
10-315: Introduction to Machine Learning Recitation 12

1 Conceptual Review of K-means and mixture modeling

1. What is the benefit of using k-means algorithm when solving a partitioning problem?

2. Recap the steps to k-means algorithm

1: Fixing the cluster centers, assign points to nearest clusters
2: Given the point assignments, re-estimate cluster centers
Termination: No points change clusters in next iteration

3. What is K-medoids, and how is it different from k-means? Discuss their pros and cons.

4. What is a key difference between mixture modeling and k-means?
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2 Expectation Maximization (EM) with Gaussian Mixture Models
(GMM)

Let z be a multinomial random latent variable with components z1, z2, ..., zk, where each component takes
on 0 or 1 i.e. P(zj = 1) is the probability that a point comes from gaussian distribution j.

Let λ = µ1, µ2, ..., µk,Σ1, ...,Σk, π1, ..., πk where πj = P(zj=1).

The log likelihood `(λ|x1, x2, ..., xm) =
∑m
i=1 logP (xi|λ) =

∑m
i=1 log

∑k
j=1 πjN (xi|µj ,Σj).

[Refer to EM lecture slide 17 for breaking down P (xi|λ) ]

(a) E-step: Calculate the posterior probability P (zj = 1|xi, λ) ∀i, j.

P (zj = 1|xi, λ)

=
p(xi|zj=1,µj ,Σj)p(zj=1|πj)

p(xi|λ) [Bayes Rule]

=
N (xi|µj ,Σj)πj∑k
l=1 πlN (xi|µl,Σl)

[Marginalization for denominator]

(Note: In lecture, Pat removed the denominator and represented the proportional probability with the
numerator)

(b) M-step: Apply MLE and update the parameters πj , µj , Σj ∀j.

∂`
∂µj

= ∂`
∂µj

∑m
i=1 log

∑k
l=1 πlN (xi|µl,Σl) [Log likelihood function]

=
∑m
i=1

1∑k
l=1 πlN (xi|µl,Σl)

∂`
∂µj

∑k
l=1 πlN (xi|µl,Σl) [Differentiation rule: ∂

∂x ln(u(x)) = 1
u(x) ∗ u

′(x)]

=
∑m
i=1

1∑k
l=1 πlN (xi|µl,Σl)

∂`
∂µj

πjN (xi|µj ,Σj) [Eliminating terms with no uj ]

=
∑m
i=1

N (xi|µj ,Σj)πj∑k
l=1 πlN (xi|µl,Σl)

∂`
∂µj

(xi−µj)2

2Σj
[Exponential rule: ∂

∂xe
u(x) = eu(x) ∗ u′(x)]

=
∑m
i=1 P (zj = 1|xi, λ) ∂`

∂µj

(xi−µj)2

2Σj
[Substitute from E-step]

=
∑m
i=1 P (zj = 1|xi, λ)Σ−1

j (xi − µj) [Derivative of log gaussian density function]

Setting this to 0, you get: µj =
∑m

i=1 P (zj=1|xi,λ)xi∑m
i=1 P (zj=1|xi,λ)

Similar calculation produces Σj and πj .
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