1 Conceptual Review of K-means and mixture modeling

1. What is the benefit of using k-means algorithm when solving a partitioning problem?
2. Recap the steps to k-means algorithm

- 1: Fixing the cluster centers, assign points to nearest clusters
- $2{:}$ Given the point assignments, re-estimate cluster centers

Termination: No points change clusters in next iteration

3. What is K-medoids, and how is it different from k-means? Discuss their pros and cons.

4. What is a key difference between mixture modeling and k-means?

2 Expectation Maximization (EM) with Gaussian Mixture Models (GMM)

Let z be a multinomial random latent variable with components $z_1, z_2, ..., z_k$, where each component takes on 0 or 1 *i.e.* $P(z_j = 1)$ is the probability that a point comes from gaussian distribution j.

Let
$$\lambda = \mu_1, \mu_2, ..., \mu_k, \Sigma_1, ..., \Sigma_k, \pi_1, ..., \pi_k$$
 where $\pi_j = P(z_j=1)$.

The log likelihood $\ell(\lambda|x_1, x_2, ..., x_m) = \sum_{i=1}^m log P(x_i|\lambda) = \sum_{i=1}^m log \sum_{j=1}^k \pi_j \mathcal{N}(x_i|\mu_j, \Sigma_j)$. [Refer to EM lecture slide 17 for breaking down $P(x_i|\lambda)$]

(a) E-step: Calculate the posterior probability $P(z_j = 1 | x_i, \lambda) \ \forall i, j$.

$$\begin{split} &P(z_{j}=1|x_{i},\lambda)\\ &=\frac{p(x_{i}|z_{j}=1,\mu_{j},\Sigma_{j})p(z_{j}=1|\pi_{j})}{p(x_{i}|\lambda)}\\ &=\frac{\mathcal{N}(x_{i}|\mu_{j},\Sigma_{j})\pi_{j}}{\sum_{l=1}^{k}\pi_{l}\mathcal{N}(x_{i}|\mu_{l},\Sigma_{l})} \end{split} \qquad \qquad \text{[Bayes Rule]}$$

(Note: In lecture, Pat removed the denominator and represented the proportional probability with the numerator)

(b) M-step: Apply MLE and update the parameters π_j , μ_j , $\Sigma_j \ \forall j$.

$$\frac{\partial \ell}{\partial \mu_{j}} = \frac{\partial \ell}{\partial \mu_{j}} \sum_{i=1}^{m} \log \sum_{l=1}^{k} \pi_{l} \mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})$$
 [Log likelihood function]
$$= \sum_{i=1}^{m} \frac{1}{\sum_{l=1}^{k} \pi_{l} \mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})} \frac{\partial \ell}{\partial \mu_{j}} \sum_{l=1}^{k} \pi_{l} \mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})$$
 [Differentiation rule: $\frac{\partial}{\partial x} \ln(u(x)) = \frac{1}{u(x)} * u'(x)$]
$$= \sum_{i=1}^{m} \frac{1}{\sum_{l=1}^{k} \pi_{l} \mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})} \frac{\partial \ell}{\partial \mu_{j}} \pi_{j} \mathcal{N}(x_{i} | \mu_{j}, \Sigma_{j})$$
 [Eliminating terms with no u_{j}]
$$= \sum_{i=1}^{m} \frac{\mathcal{N}(x_{i} | \mu_{j}, \Sigma_{j}) \pi_{j}}{\sum_{l=1}^{k} \pi_{l} \mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})} \frac{\partial \ell}{\partial \mu_{j}} \frac{(x_{i} - \mu_{j})^{2}}{2\Sigma_{j}}$$
 [Exponential rule: $\frac{\partial}{\partial x} e^{u(x)} = e^{u(x)} * u'(x)$]
$$= \sum_{i=1}^{m} P(z_{j} = 1 | x_{i}, \lambda) \frac{\partial \ell}{\partial \mu_{j}} \frac{(x_{i} - \mu_{j})^{2}}{2\Sigma_{j}}$$
 [Substitute from E-step]
$$= \sum_{i=1}^{m} P(z_{j} = 1 | x_{i}, \lambda) \Sigma_{j}^{-1} (x_{i} - \mu_{j})$$
 [Derivative of log gaussian density function]

Setting this to 0, you get: $\mu_j = \frac{\sum_{i=1}^m P(z_j=1|x_i,\lambda)x_i}{\sum_{i=1}^m P(z_j=1|x_i,\lambda)}$

Similar calculation produces Σ_i and π_i .