Warm-up as You Walk In

Bernouli distribution:

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z:
D = {y(l) — 1’y(2) — 1'),(3) = 0}

L(z) =

P(z) =



Introduction to
Machine Learning

Logistic Regression

Instructor: Pat Virtue



Announcements

Assignments:

= HW2 (written & programming)
= Due Tue 2/4, 11:59 pm

Early Feedback

" More mathematical rigor

= Consolidated course notes

= Lots of concepts, how does it all fit together?



Plan

Last time

" Likelihood

= Density Estimation

" MLE for Density Estimation

Today

= Wrap up MLE for linear regression
= (Classification models

= MLE for logistic regression



MR Fingerprinting Assumptions

Forgot a really important assumption!!

0 250 500




Assumptions

What assumptions do we make with this data?

Output y

Input X



Modelling f(Y|X, 8)



MLE for Linear Regression
How does our model of f (Y |X, 8) with the likelihood function?

L(O)

Maximum (Conditional) Likelihood Estimate



M(C)LE for Linear Regression
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M(C)LE for Linear Regression

How does M(C)LE optimization relate to least squares optimization?
t(w) =

Jw) =



Piazza Poll 2:

Does min — #(w) equal min J(w) ?
w w



Linear Regression with Multiple Input Features




Poll 1: Which vector is the correct 87



Classification Models

Linear Regression



Classification Models

Linear Regression with Decision Boundary



Classification Models

Linear Regression with Probability



Modelling p(Y|X, 6)

Bernoulli distribution of logistic function of linear model



MLE for Bernoulli

Bernoulli distribution:

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z?
D = {y(l) — 1,},(2) — 1'),(3) = 0}

L(z) =

P(z) =



MLE for Bernoulli

Bernoulli distribution:

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z?
D = {y(l) — 1,},(2) — 1'),(3) = 0}

L(z) =

P(z) =



MLE for Bernoulli

Bernoulli distribution:

Y ~ Bern(z)
Z, y=1
p(y) = {1_2 Y =0

What is the log likelihood for three i.i.d. samples, given parameter z?
D = {y(l) — 1'3,(2) — 1,y(3) = 0}

L(z)=z-z-(1—2) =I1, 2™ (1 - »(-¥y™)

£(z) =logz+logz+log(1—2) =3, y™logz+ (1—y™)log(1l—2)



M(C)LE for Logistic Regression

p(Y | X,80)
p(Y 1 X,w) =TI p(y™ [ x(), w)

Model Y as a Bernoulli distribution, but the temporary z is now based on the
logistic function of our linear model of input x

1
1+e~%

Y ~ Bern(n), u=gwlx), g9(z) =

What is the conditional log likelihood?
L(w) =

t(w) =



M(C)LE for Logistic Regression

p(Y1X,0)
p(Y 1 X,w) =TI p(y™ [ x(), w)

Model Y as a Bernoulli distribution, but the temporary z is now based on the
logistic function of our linear model of input x

1
1+e~%

Y ~Bern(u), w=gw'x), g=
What is the conditional log likelihood?

" —y(M
Low) = T, g(wx @)™ (1 - g(wrxm)) ™

tw) =Y, (y(") log g(wTx™) + (1 —y™)log (1 — g(wa("))))



M(C)LE for Logistic Regression

1
1+e~ 2

Vuf(W,x) = x =91 -9() = u(1 -

z= f(w,x) = wlx u=gz) =

tw) = Yn(y™®logu® + (1 — y™)log(1 — u™))
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M(C)LE for Logistic Regression

1

z= f(w,x) = wix u=g2)=—
Vo f (W, %) = x T =g@(1-9@)=pa-p

tw) = Yn(y™®logu® + (1 — y™)log(1 — u™))
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M(C)LE for Logistic Regression

1
1+e~ 2

tw) = Y (y™@logu™ + (1 — y™)log(1 — u™))

T ) = Sy — ) 20

z= f(w,x) = wlx u=gz) =

V,t(w) =07?
No closed form solution ®

Back to iterative methods. Solve with (stochastic) gradient descent,
Newton’s method, or Iteratively Reweighted Least Squares (IRLS)



Logistic Function

Cool note: Logistic function is related the invers of logit function!

Odds: Ratio of t babilities. For Y ~ B e

s: Ratio of two probabilities. For ern(p), (Y=0) _ 1-p
. . p(Y=1) _ p

Logit function: Log odds. 1ng(y=0) = log -

z = logit(p) = 1081%9
1
1+e™2

p = logit~1(z) =



Log Odds and Logistic Regression

Formulate log odds as linear model of X:

pY=11X=xw)
p(Y =01X=x,w)

T

log w' X

Equivalent to logistic representation:

p(Y=1]X=xw) =

1

1+ e W'




Log Odds and Logistic Regression (Multi-class!)

Formulate log odds as linear model of X:
p(Y =11X=xW)

p(Y =K—11X=xW)

] = wk_

BT =K XxX=xw) k¥
Equivalent to softmax representation:

wa
p(Y=k|X=x,W)=—"
1+Z§-<=_11 e’ J”
OR p(Y=k|X=xW) =

p(Y=K|X=xW)= L

— W.X
1+Z§-{=11 e J




Multi-class Logistic Regression

p(Y 1X,0)
p(Y I X, W) =TI0_1p0™ | x™, W)

T .(n

Liw) =11, - T (1)

Yi,e
What is the hypothesis function?
Yy =hyx) =



