Announcements

Assignments

= HW10 (programming + “written”)
= Due Thu 4/30, 11:59 pm

Final Exam

= Stay tuned to Piazza for details

= Date: Mon 5/11, 5:30 — 8:30 pm

" Format: “online assignment” in Gradescope
"  Practice exam: Out later this week

= Recitation this Friday: Review session



Announcements

Course Evaluation Survey

=  https://cmu.smartevals.com/

= Take time now to fill this out please



https://cmu.smartevals.com/

7

Piazza Pol
Did you fill out the FCE survey?

A. Yes
B. Why not?




Introduction to
Machine Learning

Ensemble Methods

Instructor: Pat Virtue



Recommender Systems

X' Priz

Leaderboard

Home Rules Update

Leaderboard

Showing Test Score. Click here to show quiz score
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Ensemble Methods

Given: pool A of learners (that you know
nothing about)

Goal: design a new learner that uses the
predictions of the pool to make new
predictions

Techniques

" Bagging (Bootstraping)
" e.g. Random Forests

= Boosting
" e.g. Adaboost




Bagging
[Breiman, 1996]

1. Run independent weak learners on bootstrap replicates (sample with
replacement) of the training set

2. Average/vote over weak hypotheses 4 A




Bagging

A J

\ 4

Ensemble classifier

Image: https://en.m.wikipedia.org/wiki/Bootstrap aggregating

Original Data

Bootstrapping

Aggregating

Bagging


https://en.m.wikipedia.org/wiki/Bootstrap_aggregating

Random Forests

Bagging over Features

= A collection of decision trees

= For each tree we select a subset of the attributes (recommended
square root of |A|) and build tree using just these attributes

" Aninput sample is classified using majority voting
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Weighted Majority Algorithm
(Littlestone & Warmuth, 1994)

Given: pool A of binary classifiers (that you
know nothing about)

Goal: design a new learner that uses the
predictions of the pool to make new
predictions

Algorithm:

= |nitially weight all classifiers equally

= Receive a training example and predict the
(weighted) majority vote of the classifiers in the
pool

= Down-weight classifiers that contribute to a
mistake by a factor of

)

10



Weighted Majority Algorithm
(Littlestone & Warmuth, 1994)

Suppose we have a pool of 7' binary classifiers A = {hq,...,hr}

where h; : RM — {41, —1}. Let oy be the weight for classifier h;.

Algorithm 1 Weighted Majority Algorithm

1:
2
3:
4:

procedure WEIGHTEDMAJORITY(A, 3)
Initialize classifier weights oy = 1, Vt € {1,...,T}
for each training example (x, y) do
Predict majority vote class (splitting ties randomly)

h(z) = sign (Z by (:c))

if a mistake is made h(z) # y then
for each classifiert € {1,...,7T} do
If hi(x) # y, then ay < Bay

11



Adaboost



Comparison

Weighted Majority Algorithm

* an example of an ensemble
method

e assumes the classifiers are
learned ahead of time

* only learns (majority vote)
weight for each classifiers

AdaBoost
e an example of a boosting
method

* simultaneously learns:
* the classifiers themselves

* (majority vote) weight for each
classifiers

14



AdaBoost: Toy Example

weak classifiers = vertical or horizontal half-planes

Slide from Schapire NIPS Tutorial
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AdaBoost: Toy Example

Slide from Schapire NIPS Tutorial
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AdaBoost: Toy Example

€59=0.21
01,=0.65

Slide from Schapire NIPS Tutorial
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AdaBoost: Toy Example

€3=0.14
057092

18
Slide from Schapire NIPS Tutorial



Piazza Poll 2-4

Heingi = sign( 0.42 +0.65 +0.92
What is the final classification 4+ 4
of points 2, 3, 4? - + =
A. 2
B. + =3
C.

_I_ _—

19
Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

H =sign | 042
final

+0.65

Slide from Schapire NIPS Tutorial

+0.92




Ad d BOOSt Given: (z1,91), .-, (Tm,ym) Where z; € X, y; € Y = {—1,+1}

Initialize D, (i) = 1/m.
Fort=1,...,1"

e Train weak learner using distribution D, .
e Get weak hypothesis h; : X — {—1, +1} with error

€. = Priup, [ht(-Lz) 7é yz‘] -

1 —

e Choose a; = 3 In ( Et).
€
e Update: t

Dyy1(i)

Dy (1) L e if hi(zi) = yi
Z, e if hy(z;) # y;

Dy (1) exp(—ouyihi(z;))

Zy

where Z; is a normalization factor (chosen so that D, ; will be a distribution).

Output the final hypothesis:
T

H(z) = sign (Z Oztht(ac)) :
t=1

Algorithm from Freund & Schapire, 1999



Analysis for Boosting

Choice of ¢, and hypothesis h, obtained by coordinate descent on exp loss
(convex upper bound on 0/1 loss)

exp loss f(@) =) oghi(x); H(z) = sign(f(x))
t
0/1 loss LN S(H ) Eu) <= 3 exp(—yif ()
mi=1 mi=1
1 0/1 loss exp loss
0

Analysis from Freund & Schapire, 1999 22



Analysis for Boosting

Analysis reveals:

If each weak learner h; is slightly better than random guessing
(e,<0.5),

then training error of AdaBoost decays exponentially fast in
number of rounds T.

S T
- > O(H(z) #Fy;) < exp (2 S (1/2 - Gt)Q)
m —1 =

Training Error

What about test error?

Analysis from Freund & Schapire, 1999
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Boosting results — Digit recognition

[Schapire, 1989]

— Test Error

Training Error
10 100 1000
# rounds

Boosting often,
= Robust to overfitting
= Test set error decreases even after training error is zero

* |f margin between classes is large, subsequent weak learners agree and hence
more rounds does not necessarily imply that final classifier is getting more
complex.

24



AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting can overfit if margin between classes is too small (high label noise) or weak

learners are too complex.
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Ad d BOOSt Given: (z1,91), .-, (Tm,ym) Where z; € X, y; € Y = {—1,+1}

Initialize D, (i) = 1/m.
Fort=1,...,1"

e Train weak learner using distribution D, .
e Get weak hypothesis h; : X — {—1, +1} with error

€. = Priup, [ht(-Lz) 7é yz‘] -

1 —

e Choose a; = 3 In ( Et).
€
e Update: t

Dyy1(i)

Dy (1) L e if hi(zi) = yi
Z, e if hy(z;) # y;

Dy (1) exp(—ouyihi(z;))

Zy

where Z; is a normalization factor (chosen so that D, ; will be a distribution).

Output the final hypothesis:
T

H(z) = sign (Z Oztht(ac)) :
t=1

Algorithm from Freund & Schapire, 1999



Dumb classifiers made Smart

Training error of final classifier is bounded by:

=Y 6(H@) # ) < [[20= V1 - (- 26)?
i=1 4 t

gexp( 22(1/2—69 )

t=1 |

grows as g _moves
away from 1/2

If each classifier is (at least slightly) better than random ¢,<0.5

AdaBoost will achieve zero training error exponentially fast (in
number of rounds T) !!

What about test error?

27



Generalization Error Bounds

[Freund & Schapire’95]

~

BTTOTtrue(H) S €TTOTtTain(H) —I_ O ( m) \é\:gg;t;ﬁ|Ty



Generalization Error Bounds

[Freund & Schapire’95]

N Td .
erroryue(H) < erroriqin(H)+ O — With high
m probability

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
= Robust to overfitting
= Test set error decreases even after training error is zero

Need better analysis tools — margin based bounds

29



Margin Based Bounds

[Schapire, Freund, Bartlett, Lee’98]

With high

ETTOT true (H) < Pr {marginf(:li, y) < 9} +0 probability

Boosting increases the margin very aggressively since it concentrates on the
hardest examples.

If margin is large, more weak learners agree and hence more rounds does
not necessarily imply that final classifier is getting more complex.

Bound is independent of number of rounds T!

Boosting can still overfit if margin is too small (can perform arbitrarily close
to random guessing) or weak learners are too complex

30



Boosting and Logistic Regression

Logistic regression assumes:

1
P(Y = 1|X) = flx) =wo+ Y wjz;
( X) 1 4+ exp(f(z)) j
And tries to maximize data likelihood:
iid ™m 1
P(DIf) = ]]

—1 1+ exp(—y;f(x;))

Equivalent to minimizing log loss

—log P(D|f) = > In(1+ exp(—y;f(z;)))
i=1



Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

> In(L + exp(—yif (@) Fa) = wo+ 3wy,
1=1 ;

Boosting minimizes similar loss function!!

% > exp(—yif(xi)) f(@) =) athi(x)
i=1 ¢

Weighted average of weak learners

exp loss

Both smooth approximations
of 0/1 loss!

yi =1

0/1 loss

- =f(z;)

w

Aralysis from:
Schapire. MSRI Workshop on Nonlinear Estimation and Classification, 2002.



Boosting and Logistic Regression

Logistic regression:
* Minimize log loss

S In(1 + exp(—if ()

1=1

* Define
f(x) = Z W;T
J

where X; predefined features

(linear classifier)

 Jointly optimize over all
weights wo, wi, wa...

Boosting:
* Minimize exp loss

> exp(—yif(x;))
i=1
e Define

fx) =) athi(x)
t

where h(X) defined dynamically
to fit data

(not a linear classifier)

* Weights a, learned per iteration
tincrementally 33



Hard & Soft Decision

Weighted average of weak learners  f(x) = Z athi(x)

t

Hard Decision/Predicted label: H(x) = sign(f(x))

Soft Decision:
(based on analogy with
logistic regression)

P(Y = 1|X) = 1

1+ exp(f(x))

34



Bagging vs Boosting

Bagging

Resamples data points

Weight of each classifier
is the same

Only variance reduction

vs.

Boosting

Reweights data points (modifies their
distribution)

Weight is dependent on
classifier’s accuracy

Both bias and variance reduced —
learning rule becomes more complex
with iterations

35



Thanks to all of you!
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Thanks to Our Course Staff!

Teaching Assistants

Michell
Ma

Nidhi
Jain

Vicky
Zeng

Education
Associate

Daniel
Bird
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Additional Analysis



Analyzing training error

Training error of final classifier is bounded by:

1 1 Convex
— > 0(H(zy) #yi) < — > exp(—y;if(z))  upper
mi—1 mi—=1 bound
Where f(z) =) athi(z); H(z) = sign(f(x))
t
exp loss boost y
y; = 1 eXD(—yif(a:i)) If boosting can make

upper bound — 0, then

training error — 0
0/1 loss

6(H(z;) # y;)

- en



Analyzing training error

Analysis reveals:

. 1 l —¢
* What ¢, to choose for hypothesis h,? ar = 5 In
What h, to choose? €

& - weighted training error

* If each weak learner h, is slightly better than random guessing (&< 0.5),

then training error of AdaBoost decays exponentially fast in number of
rounds T.

d T
- > 0(H(w) #y) < exp (2 S (1/2 - Gt)Q)
™m —1 =

Training Error



Analyzing training error

Training error of final classifier is bounded by:

m

S (H@E) £ ) <+ Y- exn(—uif (@) =] Z
=1 t

1
Mi=1

Where  f(z) = ) arhi(x); H(z) = sign(f(z))
t

Proof: | Using Weight Update Rule L1 exp(—y; f (1))
| Dryq1(i) = — 0z
Di(z) =1/m t Lt
—a1y;ha(z;
D»(1) = 1 e—o1viha(zi) Wts of all pts add to 1
™m Z1
m
—a1yih1(x;) o —aoyiho(z; N
Da(i) = 1 e—1¥ih1(x;) g —a2yiha(z;) S Dryq(i) =1
m ALY, 1=1



Analyzing training error

Training error of final classifier is bounded by:

m

> 6(H ) #y) < - 3 exp(-uif (e) = [[ Z
=1 t

1
mi=1

Where  f(z) = ) arhi(x); H(z) = sign(f(z))
t

If Zt < 1, training error decreases exponentially (even though weak learners may
not be good ¢, ~0.5)

Training Upper bound

error




What &, to choose for hypothesis h,?

Training error of final classifier is bounded by:

1 1
m m

Z 6(H(z;) #y;) < Z exp(—yif(z;)) =[] Z
=1 1=1 4

Where f(z) = ) athi(x); H(z) = sign(f(z))
t

If we minimize [], Z,, we minimize our training error

We can tighten this bound greedily, by choosing ¢, and h, on each iteration
to minimize Z;

— i Dy (z) exp(—azy;hi(z;))
i=1



1

What &, to choose for hypothesis h.:

We can minimize this bound by choosing ¢, on each iteration to minimize Z,
m
Zy = > Dy(i) exp(—aypy;hi(x;))
1=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:
1—c¢€
oy = %111 ( t)
€t

Proof: 7, = Y Di()e*t+ > Dy(i)e”
ity 7=he () iy, =h(x;)
= e+ (1 —¢e)e

04 _ 1 —e€
—tzeteat—(l—et)e M =0 = 20 = d
Ot €t




Bounding the error with choice of ¢,

We can minimize this bound by choosing ¢, on each iteration to minimize Z,
m
Zy = > Dy(i) exp(—aypy;hi(x;))
1=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:
1—c¢€
oy = %111 ( t)
€t

Proof: 7, = Y Di()e*t+ > Dy(i)e”
ity 7=he () iy, =h(x;)
= e+ (1 —¢e)e

= 2\/er(1 — er) = /1 — (1 — 2¢1)2



Dumb classifiers made Smart

Training error of final classifier is bounded by:

=Y 6(H@) # ) < [[20= V1 - (- 26)?
i=1 4 t

gexp( 22(1/2—69 )

t=1 |

grows as g _moves
away from 1/2

If each classifier is (at least slightly) better than random ¢,<0.5

AdaBoost will achieve zero training error exponentially fast (in
number of rounds T) !!

What about test error?



Generalization Error Bounds

[Freund & Schapire’95]

. Td ith hi
BTTOTtTue(H) é BTTOTtrain(H) —I_ O ( m) \p/)\:lcfgahbllgl’lTy

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
— Robust to overfitting
— Test set error decreases even after training error is zero

Need better analysis tools — margin based bounds



Margin Based Bounds

[Schapire, Freund, Bartlett, Lee’98]

With high

ETTOT true (H) < Pr {marginf(:li, y) < 9} +0 probability

Boosting increases the margin very aggressively since it concentrates on the
hardest examples.

If margin is large, more weak learners agree and hence more rounds does
not necessarily imply that final classifier is getting more complex.

Bound is independent of number of rounds T!

Boosting can still overfit if margin is too small (can perform arbitrarily close
to random guessing) or weak learners are too complex



