
10-315: Introduction to Machine Learning Recitation 4

1 Work with Norms

Figure 1: A depiction of `1 and `2 norms in penalized regression.

In lecture, we discussed various types of norms, and their use in regularizing our models. Recall for a
vector w ∈ RK :

`0 norm: ‖w‖0 = the number of non-zero elements in the vector

`1 norm: ‖w‖1 =

K∑
i=1

|wi|

`2 norm: ‖w‖2 =

√√√√ K∑
i=1

(wi)2

(a) Suppose we have a vector w ∈ R8. We know that ‖w‖0 = 5, ‖w‖1 = 22, ‖w‖2 = 10

(b) Now suppose we have a vector w ∈ R8. We know that ‖w‖0 = 2, ‖w‖1 = 17, ‖w‖2 = 13. Give a vector
w satisfying these conditions.
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2 MLE and MAP

To estimate probabilities from data, we can use maximum likelihood estimation (MLE) or maximum a pos-
teriori (MAP).

In MLE, you choose the parameter θ that maximizes the likelihood of observed data, argmaxθ p(D|θ). In
MAP, you choose the parameter θ that maximizes the likelihood of posterior probability, argmaxθ p(θ|D).

Using the coin flipping example in class, we’ll solve for θ with both approaches, where θ is the probabil-
ity of flipping heads. Assume that the coin was flipped 10 times, giving 8 heads and 2 tails. Each flip is
independent and identically distributed according to the Bernoulli distribution.

MLE

a. Formulate the likelihood function L(θ) (represented by p(D|θ))

b. Take the log to obtain the log-likelihood function `(θ)

c. Solve for θ by taking the derivative of log-likelihood function w.r.t θ and setting it to 0.

MAP
Now let’s consider MAP instead. Recall that we’re trying to maximize the posterior probability, which is
proportional to likelihood * prior. In mathematical form, p(θ|D) ∝

∏
p(D(n)|θ)p(θ).

The prior probability distribution given in class is as follows:

where f(θ=0.25) = 0.1, f(θ=0.5)=0.6, and f(θ=0.75) = 0.2.
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2.1 MAP estimate with 2 samples

Let us consider only the first 2 samples, which we learn are both heads. Formally solving for θ is similar
to the process for MLE, except the prior probability is also introduced. For simplicity of this exercise, just
find and compare the posterior probabilities corresponding to θ = 0.25, 0.5 and 0.75. Which θ gives you the
highest probability?

2.2 MAP estimate with 10 samples

Now consider all 10 samples, and find the corresponding posterior probabilities for the three θ values again.
Which θ gives you the highest probability?

2.3 Effect of number of samples on MAP estimate

How do the θ values from parts a and b compare? In which case does prior probability play a bigger role,
and why?
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