## 1 The Jacobian matrix

In the last recitation, we solved a few problems with gradients, which are defined for functions that have vector input and scalar output. Now consider a function  $f: \mathbb{R}^N \to \mathbb{R}^M$  which takes a vector  $\mathbf{x} \in \mathbb{R}^N$  and outputs a vector  $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$ . The gradient doesn't make much sense here since there are multiple outputs. In fact, since each output  $f_i$  could be a function of each input  $x_j$ , there is a partial derivative for each combination of  $f_i$  and  $x_j$ . This is the intuition for the Jacobian matrix  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ , whose (i,j)th entry is defined to be  $\frac{\partial f_i}{\partial x_j}$ . Since i refers to the output vector and j refers to the input vector,  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$  has shape MxN.

- 1. To make this idea more concrete, let's find the Jacobian for a few functions. Let  $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$  where  $\mathbf{A} \in \mathbb{R}^{MxN}$  and  $\mathbf{x} \in \mathbb{R}^N$ .
  - (a) What is the shape of  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ ?
  - (b) Express  $f_i$  in terms of  $\mathbf{A}_{i:}$  (the i<sup>th</sup> row of  $\mathbf{A}$ ) and  $\mathbf{x}$ . Write this in summation form as well.
  - (c) What is  $\frac{\partial f_i}{\partial x_i}$ ?
  - (d) What is  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ ? Does this coincide with your intuition based on scalar calculus?
- 2. Let  $\mathbf{f}(\mathbf{x}) = -\mathbf{x}$  where  $\mathbf{x} \in \mathbb{R}^N$ .
  - (a) What is the shape of  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ ?
  - (b) What is  $\frac{\partial f_i}{\partial x_i}$ ?
  - (c) What is  $\frac{\partial f_i}{\partial x_j}$  where  $i \neq j$ ?
  - (d) What is  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ ? Does this coincide with your intuition based on scalar calculus?

- 3. Let  $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$  where  $\mathbf{x} \in \mathbb{R}^N$ .
  - (a) What is the shape of  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ ?
  - (b) Express f in summation form.
  - (c) What is  $\frac{\partial f}{\partial x_i}$ ?
  - (d) What is  $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$ ?
  - (e) What is the gradient of f with respect to  $\mathbf{x}$ ? What does this suggest about the relationship between the gradient and the Jacobian?

# 2 Closed-form solution to linear regression

Armed with our understanding of Jacobian matrices, we will now find the closed-form matrix solution to linear regression using the chain rule. Recall the quantity we are trying to minimize is  $J(\mathbf{w}) = \frac{1}{2}||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2$ , where  $\mathbf{X} \in \mathbb{R}^{N \times M}$ . This can be modeled as a composition of three functions:

$$\mathbf{f}_1(\mathbf{w}) = \mathbf{X}\mathbf{w}$$

$$\mathbf{f}_2(\mathbf{f}_1) = \mathbf{y} - \mathbf{f}_1$$

$$f_3(\mathbf{f}_2) = ||\mathbf{f}_2||_2^2$$

$$J(\mathbf{w}) = f_3(\mathbf{f}_2(\mathbf{f}_1(\mathbf{w})))$$

- 1. Using the chain rule, what is  $\frac{\partial J}{\partial \mathbf{w}}$  in terms of the derivatives of the three functions?
- 2. What is  $\frac{\partial \mathbf{f}_3}{\partial \mathbf{f}_2}$ ? What is its shape?
- 3. What is  $\frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1}$ ? What is its shape?
- 4. What is  $\frac{\partial \mathbf{f_1}}{\partial \mathbf{w}}$ ? What is its shape?
- 5. What is  $\frac{\partial J}{\partial \mathbf{w}}$ ? What is its shape?
- 6. What is the optimal  $\mathbf{w}$ ?

### 3 Gaussian Distribution

#### Review: 1-D Gaussian Distribution

The probability density function of  $\mathcal{N}(\mu, \sigma^2)$  is given by:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$

#### **Multivariate Gaussian Distribution**

The multivariate Gaussian distribution in M dimensions is parameterized by a **mean vector**  $\boldsymbol{\mu} \in \mathbb{R}^M$  and a **covariance matrix**  $\boldsymbol{\Sigma} \in \mathbb{R}^{M \times M}$ , where  $\boldsymbol{\Sigma}$  is a symmetric and positive-definite. This distribution is denoted by  $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , and its probability density function is given by:

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^M |\boldsymbol{\Sigma}|}} \exp \left[ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right]$$

where  $|\Sigma|$  denotes the determinant of  $\Sigma$ .

Let  $\mathbf{X} = [X_1, X_2, ..., X_m]^T$  be a vector-valued random variable where  $\mathbf{X} = [X_1, X_2, ..., X_m]^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ . Then, we have:

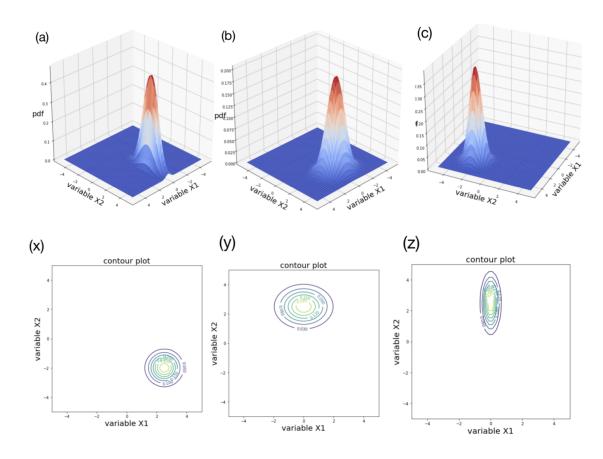
$$\boldsymbol{\Sigma} = Cov[\boldsymbol{X}] = \begin{bmatrix} Cov[X_1, X_1] = Var[X_1] & Cov[X_1, X_2] & \dots & Cov[X_1, X_M] \\ Cov[X_2, X_1] & Cov[X_2, X_2] = Var[X_2] & \dots & Cov[X_2, X_M] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[X_M, X_1] & Cov[X_M, X_2] & \dots & Cov[X_M, X_M] = Var[X_M] \end{bmatrix}$$

Note: Any arbitrary covariance matrix is positive semi-definite. However, since the pdf of a multivariate Gaussian requires  $\Sigma$  to have a strictly positive determinant,  $\Sigma$  has to be positive definite.

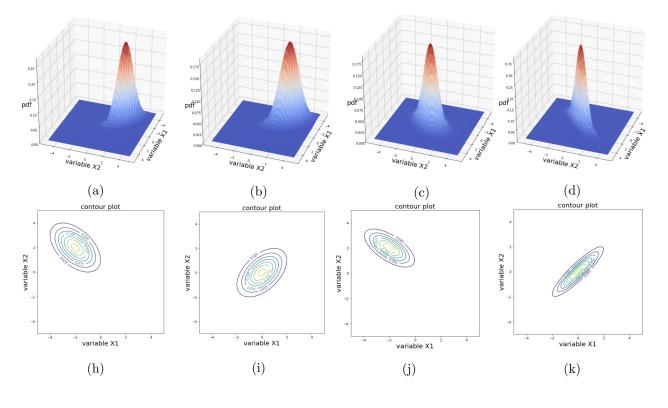
In order to get get an intuition for what a multivariate Gaussian is, consider the simple case where M=2. Then, we have:

$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \qquad \quad \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & Cov[X_1, X_2] \\ Cov[X_1, X_2] & \sigma_2^2 \end{bmatrix}$$

1. For each surface plot, (1) find the corresponding contour plot (2) use the plotting tool provided to find the parameter  $(\mu, \Sigma)$  of the distribution.



2. For each surface plot, find the corresponding contour plot and the corresponding parameters.



$$\begin{aligned} & (\mathbf{x}) & (\mathbf{y}) & (\mathbf{z}) & (\mathbf{w}) \\ & \boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \boldsymbol{\mu} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} & \boldsymbol{\mu} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \\ \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix} & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} & \boldsymbol{\Sigma} = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 0.6 \end{bmatrix} \end{aligned}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}$$

(z) 
$$\mu = \begin{bmatrix} -2\\2 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 & -0.5 \end{bmatrix}$$

$$\mu = \begin{bmatrix} -2\\2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & -0.5\\-0.5 & 0.6 \end{bmatrix}$$