Warm-up as You Walk In

Bernouli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) =$$

$$\ell(z) =$$

Introduction to Machine Learning

Logistic Regression

Instructor: Pat Virtue

Announcements

Assignments:

- HW2 (written & programming)
 - Due Tue 2/4, 11:59 pm

Early Feedback

- More mathematical rigor
- Consolidated course notes
- Lots of concepts, how does it all fit together?

Plan

Last time

- Likelihood
- Density Estimation
- MLE for Density Estimation

Today

- Wrap up MLE for linear regression
- Classification models
- MLE for logistic regression

MR Fingerprinting Assumptions

Forgot a really important assumption!!

Assumptions

What assumptions do we make with this data?

Density Estimation Modelling $f(Y|X,\theta) \neq$ $\chi \sim \mathcal{N}(\mu \alpha^2)$ f(D/0) $f'(X \mid \mu \circ^2)$ f(Y|X, 0)Conditional likelihood $f(\dot{\gamma}|\chi^{(n)}, \dot{\vec{w}}, \sigma^2) = \frac{1}{\sqrt{2\sigma^2}} e^{\left(-\frac{(\dot{\gamma}^{(n)} - \dot{w}^T \chi^{(n)})^2}{2\sigma^2}\right)}$ $f(\dot{\gamma}|\dot{\chi}, \dot{\vec{w}}, \sigma^2) = \sqrt{f(\dot{\gamma}^{(n)}|\chi^{(n)}|\dot{\chi}^{(n)}, \dot{\vec{w}}, \sigma^2)} e^{\left(-\frac{(\dot{\gamma}^{(n)} - \dot{w}^T \chi^{(n)})^2}{2\sigma^2}\right)}$

MLE for Linear Regression

How does our model of $f(Y|X,\theta)$ with the likelihood function?

 $L(\theta)$

Maximum (Conditional) Likelihood Estimate

M(C)LE for Linear Regression

$$L(\boldsymbol{w}, \boldsymbol{\sigma^2}) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{\left(\frac{-\sum_{N}(y^{(n)} - \boldsymbol{w}^T \boldsymbol{x}^{(n)})^2}{2\sigma^2}\right)}$$

$$l(w, o^2) = -\frac{N}{2} \log (2\pi) - \frac{N}{2} \log (o^2) - \frac{1}{2o^2} \sum_{k=0}^{\infty} \left(y^{(k)} - w^T x^{(k)} \right)^2$$

$$\frac{\partial L}{\partial W} = 0$$

$$\hat{V}_{ML} = ?$$

$$J(\mu) = -\frac{N}{2}\log(2\pi) - \frac{N}{2}\log(\alpha^2) - \frac{\sum_{n=1}^{N}(x^{(n)} - \mu)^2}{2\alpha^2}$$

M(C)LE for Linear Regression

How does M(C)LE optimization relate to least squares optimization?

$$I(w, a^2) = -\frac{N}{2} \log (2\pi) - \frac{N}{2} \log (a^2) - \frac{1}{2a^2} \sum_{k=1}^{\infty} (y^{(k)} - w^T x^{(k)})^2$$

$$I(w) = \sqrt{\frac{1}{2}} || \vec{y} - x w||_2^2$$

Piazza Poll 2:

Does
$$\min_{\mathbf{w}} - \ell(\mathbf{w})$$
 equal $\min_{\mathbf{w}} J(\mathbf{w})$?

$$l(\vec{v}, \alpha^{2}) = -\frac{N}{2} \log(2\pi) - \frac{N}{2} \log(\alpha^{2}) - \frac{1}{2\alpha^{2}} \sum_{i=1}^{2} (y^{(n)} - \vec{v} \cdot \vec{x}^{(n)})^{2}$$

$$J(\vec{v}) ||\vec{v} - \vec{x}||_{2}^{2}$$

$$2 \leq (y^{(n)} - w^{\dagger}x^{(n)})x^{(n)}$$

Linear Regression with Multiple Input Features

Poll 1: Which vector is the correct $\boldsymbol{\theta}$? $\boldsymbol{\Theta} = [\boldsymbol{\omega}_{i} \ \boldsymbol{\omega}_{2}]^{T}$

Classification Models

Linear Regression

Classification Models

Linear Regression with Decision Boundary

$$z = W^{T} \times 2 \approx 0.5$$

$$y = \begin{cases} 1 & 2 \approx 0.5 \\ 0 & 2 < 0.5 \end{cases}$$

$$y = step(2, 0.5)$$

Classification Models

Modelling $p(Y|X,\theta)$

Bernoulli distribution of logistic function of linear model

$$z = x^{T}w$$

$$g = g(x^{T}w) \qquad g(z) = 1 + e^{-z}$$

$$y \sim Bein(g) = \begin{cases} g & y=1 \\ 1-g & y=0 \end{cases}$$

MLE for Bernoulli

Bernoulli distribution:

 $Y \sim Bern(z)$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z?

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) = Z \cdot Z \cdot (1-z)$$

$$L(z) = Z \cdot Z \cdot (1-z) = \pi z^{(1)} (1-z^{(n)})^{1-y^{(n)}}$$

$$\ell(z) = \log z + \log z + \log (1-z) = \sum_{n=1}^{\infty} y^{(n)} z^{(n)} + (1-y)(1-z)$$

MLE for Bernoulli

Bernoulli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z?

$$\mathcal{D} = \{ \underline{y^{(1)}} = 1, \underline{y^{(2)}} = 1, \underline{y^{(3)}} = 0 \}$$

$$L(z) = Z \cdot Z \cdot (1-z)$$

$$\ell(z) = \log z + \log z + 1$$

$$\gamma^{(3)}$$

$$D = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) = Z \cdot Z \cdot (1 - Z) = \pi$$

$$\ell(z) = \log z + \log z + \log (1 - z) = \chi$$

$$\log (1 - z) = \chi$$

$$\log (1 - z) = \chi$$

MLE for Bernoulli

Bernoulli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z?

$$\mathcal{D} = \{ y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0 \} \quad \forall = l \quad \forall = l$$

$$L(z) = z \cdot z \cdot (1 - z) \qquad = \prod_{n} z^{y^{(n)}} (1 - z)^{(1 - y^{(n)})}$$

$$\ell(z) = \log z + \log z + \log(1 - z) = \sum_{n} y^{(n)} \log z + (1 - y^{(n)}) \log(1 - z)$$

$$p(Y \mid X, \boldsymbol{\theta})$$

$$p(Y \mid X, \boldsymbol{w}) = \prod_{n=1}^{N} p(y^{(n)} \mid \boldsymbol{x}^{(n)}, \boldsymbol{w})$$

Model Y as a Bernoulli distribution, but the temporary z is now based on the logistic function of our linear model of input x

$$Y \sim Bern(\mu), \qquad \mu = g(\underline{\boldsymbol{w}}^T \boldsymbol{x}), \qquad g(\boldsymbol{x})$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$Y \sim Bern(\mu), \quad \mu = g(\underline{w}^T \underline{x}), \quad g(z) = \frac{1}{1 + e^{-z}} \quad \text{if } \chi^{(n)} = 1$$

$$\text{What is the conditional log likelihood?}$$

$$L(w) = \pi \rho(Y = \chi^{(n)}) X = \chi^{(n)} \omega = \pi \rho(\chi^{(n)}) \gamma^{(n)} (1 - \chi^{(n)}) \gamma^{(n)} \gamma^{(n)}$$

$$\ell(w) =$$

$$p(Y \mid X, \theta)$$

$$p(Y \mid X, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{w})$$

Model Y as a Bernoulli distribution, but the temporary z is now based on the logistic function of our linear model of input x

$$Y \sim Bern(\mu), \qquad \mu = g(w^T x), \qquad g(z) = \frac{1}{1 + e^{-z}}$$

What is the *conditional* log likelihood?

$$L(\mathbf{w}) = \prod_{n} g(\mathbf{w}^{T} \mathbf{x}^{(n)})^{y^{(n)}} \left(1 - g(\mathbf{w}^{T} \mathbf{x}^{(n)})\right)^{(1 - y^{(n)})}$$

$$\ell(\mathbf{w}) = \sum_{n} \left(y^{(n)} \log g(\mathbf{w}^T \mathbf{x}^{(n)}) + \left(1 - y^{(n)} \right) \log \left(1 - g(\mathbf{w}^T \mathbf{x}^{(n)}) \right) \right)$$

$$\frac{z}{\nabla_{w}f(w,x)} = \frac{w^{T}x}{x} \qquad \frac{\mu = g(z) = \frac{1}{1+e^{-z}}}{\frac{dg}{dz}} = g(z)(1-g(z)) = \mu(1-\mu)$$

$$\ell(w) = \sum_{n} \left(\frac{y^{(n)} \log \mu^{(n)} + (1-y^{(n)}) \log(1-\mu^{(n)})}{\mu^{(n)}}\right)$$

$$\frac{\partial \ell}{\partial w} = \sum_{n} \left(\frac{y^{(n)}}{\mu^{(n)}} - \frac{1-y^{(n)}}{1-\mu^{(n)}}\right) \frac{\partial g}{\partial z} \frac{\partial f}{\partial w}$$

$$= \sum_{n} \left(\frac{y^{(n)}}{\mu^{(n)}(1-\mu^{(n)})}\right) \mu^{(n)}(1-\mu^{(n)}) \stackrel{\text{def}}{\times} \frac{1}{x^{(n)}}$$

$$z = f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^{T} \mathbf{x} \qquad \mu = g(z) = \frac{1}{1 + e^{-z}}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}, \mathbf{x}) = \mathbf{x} \qquad \frac{dg}{dz} = g(z) (1 - g(z)) = \mu (1 - \mu)$$

$$\ell(\mathbf{w}) = \sum_{n} (y^{(n)} \log \mu^{(n)} + (1 - y^{(n)}) \log(1 - \mu^{(n)}))$$

$$\frac{\partial \ell}{\partial \mathbf{w}} = \sum_{n} (\frac{y^{(n)}}{\mu^{(n)}} - \frac{1 - y^{(n)}}{1 - \mu^{(n)}}) \frac{\partial g}{\partial f} \frac{\partial f}{\partial \mathbf{w}}$$

$$= \sum_{n} (\frac{y^{(n)} - \mu^{(n)}}{\mu^{(n)} (1 - \mu^{(n)})}) \mu^{(n)} (1 - \mu^{(n)}) \mathbf{x}^{(n)^{T}}$$

$$= \sum_{n} (y^{(n)} - \mu^{(n)}) \mathbf{x}^{(n)^{T}}$$

$$z = f(w, x) = w^{T}x$$
 $\mu = g(z) = \frac{1}{1 + e^{-z}}$

$$\ell(\mathbf{w}) = \sum_{n} (y^{(n)} \log \mu^{(n)} + (1 - y^{(n)}) \log (1 - \mu^{(n)}))$$

$$\nabla_{\boldsymbol{w}} \ell(\boldsymbol{w}) = \sum_{n} (y^{(n)} - \underline{\mu}^{(n)}) \boldsymbol{x}^{(n)} \qquad \boldsymbol{\ell}$$

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = 0$$
?

No closed form solution 😊

Back to iterative methods. Solve with (stochastic) gradient descent, Newton's method, or Iteratively Reweighted Least Squares (IRLS)

Logistic Function

Cool note: Logistic function is related the invers of logit function!

Odds: Ratio of two probabilities. For $Y \sim Bern(p)$, $\frac{p(Y=1)}{p(Y=0)} = \frac{p}{1-p}$

Logit function: Log odds. $\log \frac{p(Y=1)}{p(Y=0)} = \log \frac{p}{1-p}$

$$z = logit(p) = log \frac{p}{1-p}$$
$$p = logit^{-1}(z) = \frac{1}{1+e^{-z}}$$

$$p = logit^{-1}(z) = \frac{1}{1 + e^{-z}}$$

Log Odds and Logistic Regression

Formulate log odds as linear model of X:

$$\log \frac{p(Y=1 \mid X=x,w)}{p(Y=0 \mid X=x,w)} = w^T x$$

Equivalent to logistic representation:

$$p(Y = 1 \mid X = x, w) = \frac{1}{1 + e^{-w^T x}}$$

Log Odds and Logistic Regression (Multi-class!)

Formulate log odds as linear model of X:

$$\log \frac{p(Y = 1 \mid X = x, W)}{p(Y = K \mid X = x, W)} = w_{1}^{T} x$$

$$\log \frac{p(Y = 2 \mid X = x, W)}{p(Y = K \mid X = x, W)} = w_{2}^{T} x$$

$$\vdots$$

$$\log \frac{p(Y = K \mid X = x, W)}{p(Y = K \mid X = x, W)} = w_{K-1}^{T} x$$

Equivalent to softmax representation:

$$p(Y = k \mid X = x, W) = \frac{e^{w_k^T x}}{1 + \sum_{j=1}^{K-1} e^{w_j^T x}}$$

$$p(Y = k \mid X = x, W) = \frac{1}{1 + \sum_{j=1}^{K-1} e^{w_j^T x}}$$

$$OR \qquad p(Y = k \mid X = x, W) = \frac{e^{w_k^T x}}{\sum_{j=1}^{K} e^{w_j^T x}}$$

Multi-class Logistic Regression

$$p(Y \mid X, \theta)$$

$$p(Y \mid X, \mathbf{W}) = \prod_{n=1}^{N} p(y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{W})$$

$$p(y^{(n)} = k \mid X = \mathbf{x}^{(n)} \widehat{W}) = \frac{e^{\mathbf{w}_{0}^{T} x^{(n)}}}{\sum_{j=1}^{K} e^{\mathbf{w}_{j}^{T} x^{(n)}}} \mathbf{z}$$

What is the *conditional* likelihood?

$$L(\boldsymbol{w}) = \prod_{n} \frac{e^{w_{k}^{T} x^{(n)}}}{\sum_{j=1}^{K} e^{w_{j}^{T} x^{(n)}}}$$

What is the hypothesis function?

$$\hat{y} = h_W(x) = \underset{K}{\operatorname{argmax}} \operatorname{softmax}(x, W)$$