
10-315: Introduction to Machine Learning Recitation 1

1 Linear Algebra

(a) Let A ∈ RM×N and B ∈ RP×N . What are the dimensions of C = (ABT )T ?

C ∈ RP×M

C = (ABT )T

= BAT

[P ×N ][M ×N ]T → [P ×N ][N ×M ]→ [P ×M ]

Vector 2-Norm

Throughout this course, we will often see the sum of squares of a vector. For example, in lecture, we already
saw this as part of mean squared error.

We can write the sum of squares of a vector, x = [x1, x2, · · · , xM ]T , as a summation, as a dot product,
as a vector product, or as the 2-norm of a vector, squared. All of the following are equal:

M∑
i=1

x2
i = x · x = xTx = ‖x‖22 (1)

Note: the 2-norm of a vector (without the square) is defined as ‖x‖2 =
√∑

i x
2
i .

(b) For a =

2
5
3

, calculate ‖a− 2‖22.

‖a− 2‖22 = ‖

2
5
3

− 2‖22

= ‖

0
3
1

 ‖22
= 02 + 32 + 12

= 10

(c) For z ∈ R2 and w ∈ R2, expand ‖z −w‖22, writing it in terms of z1, z2, w2, and w2.

‖z −w‖22 = (z −w)T (z −w)

= zTz −wTz − zTw + wTw

= zTz − 2wTz + wTw

= z21 + z22 − 2(w1z1 + w2z2) + w2
1 + w2

2

1



10-315: Introduction to Machine Learning Recitation 1

2 Multidimensional Calculus

Given a function f(x) that inputs an M -dimensional vector and outputs a scalar value, the gradient of f , ∇f ,
is a vector with each entry containing the partial derivative of f with respect to the M different components
of x:

∇f =



∂f
∂x1

∂f
∂x2

...
∂f

∂xM

 (2)

(a) Let f(x) = 3x2
1 sinx2, write the ∇f .

∇f =

6x1 sinx2

3x2
1 cosx2



(b) Let f(x) = ‖x‖22 and x ∈ R3.

Write the ∇f in terms of x1, x2, and x3.

f(x) = xTx = x1x1 + x2x2 + x3x3

∇f =


2x1

2x2

2x3



Now, write the ∇f in terms of x.

∇f = 2x

(c) Let f(u,v) = 3uTv and u ∈ R3, v ∈ R3.

Write ∇uf .

3uTv = 3u1v1 + 3u2v2 + 3u3v3

∇fu =


3v1

3v2

3v3

 = 3v

Write ∇vf .

∇fv = 3u

2



10-315: Introduction to Machine Learning Recitation 1

3 Formulating Linear Regression with Linear Algebra

Scalar input

In lecture, we discussed using a linear model and mean squared error with a regression task with a one-
dimensional input, x ∈ R, and a one-dimensional output, y ∈ R. With a training set of N points, we wrote
the objective function, J(w), with summation notation:

J(w) =
1

N

N∑
i=1

(
y(i) − wx(i)

)2
(3)

Note: we are dropping the offset b for simplicity.

(a) Linear algebra is pretty good at simplifying notation by replacing summations with matrix/vector
notation. Rewrite the objective function above by packing all training input into an N -dimensional
vector, x, and all training output into an N -dimensional vector, y.

J(w) =
1

N
‖y − wx‖22

Vector input

Suppose we have more than one input to our regression model. For example, using both the mileage and the
age of a car to predict its price. Now each input training point is a vector, x(i) ∈ RM , where M = 2 for our
car example.

Our new linear model will have a weight vector, w ∈ RM , containing one weight parameter, wj for each
of the input features, xj :

J(w) =
1

N

N∑
i=1

(
y(i) −wTx(i)

)2
(4)

Once again we’ll place all of the training output into an N -dimensional vector, y. However, we’ll need a
matrix to fit all of the input data. Specifically, we will pack the input data into an N ×M matrix, X, where

the i-th row contains the i-th training example, [x
(i)
1 , x

(i)
2 , · · · , x(i)

M ].

(b) Rewrite the objective function in terms of y, X, w, and N .

J(w) =
1

N
‖y −Xw‖22

3



10-315: Introduction to Machine Learning Recitation 1

Faster code!

In addition to simpler mathematical representation, formulating problems in linear algebra can lead us to
much, much, faster code. Rather than the for loop that would correspond to the summation notation, we
can use Python libraries such as NumPy or PyTorch to store and compute with vectors, matrices, and even
high-dimensional arrays. Libraries like PyTorch are designed to carry out our linear algebra operations with
parallel computing on super fast GPUs.

(c) Try implementing either the scalar input or the vector input objective functions above, two different
ways, using 1) for loops, and 2) using numpy. See which one is faster!

Pick your own size for N (and M), and use numpy.random.uniform to generate some random input
and output data. .

See rec1 code.py on the course website.

4


	Linear Algebra
	Multidimensional Calculus
	Formulating Linear Regression with Linear Algebra

