

The code for this assignment consists of several Python files, some of which you will need to read and
understand in order to complete the assignment, and some of which you can ignore.

Files to Edit and Submit:

You will fill in portions of hw5.ipynb. You should submit this file containing your code and comments to
the Programming component on Gradescope. Please do not change the names of any provided functions or
classes within the code, or the autograder won’t work appropriately.
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2.1 Data
We will be using a subset of an Optical Character Recognition (OCR) data set. This data includes images of
all 26 handwritten letters; our subset will include only the letters “a,” “e,” “g,” “i,” “l,” “n,” “o,” “r,” “t,” and
“u.” The handout contains three data sets drawn from this data: a small data set with 60 samples per class
(50 for training and 10 for validation), a medium data set with 600 samples per class (500 for training and
100 for validation), and a large data set with 1000 samples per class (900 for training and 100 for validation).
Figure 2.1 shows a random sample of 10 images of few letters from the data set. You do not need to worry
about reading these images; we have already processed them into vectors for you (more details below).

Figure 2.1: 10 Random Images of Each of 10 Letters in OCR

2.2 File Format
Each data set (small, medium, and large) consists of two csv files—train and validation. Each row contains
129 columns separated by commas. The first column contains the label and columns 2 to 129 represent the
pixel values of a 16× 8 image in a row major format. Label 0 corresponds to “a,” 1 to “e,” 2 to “g,” 3 to “i,”
4 to “l,” 5 to “n,” 6 to “o,” 7 to “r,” 8 to “t,” and 9 to “u.”

Because the original images are black-and-white (not grayscale), the pixel values are either 0 or 1. However,
you should write your code to accept arbitrary pixel values in the range [0,1]. The images in Figure 2.1
were produced by converting these pixel values into .png files for visualization. Observe that no feature
engineering has been done here; instead the neural network you build will learn features appropriate for the
task of character recognition.
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2.3 Model Definition
In this assignment, you will implement a single-hidden-layer neural network with a sigmoid activation
function for the hidden layer, and a softmax on the output layer. Let the input vectors x be of length M , the
hidden layer z consist of D hidden units, and the output layer ŷ be a probability distribution over K classes.
That is, each element yk of the output vector represents the probability of x belonging to the class k.

Model Architecture
Input (length) Layer/Activation Output (length)
x of length M Linear (hidden layer) a of length D
a of length D Sigmoid Activation z of length D
z of length D Linear (output layer) b of length K
b of length K Softmax y of length K

We can further express this model by adding bias features to the inputs of layers; assume x0 = 1 is a
bias feature on the input and that z0 = 1 is also fixed. In this way, we have two parameter matrices
α ∈ RD×(M+1) and β ∈ RK×(D+1). The extra 0th column of each matrix (i.e. α·,0 and β·,0) hold the
bias parameters. Remember to add the appropriate 0th columns to your inputs/matrices and update the
dimensions accordingly (i.e. length D + 1 instead of D).

To help you recall, we list down the operations being performed in a forward pass of the neural network
below:

aj =
M∑
m=0

αjmxm

zj =
1

1 + exp(−aj)

bk =
D∑
j=0

βkjzj

ŷk =
exp(bk)∑K
l=1 exp(bl)

The objective function we’re using is the average cross entropy over the training dataset D = {(x(i),y(i))}:

J(α,β) = − 1

N

N∑
i=1

K∑
k=1

y
(i)
k log(ŷ

(i)
k )

Some points to mention:

• Do not use any machine learning libraries. You may and please do use NumPy.

• Try to “vectorize” your code as much as possible. In Python, you want to avoid for-loops and instead
rely on NumPy calls to perform operations such as matrix multiplication, transpose, subtraction, etc.
over an entire NumPy array at once. This is much faster; using NumPy over list can speed up your
computation by 200x!

• You’ll want to pay close attention to the dimensions that you pass into and return from your functions.
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2.4 [12 pts] Feed Forward
Implement the forward functions for the layers linearForward, sigmoidForward,
softmaxForward, crossEntropy. Next, implement the NNForward function that calls a complete
forward pass on the neural network.

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters α, β)
2: a = LINEARFORWARD(x,α)
3: z = SIGMOIDFORWARD(a)
4: b = LINEARFORWARD(z,β)
5: ŷ = SOFTMAXFORWARD(b)
6: J = CROSSENTROPYFORWARD(y, ŷ)
7: return intermediate quantities x,a, z,b, ŷ,J
8: end procedure

This question will be autograded. You may run the following command to run some tests on Q1:

grader.check("Q2a")

Tip: Check on your dimensions, and make sure you account for the bias features.

2.5 [16 pts] Backward Propagation
Implement the backward functions for the layers softmaxBackward,
sigmoidBackward, linearBackward.

The gradients we need are the matrices of partial derivatives. Let M be the number of input features, D the
number of hidden units, and K the number of outputs.

α =


α10 α11 . . . α1M

α20 α21 . . . α2M
...

...
. . .

...
αD0 αD1 . . . αDM

 gα =
∂J

∂α
=


∂J
∂α10

∂J
∂α11

. . . ∂J
∂α1M

∂J
∂α20

∂J
∂α21

. . . ∂J
∂α2M

...
...

. . .
...

∂J
∂αD0

∂J
∂αD1

. . . ∂J
∂αDM

 (2.1)

β =


β10 β11 . . . β1D
β20 β21 . . . β2D

...
...

. . .
...

βK0 βK1 . . . βKD

 gβ =
∂J

∂β
=


∂J
∂β10

∂J
∂β11

. . . ∂J
∂β1D

∂J
∂β20

∂J
∂β21

. . . ∂J
∂β2D

...
...

. . .
...

∂J
∂βK0

∂J
∂βK1

. . . ∂J
∂βKD

 (2.2)

Reminder once again that α and gα are D× (M + 1) matrices, while β and gβ are K × (D+ 1) matrices.
The +1 comes from the extra columns α·,0 and β·,0 which are the bias parameters for the first and second
layer respectively. We will always assume x0 = 1 and z0 = 1.

Next, implement the NNBackward function that calls a complete backward pass on the neural network.

18
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Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters α, β, Intermediates z, ŷ)
2: gb = SOFTMAXBACKWARD*(y, ŷ)
3: gβ,gz = LINEARBACKWARD(z,β,gb)
4: ga = SIGMOIDBACKWARD(z,gz)
5: gα,gx = LINEARBACKWARD(x,α,ga) . We discard gx
6: return parameter gradients gα,gβ,gb,gz,ga
7: end procedure

*It is common to combine the Cross-Entropy and Softmax backpropagation into one, due to the simpler
calculation.

This question will be autograded. You may run the following command to run some tests on Q2:

grader.check("Q2b")

2.6 [9 pts] Training with Stochastic Gradient Descent
Implement the SGD function, where you apply stochastic gradient descent to your training.

Because we want the behavior of your program to be deterministic for testing on Gradescope, we make a
few simplifications: (1) you should not shuffle your data and (2) you will use a fixed learning rate. In the
real world, you would not make these simplifications.

SGD proceeds as follows, where γ is the learning rate and E is the number of epochs. One epoch is one full
pass through the entire dataset.

Algorithm 3 Stochastic Gradient Descent (SGD) without Shuffle

procedure SGD(Training data D, Validation data D′, other relevant parameters)
Initialize parameters α,β . Use either RANDOM or ZERO, depending on the init rand
Initialize empty lists losses train and losses val
for e ∈ {1, 2, . . . , E} do . For each epoch

for (x,y) ∈ D do . For each training example (No shuffling)
Compute neural network layers:
x,a,b, z, ŷ, J = NNFORWARD(x,y,α,β)
Compute gradients via backprop:

gα =
∂J

∂α

gβ =
∂J

∂β

 = NNBACKWARD(x,y,α,β, z, ŷ)

Update parameters:
α← α− γgα
β ← β − γgβ

end for
Compute training mean cross-entropy J(α,β) and store in losses train . from Eq. 2.4
Compute validation mean cross-entropy J(α,β) and store in losses val . from Eq. 2.4

end for
return α,β, losses train, losses val

end procedure
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Initialization
In order to use a deep network, we must first initialize the weights and biases in the network. This is typically
done with a random initialization, or initializing the weights from some other training procedure. For this
assignment, we will be using two possible initialization methods:

RANDOM – Weights are initialized randomly from Uniform[−0.1, 0.1]. Biases are initialized
to zero.

ZERO – All weights are initialized to 0.

You must support both of these initialization schemes. To keep things consistent with the autograder, we
recommend using numpy.random.uniform for the random initialization. (Tip: Think carefully about
the dimensions of α and β. If you’re confused, you can revisit your answers in the written part.)

Cross-Entropy JSGD(α, β)
Cross-entropy JSGD(α, β) for a single example i is defined as follows:

JSGD(α,β) = −
K∑
k=1

y
(i)
k log(ŷ

(i)
k ) (2.3)

J is a function of model parameters α and β because ŷ(i)k is implicitly a function of x(i), α, and β since it
is the output of the neural network applied to x(i). Of course, ŷ(i)k and y(i)k are the kth components of ŷ(i)

and y(i) respectively. The objective function you then use to calculate the average cross entropy over, say
the training dataset D = {(x(i),y(i))}, is:

J(α,β) = − 1

N

N∑
i=1

K∑
k=1

y
(i)
k log(ŷ

(i)
k ) (2.4)

This question is autograded and depends on the correctness to your previous parts. You may run the
following command to run some tests on Q3:

grader.check("Q2c")

2.7 [4 pts] Label Prediction
Recall that for an input x, your network outputs a probability distribution over K classes, ŷ. After training
your network and obtaining weight parameters α and β, you now want to predict the labels given the data.
We also want to find the train and validation error, which is equivalent to 1 minus the accuracy.

Implement the prediction function as follows:
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Algorithm 4 Prediction

1: procedure PREDICTION(Training data D, Validation data D′, Parameters α,β)
2: for (x,y) ∈ D do
3: Compute neural network prediction ŷ from NNFORWARD(x,y,α,β)
4: Predict the label with highest probability l = argmaxk ŷk
5: Check for error l 6= y
6: end for
7: for (x,y) ∈ D′ do
8: Compute neural network prediction ŷ from NNFORWARD(x,y,α,β)
9: Predict the label with highest probability l = argmaxk ŷk

10: Check for error l 6= y
11: end for
12: return train error, valid error, train predictions, valid predictions
13: end procedure

This question is autograded and depends on the correctness to your previous parts. You may run the
following command to run some tests on Q4:

grader.check("Q2d")

2.8 [4 pts] Main train and valid function
Finally, implement the train and valid() function to train and validate your neural network implementation.
Your program should learn the parameters of the model on the training data, and report the following: (1)
cross-entropy on both train and validation data for each epoch, (2) predictions for both train and validation
data, (3) error rates on both train and validation data, and (4) confusion matrices for predictions on the
training and validation datasets (you may implement the function confusionMatrix to help you with
this last metric). See the docstring in the code for more details.

Your implementation must satisfy the following requirements:

• Number of hidden units for the hidden layer will be determined by the num hidden argument to
the train and valid function.

• SGD must support two different initialization strategies (namely RANDOM and ZERO), selecting
between them based on the init rand argument to the train and valid function.

• The number of epochs will be determined by the num epochs argument to the train and valid
function.

• The learning rate for SGD is specified by the learning rate argument to the
train and valid function.

• Perform SGD updates on the training data in the order that the data is given in the input file. Although
you would typically shuffle training examples when using stochastic gradient descent, in order to
autograde the assignment, we ask that you DO NOT shuffle trials in this assignment.

This question is autograded and depends on the correctness to your previous parts. You may run the
following command to run some tests on Q5:

grader.check("Q2e")
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Submission

Upload hw5.ipynb to Gradescope. Your submission should finish running within 20 minutes, after which
it will time out on Gradescope.

You may submit to Gradescope as many times as you like. You may also run the autograder on your own
machine to speed up the development process. Just note that the autograder on Gradescope will be slightly
different than the local autograder.

Note that running the autograder locally will not register your grades with us. Remember to submit your
code when you want to register your grades for this assignment.

The autograder on Gradescope might take a while, but don’t worry; so long as you submit before the
deadline, it’s not late.
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3 [13 pts] Programming (continued)
The following questions should be completed after you work through the programming portion of this
assignment.

For the questions below, use the large dataset. Use the following values for the hyperparameters unless
otherwise specified:

Parameter Value
Number of Hidden Units 50

Weight Initialization RANDOM

Learning Rate 0.01

Please submit computer-generated plots for (a(i)) and (b(i)). Include any code required to produce these
results in additional code.py when submitting the programming component. Note: we expect it to
take about 5 minutes to train each of these networks.

3.1 Hidden Units
1. [1 pts] Run the two cell blocks that are below the one labeled Visualize Weighted Before and After

Training. Using your functions implemented above, we have trained a neural network with 9 hidden
units. Because we are working with 16 × 8 images, there are 128 weights (not including the bias) for
each hidden unit as each weight corresponds with a single pixel. Because each weight corresponds
with a pixel in the image, we can visualize the weights as images themselves, where the intensity of a
weight represents how important that pixel is.

We can visualize how these weights change from when they are first initialized and after training.
After running the cells, you will see 18 images. The left-most 9 images are the weights prior to
training (randomly initialized), and the right-most 9 images are the same weights after training for 10
epochs. What difference(s) do you see between the sets of weights? Why?
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2. [3 pts] Train a single hidden layer neural network using the hyperparameters mentioned in the table
above, except for the number of hidden units which should vary among 5, 20, 50, 100, and 200. Run
the optimization for 100 epochs each time.

Plot the average training cross-entropy (sum of the cross-entropy terms over the training dataset
divided by the total number of training examples) on the y-axis vs number of hidden units on the
x-axis. In the same figure, plot the average validation cross-entropy. Additionally, Use a legend to
distinguish the curves.
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3. [2 pts] Examine and comment on the the plots of training and validation cross-entropy. What is the
effect of changing the number of hidden units?
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3.2 Learning Rate
1. [3 pts] Train a single hidden layer neural network using the hyperparameters mentioned in the table

above, except for the learning rate which should vary among 0.1, 0.01, and 0.001. Run the optimization
for 100 epochs each time.

Plot the average training cross-entropy on the y-axis vs the number of epochs on the x-axis for the
mentioned learning rates. In the same figure, plot the average validation cross-entropy loss. Make a
separate figure for each learning rate. Additionally, Use a legend to distinguish the curves.

Plot LR 0.1:

Plot LR 0.01:
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Plot LR 0.001:

2. [2 pts] Examine and comment on the plots of training and validation cross-entropy. How does
adjusting the learning rate affect the convergence of cross-entropy of each dataset?

Analysis:
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3.3 Confusion Matrix
1. [1 pts] Look and analyze the output of analyzeConfusionMatrix function. What do the diagonal

elements represent?

2. [1 pts] What label is mislabeled the most? What label is it mislabeled the most for?
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4 Collaboration Policy
After you have completed all other components of this assignment, report your answers to the following
collaboration questions.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details including names of people who helped you and the exact nature of help you received.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details
including names of people you helped and the exact nature of help you offered.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details including the source of the code and how you used it in the assignment.
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