Warm-up as You Walk In

Bernouli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z:

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) =$$

$$\ell(z) =$$

Introduction to Machine Learning

Logistic Regression

Instructor: Pat Virtue

Announcements

Assignments:

- HW2 (written & programming)
 - Due Tue 2/4, 11:59 pm

Early Feedback

- More mathematical rigor
- Consolidated course notes
- Lots of concepts, how does it all fit together?

Plan

Last time

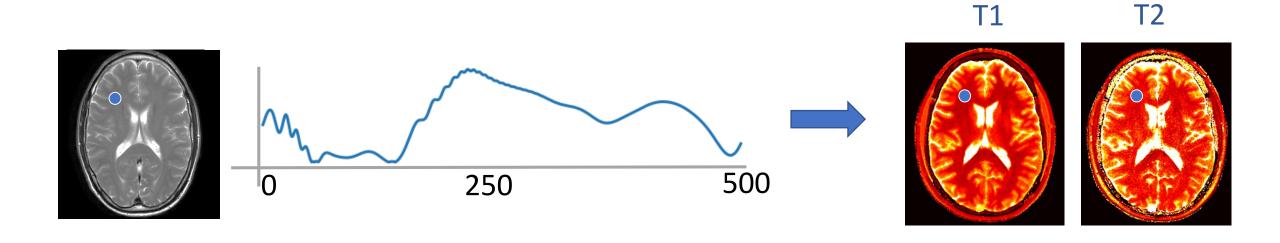
- Likelihood
- Density Estimation
- MLE for Density Estimation

Today

- Wrap up MLE for linear regression
- Classification models
- MLE for logistic regression

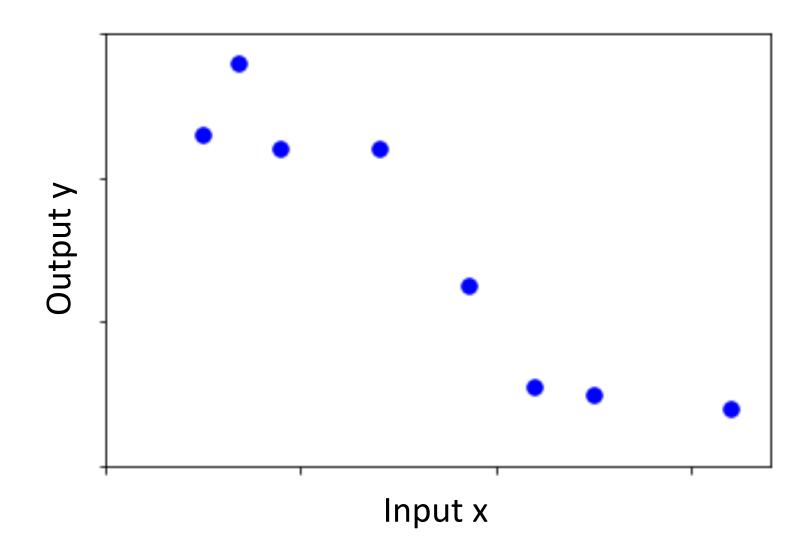
MR Fingerprinting Assumptions

Forgot a really important assumption!!



Assumptions

What assumptions do we make with this data?



Modelling $f(Y|X,\theta)$

MLE for Linear Regression

How does our model of $f(Y|X,\theta)$ with the likelihood function?

 $L(\theta)$

Maximum (Conditional) Likelihood Estimate

M(C)LE for Linear Regression

$$L(\mathbf{w}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{\left(\frac{-\sum_N (y^{(n)} - \mathbf{w}^T x^{(n)})^2}{2\sigma^2}\right)}$$

$$I(\mu) = -\frac{N}{2}\log(2\pi) - \frac{N}{2}\log(\alpha^2) - \frac{\sum_{n=1}^{N}(x^{(n)} - \mu)^2}{2\alpha^2}$$

M(C)LE for Linear Regression

How does M(C)LE optimization relate to least squares optimization?

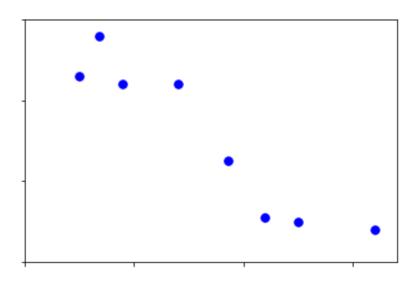
$$\ell(w) =$$

$$J(w) =$$

Piazza Poll 2:

```
Does \min_{w} - \ell(w) equal \min_{w} J(w)?
```

Linear Regression with Multiple Input Features



Poll 1: Which vector is the correct $\boldsymbol{\theta}$?

Classification Models

Linear Regression

Classification Models

Linear Regression with Decision Boundary

Classification Models

Linear Regression with Probability

Modelling $p(Y|X,\theta)$

Bernoulli distribution of logistic function of linear model

MLE for Bernoulli

Bernoulli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z?

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) =$$

$$\ell(z) =$$

MLE for Bernoulli

Bernoulli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z?

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) =$$

$$\ell(z) =$$

MLE for Bernoulli

Bernoulli distribution:

$$Y \sim Bern(z)$$

$$p(y) = \begin{cases} z, & y = 1 \\ 1 - z, & y = 0 \end{cases}$$

What is the log likelihood for three i.i.d. samples, given parameter z?

$$\mathcal{D} = \{y^{(1)} = 1, y^{(2)} = 1, y^{(3)} = 0\}$$

$$L(z) = z \cdot z \cdot (1 - z)$$
 = $\prod_{n} z^{y^{(n)}} (1 - z)^{(1 - y^{(n)})}$

$$\ell(z) = \log z + \log z + \log(1 - z) = \sum_{n} y^{(n)} \log z + (1 - y^{(n)}) \log(1 - z)$$

$$p(Y \mid X, \theta)$$

$$p(Y \mid X, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{w})$$

Model Y as a Bernoulli distribution, but the temporary z is now based on the logistic function of our linear model of input x

$$Y \sim Bern(\mu), \qquad \mu = g(\mathbf{w}^T \mathbf{x}), \qquad g(z) = \frac{1}{1 + e^{-z}}$$

What is the *conditional* log likelihood?

$$L(\mathbf{w}) =$$

$$\ell(w) =$$

$$p(Y \mid X, \theta)$$

$$p(Y \mid X, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{w})$$

Model Y as a Bernoulli distribution, but the temporary z is now based on the logistic function of our linear model of input x

$$Y \sim Bern(\mu), \qquad \mu = g(w^T x), \qquad g(z) = \frac{1}{1 + e^{-z}}$$

What is the conditional log likelihood?

$$L(\mathbf{w}) = \prod_{n} g(\mathbf{w}^{T} \mathbf{x}^{(n)})^{y^{(n)}} \left(1 - g(\mathbf{w}^{T} \mathbf{x}^{(n)})\right)^{(1 - y^{(n)})}$$

$$\ell(\mathbf{w}) = \sum_{n} \left(y^{(n)} \log g(\mathbf{w}^T \mathbf{x}^{(n)}) + \left(1 - y^{(n)} \right) \log \left(1 - g(\mathbf{w}^T \mathbf{x}^{(n)}) \right) \right)$$

$$z = f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x} \qquad \mu = g(z) = \frac{1}{1 + e^{-z}}$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}, \mathbf{x}) = \mathbf{x} \qquad \frac{dg}{dz} = g(z) (1 - g(z)) = \mu (1 - \mu)$$

$$\ell(\mathbf{w}) = \sum_{n} (y^{(n)} \log \mu^{(n)} + (1 - y^{(n)}) \log(1 - \mu^{(n)}))$$

$$\frac{\partial \ell}{\partial w} =$$

$$z = f(w, x) = w^{T}x \qquad \mu = g(z) = \frac{1}{1 + e^{-z}}$$

$$\nabla_{w} f(w, x) = x \qquad \frac{dg}{dz} = g(z)(1 - g(z)) = \mu(1 - \mu)$$

$$\ell(w) = \sum_{n} (y^{(n)} \log \mu^{(n)} + (1 - y^{(n)}) \log(1 - \mu^{(n)}))$$

$$\frac{\partial \ell}{\partial w} = \sum_{n} (\frac{y^{(n)}}{\mu^{(n)}} - \frac{1 - y^{(n)}}{1 - \mu^{(n)}}) \frac{\partial g}{\partial f} \frac{\partial f}{\partial w}$$

$$= \sum_{n} (\frac{y^{(n)} - \mu^{(n)}}{\mu^{(n)}(1 - \mu^{(n)})}) \mu^{(n)} (1 - \mu^{(n)}) x^{(n)^{T}}$$

$$= \sum_{n} (y^{(n)} - \mu^{(n)}) x^{(n)^{T}}$$

$$z = f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x} \qquad \mu = g(z) = \frac{1}{1 + e^{-z}}$$

$$\ell(\mathbf{w}) = \sum_{n} (y^{(n)} \log \mu^{(n)} + (1 - y^{(n)}) \log(1 - \mu^{(n)}))$$

$$\nabla_{\mathbf{w}} \ell(\mathbf{w}) = \sum_{n} (y^{(n)} - \mu^{(n)}) \mathbf{x}^{(n)}$$

$$\nabla_{\mathbf{w}} \ell(\mathbf{w}) = 0$$
?

No closed form solution 😊

Back to iterative methods. Solve with (stochastic) gradient descent, Newton's method, or Iteratively Reweighted Least Squares (IRLS)

Logistic Function

Cool note: Logistic function is related the invers of logit function!

Odds: Ratio of two probabilities. For $Y \sim Bern(p)$, $\frac{p(Y=1)}{p(Y=0)} = \frac{p}{1-p}$

Logit function: Log odds. $\log \frac{p(Y=1)}{p(Y=0)} = \log \frac{p}{1-p}$

$$z = logit(p) = log \frac{p}{1-p}$$
$$p = logit^{-1}(z) = \frac{1}{1+e^{-z}}$$

$$p = logit^{-1}(z) = \frac{1}{1 + e^{-z}}$$

Log Odds and Logistic Regression

Formulate log odds as linear model of X:

$$\log \frac{p(Y=1 \mid X=x,w)}{p(Y=0 \mid X=x,w)} = w^T x$$

Equivalent to logistic representation:

$$p(Y = 1 \mid X = x, w) = \frac{1}{1 + e^{-w^T x}}$$

Log Odds and Logistic Regression (Multi-class!)

Formulate log odds as linear model of X:

$$\log \frac{p(Y = 1 \mid X = x, W)}{p(Y = K \mid X = x, W)} = w_{1}^{T} x$$

$$\log \frac{p(Y = 2 \mid X = x, W)}{p(Y = K \mid X = x, W)} = w_{2}^{T} x$$

$$\vdots$$

$$\log \frac{p(Y = K \mid X = x, W)}{p(Y = K \mid X = x, W)} = w_{K-1}^{T} x$$

Equivalent to softmax representation:

$$p(Y = k \mid X = x, W) = \frac{e^{w_k^T x}}{1 + \sum_{j=1}^{K-1} e^{w_j^T x}}$$

$$p(Y = K \mid X = x, W) = \frac{1}{1 + \sum_{j=1}^{K-1} e^{w_j^T x}}$$

$$OR \qquad p(Y = k \mid X = x, W) = \frac{e^{w_k^T x}}{\sum_{j=1}^{K} e^{w_j^T x}}$$

Multi-class Logistic Regression

$$p(Y \mid X, \theta)$$

$$p(Y \mid X, \mathbf{W}) = \prod_{n=1}^{N} p(y^{(n)} \mid \mathbf{x}^{(n)}, \mathbf{W})$$

$$p(y^{(n)} = k \mid X = \mathbf{x}^{(n)}, W) = \frac{e^{\mathbf{w}_k^T x^{(n)}}}{\sum_{j=1}^K e^{\mathbf{w}_j^T x^{(n)}}}$$

What is the *conditional* likelihood?

$$L(\boldsymbol{w}) = \prod_{n} \frac{e^{w_{k}^{T} x^{(n)}}}{\sum_{j=1}^{K} e^{w_{j}^{T} x^{(n)}}}$$

What is the hypothesis function?

$$\hat{y} = h_{W}(x) =$$