10-315: Introduction to Machine Learning Recitation 2

1 The Jacobian matrix

In the last recitation, we solved a few problems with gradients, which are defined for functions that have
vector input and scalar output. Now consider a function f : RY — RM which takes a vector x € RV and
outputs a vector f(x) € RM. The gradient doesn’t make much sense here since there are multiple outputs.
In fact, since each output f; could be a function of each input z;, thglfre is a partial derivative for each

combination of f; and x;. This is the intuition for the Jacobian matrix 5, whose (i,j)th entry is defined to

be gg L. Since i refers to the output vector and j refers to the input vector, % has shape MxN.
J

1. To make this idea more concrete, let’s find the Jacobian for a few functions. Let f(x) = Ax where
A € RM*N and x € RV,

(a) What is the shape of %?

(b) Express f; in terms of A; . (the ith row of A) and x. Write this in summation form as well.

. O
(¢c) What is ij?

(d) What is %? Does this coincide with your intuition based on scalar calculus?

2. Let f(x) = —x where x € RV,

: of
(a) What is the shape of 57

(b) What is 517

(¢c) What is gj:f where i # j7

(d) What is %? Does this coincide with your intuition based on scalar calculus?
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3. Let f(x) = xTx where x € RV,

(a) What is the shape of 257

(b) Express f in summation form.

.9
(¢) What is BTi-?

(d) What is 2£2

(e) What is the gradient of f with respect to x? What does this suggest about the relationship
between the gradient and the Jacobian?
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2 Closed-form solution to linear regression

Armed with our understanding of Jacobian matrices, we will now find the closed-form matrix solution to

linear regression using the chain rule. Recall the quantity we are trying to minimize is J(w) = 1||y — Xwl||3,

2
where X € RVXM_ This can be modeled as a composition of three functions:

fi(w) = Xw
f2(f1) =y—-f
fa(f2) = [|f2]]3

J(w) = f3(f2(f1(w)))

1. Using the chain rule, what is g—v‘{, in terms of the derivatives of the three functions?

2. What is %? What is its shape?
2

3. What is %? What is its shape?
1

4. What is %? What is its shape?

5. What is g—v{,? What is its shape?

6. What is the optimal w?
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3 Gaussian Distribution

Review: 1-D Gaussian Distribution
The probability density function of N'(u,o?) is given by:
1 1
. 2y = (p—)?
p(xhu?o. ) - Wexp |: 20_2 (Jj M) :|

Multivariate Gaussian Distribution

The multivariate Gaussian distribution in M dimensions is parameterized by a mean vector u € R™ and a
covariance matrix X € RM*M shere X is a symmetric and positive-definite. This distribution is denoted
by M(p,X), and its probability density function is given by:

@) @ )

1
T, X)) = ————ex
p(z; p, X) EoE| P35

where |X| denotes the determinant of 3.
Let X = [X1, X2, ..., X,;n]T be a vector-valued random variable where X = [X1, Xa, ..., X;,]T ~ N (u, X).
Then, we have:

Cov[X1, X1] = Var[X;] Cov[X1, X5 Cov[X1, X ]
Cov[ X2, X1] Cov[Xa, Xo] = Var[Xs] ... Cov[Xa, X ]
Y =Cow[X]= . . ) .
COU[XZM,Xﬂ CO’U[XM,XQ} COU[XM,X]VI] :VCLT[XM}

Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate
Gaussian requires Y to have a strictly positive determinant, 3 has to be positive definite.

In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M = 2.
Then, we have:

o X1 M o O’% CO’U[Xl,XQ]
x= [ } a L@] = [COU[Xl’Xﬂ 3
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1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find
the parameter(p, X) of the distribution.
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2. For each surface plot, find the corresponding contour plot and the corresponding parameters.
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