
10-315: Introduction to Machine Learning Recitation 8

1 K-Nearest Neighbors

K-nearest neighbors is a nonparametric model that, given a point, predicts the mode of the classes of the k
nearest points.

1.1 KNN Example

Consider the following training set in the 2-dimensional Euclidian space:

The figure below shows a visualization of the data.
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1. What is the prediction of the 3-nearest-neighbor classifier at the point (1, 1)?

+

2. What is the prediction of the 5-nearest-neighbor classifier at the point (1, 1)?

+

3. What is the prediction of the 7-nearest-neighbor classifier at the point (1, 1)?

−

1.2 Conceptual Questions

Do smaller or larger values of k cause overfitting?

Smaller values of k cause overfitting, because if we predict with a smaller number of points we are more
dependent on the individual data points in the training data.

If k = 1, what will we predict for a given point? What could be a problem with this?

We will predict the class of the nearest point. This could result in overfitting because we are too dependent
on a single data point.

If k = n, where n is the number of data points, what will we predict for every point? What could be a
problem with this?
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We will predict the most common class across the entire data set, regardless of position. This is a problem
because we aren’t actually using the location of the point to change our prediction.

We see that both too large and too small k can lead to problems. See the powerpoint for more information
about this, and more practice and graphs relating to k nearest neighbors.
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2 Decision Trees

2.1 Review

In this recitation we will be going through a decision tree problem with greedy search. In order to understand
greedy search, we will go over the ideas of entropy, conditional entropy, and mutual information.

Entropy is a measurement of the uncertainty in a random variable. We quantify this by asking, ”On
average, how many bits do we need to represent a single draw of this random variable?” Its formula is as
follows:

H(Y ) = −
∑
y

P (Y = y) lgP (Y = y)

Let’s look at two simple examples. Let Y have two values, A and B.
If P (Y = A) = 1, a random draw of Y doesn’t give us any additional information - it will always be A.

We see that

H(Y ) = −P (Y = A) lgP (Y = A)− P (Y = B) lgP (Y = B) = −1 lg 1− 0 lg 0 = 0.

So entropy in this case is 0, which makes sense because we don’t need any bits to represent which value Y
took - it’s always A.

If P (Y = B) = 1
2 , then there is an equal chance for both values of Y, so we are the least confident about

what Y will be. We see that

H(Y ) = −P (Y = A) lgP (Y = A)− P (Y = B) lgP (Y = B) = −1

2
lg

1

2
− 1

2
lg

1

2
= − lg

1

2
= 1.

So entropy in this case is 1, which means we need 1 bit to store the value Y took. This makes sense because
there are 2 values of Y, so we could use a single bit and use 0 to represent A and 1 to represent B.

Conditional entropy is the expected value of the entropy of Y given X, over all values of X. This lets
us quantify the entropy of Y given that we know X.

H(Y |X) =
∑
x

P (X = x)H(Y |X = x)

Mutual information is a measurement of the information we gain about Y by observing X. We get this
by finding the difference between the entropy of Y, and the conditional entropy of Y given X:

I(Y ;X) = H(Y )−H(Y |X)

If I(Y ;X) is large, then we gained a lot of information about Y by observing X. If I(Y ;X) is 0, then we
did not gain any information about Y by observing X, so we know X and Y are independent.

2.2 Practice

Refer to the recitation slides posted for an example problem.
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