10-315: Introduction to Machine Learning Recitation 4

1 Work with Norms
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Figure 1: A depiction of £; and ¢ norms in penalized regression.

In lecture, we discussed various types of norms, and their use in regularizing our models. Recall for a
vector w € RE:

£y norm: ||wl|o = the number of non-zero elements in the vector

K
¢, norm: ||wlj; = Z |w; |

i=1

{5 norm: ||wljs =

(a) Suppose we have a vector w € R8. We know that ||wljo = 5, ||w|1 = 22, [[w]]2 = 10

(b) Now suppose we have a vector w € R8. We know that ||w|o = 2, ||w|1 = 17, ||w|2 = 13. Give a vector
w satisfying these conditions.
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2 MLE and MAP

To estimate probabilities from data, we can use maximum likelihood estimation (MLE) or maximum a pos-
teriori (MAP).

In MLE, you choose the parameter 6 that maximizes the likelihood of observed data, argmax, p(D|0). In
MAP, you choose the parameter § that maximizes the likelihood of posterior probability, argmax, p(6|D).

Using the coin flipping example in class, we’ll solve for 6 with both approaches, where 8 is the probabil-

ity of flipping heads. Assume that the coin was flipped 10 times, giving 8 heads and 2 tails. Each flip is
independent and identically distributed according to the Bernoulli distribution.

MLE
a. Formulate the likelihood function £(0) (represented by p(D|6))

b. Take the log to obtain the log-likelihood function £(6)

c. Solve for 6 by taking the derivative of log-likelihood function w.r.t # and setting it to 0.

MAP
Now let’s consider MAP instead. Recall that we're trying to maximize the posterior probability, which is
proportional to likelihood * prior. In mathematical form, p(8|D) o [[ p(D™|0)p(8).

The prior probability distribution given in class is as follows:

f(8)

0.5

where £(A=0.25) = 0.1, f(§=0.5)=0.6, and f(§=0.75) = 0.2.
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2.1 MAP estimate with 2 samples

Let us consider only the first 2 samples, which we learn are both heads. Formally solving for 6 is similar
to the process for MLE, except the prior probability is also introduced. For simplicity of this exercise, just
find and compare the posterior probabilities corresponding to 8 = 0.25, 0.5 and 0.75. Which 6 gives you the
highest probability?

2.2 MAP estimate with 10 samples

Now consider all 10 samples, and find the corresponding posterior probabilities for the three 6 values again.
Which 6 gives you the highest probability?

2.3 Effect of number of samples on MAP estimate

How do the 6 values from parts a and b compare? In which case does prior probability play a bigger role,
and why?



	Work with Norms
	MLE and MAP
	MAP estimate with 2 samples
	MAP estimate with 10 samples
	Effect of number of samples on MAP estimate


