Warm-up as You Walk In

Bernouli distribution:
$Y \sim \operatorname{Bern}(z)$
$p(y)= \begin{cases}z, & y=1 \\ 1-z, & y=0\end{cases}$
What is the log likelihood for three i.i.d. samples, given parameter z :
$\mathcal{D}=\left\{y^{(1)}=1, y^{(2)}=1, y^{(3)}=0\right\}$
$L(z)=$
$\ell(z)=$

Introduction to
 Machine Learning

Logistic Regression

Instructor: Pat Virtue

Announcements

Assignments:

- HW2 (written \& programming)
- Due Tue 2/4, 11:59 pm

Early Feedback

- More mathematical rigor
- Consolidated course notes
- Lots of concepts, how does it all fit together?

Plan

Last time

- Likelihood
- Density Estimation
- MLE for Density Estimation

Today

- Wrap up MLE for linear regression
- Classification models
- MLE for logistic regression

MR Fingerprinting Assumptions

Forgot a really important assumption!!

Assumptions

What assumptions do we make with this data?

$$
\begin{array}{cc}
\text { Modelling } f(Y \mid X, \theta) & \text { Density Estimation } \\
f(D \mid \theta) & X \sim N\left(\mu \sigma^{2}\right) \\
f(Y \mid X, \theta) & f\left(\underline{x} \mid \mu \sigma^{2}\right) \\
\frac{\text { Conditional likelihood }}{} f(\underline{D} \mid \theta) \\
f\left(y^{(\lambda)} \mid x^{(n)}, \vec{w}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi a^{2}}} e & e\left(\frac{-\left(y^{(n)}-\omega^{\top} x^{(n)}\right)^{2}}{2 a^{2}}\right) \\
f\left(\vec{y} \mid \vec{x}, \vec{w}, \sigma^{2}\right)=\prod_{n}^{N} f\left(y^{(n)} \mid x^{(n)}, \vec{w}, \sigma^{2}\right) \leftarrow
\end{array}
$$

MLE for Linear Regression

How does our model of $f(Y \mid X, \theta)$ with the likelihood function?
$L(\theta)$

Maximum (Conditional) Likelihood Estimate
M(C)LE for Linear Regression $\quad e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$

$$
\begin{aligned}
& l\left(w, a^{2}\right)=-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \left(a^{2}\right)-\frac{1}{2 \sigma^{2}} \sum\left(y^{(n)}-w^{\top} x^{(n)}\right)^{2} \\
& \frac{\partial l}{\partial W}=0 \\
& \hat{w}_{M L}=? \\
& l(\mu)=-\frac{N}{2} \operatorname{bg}(2 \pi r)-\frac{\mu}{2} \log \left(a_{0}\right)-\frac{\sum_{2}^{\mu}\left(\alpha^{(\omega)}-\mu\right)^{2}}{2 \alpha^{2}}
\end{aligned}
$$

M(C)LE for Linear Regression

How does $M(C) L E$ optimization relate to least squares optimization?

$$
\begin{aligned}
& l\left(w, a^{2}\right)=-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \left(a^{2}\right)-\frac{1}{2 a^{2}} \sum\left(y^{(n)}-w^{\top} x^{(n)}\right)^{2} \\
& J(w)=\frac{1}{N 2}\|\vec{y}-X w\|_{2}^{2}
\end{aligned}
$$

Piazza Poll 2:
Does $\min _{w}-\ell(\boldsymbol{w})$ equal $\min _{w} J(\vec{w})$?

$$
\begin{aligned}
& l\left(\vec{w}, a^{2}\right)=-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \left(a^{2}\right)-\frac{1}{2 \sigma^{2}} \sum\left(y^{(n)}-\vec{\omega}^{\top} x^{(n}\right)^{2} \\
& J(\vec{w}) \underbrace{\frac{1}{\sqrt{2}}\|\vec{y}-x \vec{w}\|_{2}^{2}} \\
& 2 \sum\left(y^{(n)}-w^{+} x^{(n)}\right) x^{(n)}
\end{aligned}
$$

Linear Regression with Multiple Input Features

Poll 1: Which vector is the correct $\boldsymbol{\theta}$?
$\theta=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{\top}$

Classification Models

Linear Regression

Classification Models
Linear Regression with Decision Boundary

$$
\begin{aligned}
& z=w^{+} x \\
& y= \begin{cases}1 & z \geqslant 0.5 \\
0 & z<0.5\end{cases} \\
& y=\operatorname{step}(z, 0.5)
\end{aligned}
$$

Classification Models

Linear Regression with Probability

Modelling $p(Y \mid X, \theta)$
Bernoulli distribution of logistic function of linear model

$$
\begin{aligned}
z & =x^{\top} w \\
g & =g\left(x^{\top} w\right) \quad g(z)=\frac{1}{1+e^{-z}} \\
y \sim \operatorname{Ber}(g) & =\left\{\begin{array}{cc}
g & y=1 \\
1-g & y=0
\end{array}\right.
\end{aligned}
$$

MLE for Bernoulli

Bernoulli distribution:
$Y \sim \operatorname{Bern}(z)$

$$
p(y)= \begin{cases}z, & y=1 \\ 1-z, & y=0\end{cases}
$$

What is the \log likelihood for three i.i.d. samples, given parameter z ?

$$
\begin{aligned}
& \mathcal{D}=\left\{y^{(1)}=1, y^{(2)}=1, y^{(3)}=0\right\} \\
& L(z)=z \cdot z \cdot(1-z)=\prod_{n} z^{(n)^{(n)}}\left(1-z^{(n)}\right)^{1-y^{(n)}} \\
& \ell(z)=\log z+\log z+\log (1-z)=\sum_{n} y^{(n)} z^{(n)}+(1-y)(1-z)
\end{aligned}
$$

MLE for Bernoulli

Bernoulli distribution:
$Y \sim \operatorname{Bern}(z)$

$$
p(y)= \begin{cases}z, & y=1 \\ 1-z, & y=0\end{cases}
$$

What is the \log likelihood for three i.i.d. samples, given parameter z ?

$$
\begin{aligned}
& \mathcal{D}=\left\{y^{(1)}=1, \underline{y^{(2)}}=1, \underline{y^{(3)}}=0\right\} \\
& L(z)=z \cdot z \cdot(1-2)
\end{aligned}
$$

$$
=\prod_{n} z^{\left(y^{(n)}\right.}\left(1-z^{(1)}\right)^{1-y^{(n)}}
$$

$$
\ell(z)=\log z+\log z+\log (1-z)=\sum_{n} y
$$

$$
\left.y_{\log }^{(n)} z^{3}+\left(1-y^{5}\right)(1-2)^{\frac{5}{2}}\right)
$$

MLE for Bernoulli

Bernoulli distribution:
$Y \sim \operatorname{Bern}(z)$

$$
p(y)= \begin{cases}z, & y=1 \\ 1-z, & y=0\end{cases}
$$

What is the log likelihood for three i.i.d. samples, given parameter Z ?

$$
\begin{aligned}
& \mathcal{D}=\left\{y^{(1)}=1, y^{(2)}=1, y^{(3)}=0\right\} \quad Y=l \quad Y=0 \\
& L(z)=z \cdot z \cdot(1-z)
\end{aligned}
$$

$$
\ell(z)=\log z+\log z+\log (1-z)=\sum_{n} y^{(n)} \log z+\left(1-y^{(n)}\right) \log (1-z)
$$

M(C)LE for Logistic Regression

$$
\begin{aligned}
& p(Y \mid X, \theta) \\
& p(Y \mid X, \underline{w})=\prod_{n=1}^{N} p\left(y^{(n)} \mid x^{(n)}, \boldsymbol{w}\right)
\end{aligned} \quad p\left(y^{\left(1^{1}\right.}, y^{(2)}, y^{(3)} \ldots \mid x, w\right)
$$

Model Y as a Bernoulli distribution, but the temporary z is now based on the logistic function of our linear model of input x

$$
Y \sim \operatorname{Bern}(\mu), \quad \mu=\underline{g\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)}, \quad \underline{g(z)=\frac{1}{1+e^{-z}}}
$$

$$
\text { if } y^{(n)}=1
$$

$$
\begin{aligned}
& \text { What is the conditional log likelihood? } \\
& L(\boldsymbol{w})=\prod_{n} \rho\left(Y=y^{(n)} \mid X=X^{(n)}, w\right)=\prod_{n} \mu^{(n)^{(n)}}\left(1-\mu^{(n)}\right)^{1-y^{(n)}} \\
& \ell(\boldsymbol{w})=
\end{aligned}
$$

$$
\text { if } y^{(n)}=0
$$

M(C)LE for Logistic Regression

$p(Y \mid X, \theta)$
$p(Y \mid X, \boldsymbol{w})=\prod_{n=1}^{N} p\left(y^{(n)} \mid \boldsymbol{x}^{(n)}, \boldsymbol{w}\right)$
Model Y as a Bernoulli distribution, but the temporary z is now based on the logistic function of our linear model of input x

$$
Y \sim \operatorname{Bern}(\mu), \quad \mu=g\left(\boldsymbol{w}^{T} \boldsymbol{x}\right), \quad g(z)=\frac{1}{1+e^{-z}}
$$

What is the conditional log likelihood?

$$
L(\boldsymbol{w})=\Pi_{n} g\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}\right)^{y^{(n)}}\left(1-g\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}\right)\right)^{\left(1-y^{(n)}\right)}
$$

$\ell(\boldsymbol{w})=\sum_{n}\left(y^{(n)} \log g\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}\right)+\left(1-y^{(n)}\right) \log \left(1-g\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}\right)\right)\right)$
M(C)LE for Logistic Regression

$$
\begin{array}{ll}
\frac{z}{z} & =\underline{f}(\boldsymbol{w}, \boldsymbol{x})=\underline{w}^{T} x
\end{array} \quad \underline{\mu}=g(z)=\frac{1}{1+e^{-z}}
$$

M(C)LE for Logistic Regression

$$
\begin{array}{ll}
z=f(\boldsymbol{w}, \boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x} & \mu=g(z)=\frac{1}{1+e^{-z}} \\
\nabla_{\boldsymbol{w}} f(\boldsymbol{w}, \boldsymbol{x})=\boldsymbol{x} & \frac{d g}{d z}=g(z)(1-g(z))=\mu(1-\mu)
\end{array}
$$

$$
\ell(\boldsymbol{w})=\sum_{n}\left(y^{(n)} \log \mu^{(n)}+\left(1-y^{(n)}\right) \log \left(1-\mu^{(n)}\right)\right)
$$

$$
\frac{\partial \ell}{\partial w}=\sum_{n}\left(\frac{y^{(n)}}{\mu^{(n)}}-\frac{1-y^{(n)}}{1-\mu^{(n)}}\right) \frac{\partial g}{\partial f} \frac{\partial f}{\partial w}
$$

$$
=\sum_{n}\left(\frac{y^{(n)}-\mu^{(n)}}{\mu^{(n)}\left(1-\mu^{(n)}\right)}\right) \underline{\mu^{(n)}\left(1-\mu^{(n)}\right) \boldsymbol{x}^{(n)^{T}} . .{ }^{T} .}
$$

$$
=\sum_{n}\left(y^{(n)}-\mu^{(n)}\right) \boldsymbol{x}^{(n)^{T}}
$$

M(C)LE for Logistic Regression
$z=f(\boldsymbol{w}, \boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x} \quad \quad \mu=g(z)=\frac{1}{1+e^{-z}}$
$\ell(\boldsymbol{w})=\sum_{n}\left(y^{(n)} \log \mu^{(n)}+\left(1-y^{(n)}\right) \log \left(1-\mu^{(n)}\right)\right)<$
$\nabla_{\boldsymbol{w}} \ell(\boldsymbol{w})=\sum_{n}\left(y^{(n)}-\mu^{(n)}\right) \boldsymbol{x}^{(n)} \quad \ell$
$\nabla_{w} \ell(w)=0 ?$
No closed form solution $:+$

Back to iterative methods. Solve with (stochastic) gradient descent, Newton's method, or Iteratively Reweighted Least Squares (IRLS)

Logistic Function

Cool note: Logistic function is related the invers of logit function!

Odds: Ratio of two probabilities. For $Y \sim \operatorname{Bern}(p), \frac{p(Y=1)}{p(Y=0)}=\frac{p}{1-p}$
Logit function: \log odds. $\log \frac{p(Y=1)}{p(Y=0)}=\log \frac{p}{1-p}$

$$
\begin{aligned}
& z=\operatorname{logit}(p) \stackrel{\diamond}{\log \frac{p}{1-p}} \\
& p=\operatorname{logit}^{-1}(z)=\frac{1}{1+e^{-z}}
\end{aligned}
$$

Log Odds and Logistic Regression

Formulate log odds as linear model of X :

$$
\log \frac{p(Y=1 \mid X=\boldsymbol{x}, \boldsymbol{w})}{p(Y=0 \mid X=\boldsymbol{x}, \boldsymbol{w})}=\boldsymbol{w}^{T} \boldsymbol{x}
$$

Equivalent to logistic representation:

$$
p(Y=1 \mid X=\boldsymbol{x}, \boldsymbol{w})=\frac{1}{1+e^{-\boldsymbol{w}^{\boldsymbol{T} \boldsymbol{x}}}}
$$

Log Odds and Logistic Regression (Multi-class!)

Formulate log odds as linear model of X :

$$
\begin{gathered}
\log \frac{p(Y=1 \mid X=\boldsymbol{x}, \boldsymbol{W})}{p(Y=K \mid X=\boldsymbol{x}, \boldsymbol{W})}=\boldsymbol{w}_{1}^{T} \boldsymbol{x} \\
\log \frac{p(Y=2 \mid X=\boldsymbol{x}, \boldsymbol{W})}{p(Y=K \mid X=\boldsymbol{x}, \boldsymbol{W})}=\boldsymbol{w}_{2}^{T} \boldsymbol{x} \\
\vdots \\
\log \frac{p(Y=K-1 \mid X=\boldsymbol{x}, \boldsymbol{W})}{p(Y=K \mid X=\boldsymbol{x}, \boldsymbol{W})}=\boldsymbol{w}_{K-1}^{T} \boldsymbol{x}
\end{gathered}
$$

Equivalent to softmax representation:
$p(Y=k \mid X=\boldsymbol{x}, W)=\frac{e^{\boldsymbol{w}_{k}^{T} x}}{1+\sum_{j=1}^{K-1} e^{\boldsymbol{w}_{j}^{T} x}}$
$p(Y=K \mid X=\boldsymbol{x}, W)=\frac{1}{1+\sum_{j=1}^{K-1} e^{\boldsymbol{w}_{j}^{T} x}}$
$k \in\{1, \ldots k-1\}$
OR

$$
p(Y=k \mid X=\boldsymbol{x}, W)=\frac{e^{\boldsymbol{w}_{k}^{T} x}}{\sum_{\substack{K \\ 1}} e^{w_{i j}^{T} x}}
$$

Multi-class Logistic Regression

$p(Y \mid X, \theta)$
$p(Y \mid X, W)=\prod_{n=1}^{N} p\left(y^{(n)} \mid \boldsymbol{x}^{(n)}, \boldsymbol{W}\right)$
$p\left(y^{(n)}=k \mid X=x^{(n)}, W\right)=\frac{e^{w_{\bigotimes}^{T} x^{(n)}}}{\sum_{j=1}^{K} e^{w_{j}^{T} x^{(n)}}} \mathcal{E}$
What is the conditional likelihood?
$L(\boldsymbol{w})=\prod_{n} \frac{e^{\boldsymbol{w}_{k}^{T} x^{(n)}}}{\sum_{j=1}^{K} e^{\boldsymbol{w}_{j}^{T} x^{(n)}}}$
What is the hypothesis function?
$\hat{y}=h_{\boldsymbol{W}}(\underline{x})=\underset{K}{\operatorname{argmax}} \operatorname{softmax}(x, W)$

