Warm-up as You Walk In !

Bernouli distribution: \J

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z:
D = {y(l) — 1,3,(2) — 1'),(3) = 0}

L(z) =

P(z) =



Introduction to
Machine Learning

Logistic Regression

Instructor: Pat Virtue



Announcements

Assignments:

= HW2 (written & programming)
= Due Tue 2/4, 11:59 pm

Early Feedback

" More mathematical rigor

= Consolidated course notes

" Lots of concepts, how does it all fit together?



Plan

Last time

" Likelihood

= Density Estimation

" MLE for Density Estimation

Today

= Wrap up MLE for linear regression
= (Classification models

= MLE for logistic regression



MR Fingerprinting Assumptions

Forgot a really important assumption!!
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Assumptions

What assumptions do we make with this data?

Output y

N

Input X



Modelling f(Y|X,0) # Vensity Estimation
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MLE for Linear Regression
How does our model of f (Y |X, 8) with the likelihood function?

L(O)

Maximum (Conditional) Likelihood Estimate



M(C)LE for Linear Regression e € =e
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M(C)LE for Linear Regression

How does M(C)LE optimization relate to least squares optimization?
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Piazza Poll 2:

Does min — #(w) equal min J(W) ?
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Linear Regression with Multiple Input Features
N = Wy + W X }’:Wo*wrxl“’zxz
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Classification Models

Linear Regression
N
‘\( 1/
S




Classification Models

Linear Regression with Decision Boundary
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Classification Models

Linear Regression with Probability




Modelling p(Y|X, 6)

Bernoulli distribution of logistic function of linear model




MLE for Bernoulli

Bernoulli distribution:

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z?
D = {y(l) — Ly(Z) =1, y(3) = 0}

L(z)= Z. =z (I/ZB — WZ(AV (I«Zm}/
t= logz » loge + g (2) =2 &0 00



MLE for Bernoulli (3
Bernoulli distribution: y
Y ~ Bern(z)

Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z?
D = {y(l) — Ly(Z) =1, y(3) = 0}
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MLE for Bernoulli

Bernoulli distribution:

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z?
D={yW=1y@ =1y =0} o/ V-0

L(z)=z-z-(1—2) =I1, 2™ (1 - »(-¥y™)

£(z) =logz+logz+log(1—2) =3, y™logz+ (1—y™)log(1l—2)



M(C)LE for Logistic Regression
p(Y | X,0) e (D @>
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Model Y as a Bernoulli distribution, but the temporary z is now based on the
logistic function of our linear model of input x

f’ﬁ Y(r\j \
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Y ~ Bern(u), U = g(ﬂ} g(z) =

1+e~%

What is the cond/t/onal Iog I|keI|ho
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M(C)LE for Logistic Regression

p(Y1X,0)
p(Y 1 X,w) =TI p(y™ [ x(), w)

Model Y as a Bernoulli distribution, but the temporary z is now based on the
logistic function of our linear model of input x

1
1+e~%

Y ~Bern(u), w=gw'x), g=
What is the conditional log likelihood?

" —y(M
Low) = T, g(wx @)™ (1 - g(wrxm)) ™

tw) =Y, (y(") log g(wTx™) + (1 —y™)log (1 — g(wa("))))



M(C)LE for Logistic Regression

1
2= fw,x) = wx —H—zg(Z)ZHe—Z_

Vfw,x) = x 9(@)(1- 9(2)) = (1 -

£w) = Zn(y™ log ™ + (1 — y(")) log(1 — u™))




M(C)LE for Logistic Regression

1
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M(C)LE for Logistic Regression

1

z= fw,x) = wix u=92)=—
£(w) = Zn(y™Wlogu™ + (1 - y™)log(1 — p™)) <
Tt W) = By — ) 2 L "
Vo,t(w) =07 /
No closed form solution ® T —
| L/

Back to iterative methods. Solve with (stochastic) gradient descent, !

Newton’s method, or Iteratively Reweighted Least Squares (IRLS)



Logistic Function

Cool note: Logistic function is related the invers of logit function!

Odds: Ratio of two probabilities. For ¥ ~ B =) - B

s: Ratio of two probabilities. For ern(p), P(Y=0) _ 1-p
. . p(Y=1) _ p

Logit function: Log odds. 1ng(y=0) = log -

z = logit(p) = 1081%9
1
1+e™%

p = logit~1(z) =



Log Odds and Logistic Regression

Formulate log odds as linear model of X:

pY=11X=xw)
p(Y =01X=x,w)

T

log w' X

Equivalent to logistic representation:

p(Y=1]X=xw) =

1

1+ e W'




Log Odds and Logistic Regression (Multi-class!)

Formulate log odds as linear model of X:
pY =11X=xW) _

Y =KIX=xw) "1¥
p(Y=21X=2xW)

1 _
B =K1 Xx=xWw) "

log

p(Y =K—11X=xW)
p(Y =K|X=xW)
Equivalent to softmax representation:

_ w7
log = Wyg_1X

p(Y=kiX=xW)=——r L7 ¥
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OR p(Y=k|X=xW) =
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Multi-class Logistic Regression

p(Y 1X,0)
p(Y I X, W) =TI0_1p0™ | x™, W)

Liw) =11, - T (1)

Yi,e
What is the hypothesis function?
Yy =hy(x) = arjMM softrmax (7& W)
- K )



