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1 Deriving the second principal component

1. Recall that PCA tries to minimize the reconstruction error between the data points and the projections
of the data points onto the principle componenets. We have derived the first principle component
in lecture and last week’s recitation. This week we will derive the second principle component. Let

J(v2) = 1
n

∑n
i=1 ||x(i) − z(i)1 v1 − z(i)2 v2||22 given the constraints v1

Tv2 = 0 and v2
Tv2 = 1. Here, n is

the number of data points, v1,v2 are the first and the second principle component, and z(i) denotes

the principle encoding of the ith data point x(i). Recall that we’ve defined z
(i)
1 = v1

Tx(i). Define z
(i)
2 ,

which is the second principle encoding of x(i).

z
(i)
2 = v2

Tx(i)

2. Show that the value of v2 that minimizes J is given by the eigenvector of C = 1
n

∑n
i=1(x(i)x(i)T ) with

the second largest eigenvalue. Assumed we have already proved the v1 is the eigenvector of C with the
largest eigenvalue.

Plug in z
(i)
2 and the constraints into J(v2) (here k denotes some constant that does not depend on v2),

we have

J(v2) =
1

n

n∑
i=1

(x(i)Tx(i) − z(i)1 v1
Tx(i) − z(i)2 v2

Tx(i) − z(i)1 x(i)Tv1 + z
(i)
1

2v1
Tv1 − z(i)2 v2

Tx(i) + z
(i)
2

2v2
Tv2)

=
1

n

n∑
i=1

(k − 2z
(i)
2 v2

Tx(i) + z
(i)
2

2)

=
1

n

n∑
i=1

(−2v2
Tx(i)x(i)Tv2 + v2

Tx(i)x(i)Tv2 + k)

= −v2
TCv2 + k

In order to minimize J with constraints v2
Tv2 = 1, we use method of Lagrange multipliers and so we

have L = −v2
TCv2 + λ(v2

Tv2 − 1). Take derivative of v2, we have

∂L

∂v2
= −2Cv2 + 2λv2 = 0

Therefore, we have

Cv2 = λv2
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2 SVD

(a) Find the SVD of X =

[
4 4
3 −3

]
To find the SVD of X, we first compute the matrices XTX and XXT .

XTX =

[
25 7
7 25

]
XXT =

[
32 0
0 18

]
The singular values of X are square roots of eigenvalues of XTX and XXT (they have the same eigen-
values). They are 4

√
2 and 3

√
2.

Then we know that S =

[
4
√

2 0

0 3
√

2

]
Now, We notice that the singular value decomposition of X is X = USV T , where columns of U are
eigenvectors of XXT and columns of V are eigenvectors of XTX.
We also note that U and V are both orthogonal matrices, which means that their columns are orthonor-
mal.
We first find two orthonormal eigenvectors of XTX. They are ( 1√

2
, 1√

2
) and (− 1√

2
, 1√

2
).

Now, we find two orthonormal eigenvectors of XXT . They are (1, 0) and (0,−1).

So we have the SVD of X is X = USV T , where U =

[
1 0
0 −1

]
, S =

[
4
√

2 0

0 3
√

2

]
, V =

[
1√
2
− 1√

2
1√
2

1√
2

]
.

(b) How does SVD relate to PCA?

Recall that the principle components v in the PCA algorithm are precisely the eigenvectors of the co-
variance matrix XTX. On the other hand, the columns of the matrix V are an orthonormal set of
eigenvectors for XTX. So, given the SVD of X, it is trivial to find the principle components of X.

(c) How does SVD relate to Matrix Factorization?

Matrix Factorization is a latent-variable method for building recommender systems, classified under
Collaborative Filtering. In Matrix Factorization, we are given a sparse matrix R of ratings, where the
rows are users and columns are items, and the entries are the user’s ratings/preferences of the item.
Suppose R has n rows and m columns.
In rank-k matrix factorization, we want to factorize R into R ≈ Ũ Ṽ T , where Ũ is n× k and Ṽ is m× k.
The different columns of Ũ represent our latent variables, and our latent space has dimension k. Ũ is a
mapping of each user to the low dimensional space. Likewise, Ṽ is a mapping of each item to the low
dimensional space. Our objective is to make the difference between R and Ũ Ṽ T small.
The SVD of R is R = USV T . Now, let Ũ = U ′S, and Ṽ = V ′. Then we obtain a rank-m factorization
of R, with difference 0 between R and Ũ Ṽ T . So the SVD of R gives us an optimal rank-m factorization.
Now, if we want a rank k matrix factorization, we can take the first k columns of U and V to get Uk

and Vk, and take the top-left k× k sub-matrix of S to get Sk. Then let Ũk = UkSk and Ṽk = Vk, and we
have a rank-k matrix factorization of R.
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