#### Announcements

#### Assignments:

- HW4
  - Release delayed to tomorrow
  - Due date delayed to Thu, 2/20, 11:59 pm

#### **Midterm Conflicts**

See Piazza post

## Plan

#### Last time

- Wrap up MLE vs MAP
- Intro to Naïve Bayes

#### Today

- MLE vs MAP
- Naïve Bayes Assumptions
- Naïve Bayes MLE
- Naïve Bayes MAP
- Generative Models

# Introduction to Machine Learning

**Generative Models** 

Instructor: Pat Virtue

## SPAM Detection Handout

#### Previous Piazza Poll

What method were we using to estimate parameters in our Naïve Bayes handout?

## Generative vs Discriminative

## MLE vs MAP vs Generative vs Discriminative

# SPAM Detection Data and Assumptions

# Naïve Bayes MLE

Whiteboard

# Naïve Bayes MLE

$$L(\phi, \mathbf{O}) = p(\mathcal{D} \mid \phi, \mathbf{O}) \qquad \qquad y^{(n)} \in \{0, 1\} \\ x^{(n)} \in \{0, 1\}^{M} \\ = \prod_{n=1}^{N} p(\mathcal{D}^{(n)} \mid \phi, \mathbf{O}) \quad \text{i.i.d assumption} \qquad \qquad \phi \in [0, 1]^{M} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)}, \mathbf{x}^{(n)} \mid \phi, \mathbf{O}) \qquad \qquad \Theta \in [0, 1]^{M \times 2} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)} \mid \mathbf{y}^{(n)}, \mathbf{O}) \quad \text{Generative model} \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{2}, \dots, \mathbf{x}^{(n)}_{M} \mid \mathbf{y}^{(n)}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \mathbf{x}^{(n)}_{1}, \dots, \mathbf{x}^{(n)}_{M}, \mathbf{x}^{(n)}_{1}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \dots, \mathbf{x}^{(n)}_{1}, \dots, \mathbf{x}^{(n)}_{1}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{y}^{(n)} \mid \phi) p(\mathbf{x}^{(n)} \mid \phi) p(\mathbf{x}^{(n)}_{1}, \dots, \mathbf{x}^{(n)}_{1}, \dots, \mathbf{x}^{(n)}_{1}, \dots, \mathbf{x}^{(n)}_{1}, \mathbf{O}) \\ = \prod_{n=1}^{N} p(\mathbf{x}^{(n)} \mid \phi) p(\mathbf{x}^{(n$$

 $\mathcal{D} = \left\{ y^{(n)}, \boldsymbol{x}^{(n)} \right\}_{n=1}^{N}$ 

# Naïve Bayes MAP

**Laplace Smoothing** 

# Naïve Bayes for Digits

| y | p(Y) |
|---|------|
| 1 | 0.1  |
| 2 | 0.1  |
| 3 | 0.1  |
| 4 | 0.1  |
| 5 | 0.1  |
| 6 | 0.1  |
| 7 | 0.1  |
| 8 | 0.1  |
| 9 | 0.1  |
| 0 | 0.1  |



| у | $p(X_{5,5}=1\mid y)$ |
|---|----------------------|
| 1 | 0.05                 |
| 2 | 0.01                 |
| 3 | 0.90                 |
| 4 | 0.80                 |
| 5 | 0.90                 |
| 6 | 0.90                 |
| 7 | 0.25                 |
| 8 | 0.85                 |
| 9 | 0.60                 |
| 0 | 0.80                 |

### Generative Models with Continuous Features

Bernoulli class distribution with Gaussian class-conditional distribution