
Announcements
Assignments

▪ HW10 (programming + “written”)

▪ Due Thu 4/30, 11:59 pm

Final Exam

▪ Stay tuned to Piazza for details

▪ Date: Mon 5/11, 5:30 – 8:30 pm

▪ Format: “online assignment” in Gradescope

▪ Scope: Content before this week

▪ Practice exam: Out later this week

▪ Recitation this Friday: Review session



Introduction to 
Machine Learning

Learning Theory

Instructor: Pat Virtue



Questions For Today

1. Given a classifier with zero training error, 
what can we say about true error (aka. 
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about true error (aka. 
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)

3Slide credit: CMU MLD Matt Gormley



PAC Learning
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley



SLT-style Corollaries
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Solve the inequality in Thm.1 for 
epsilon to obtain Corollary 1

We can obtain 
similar corollaries for 

each of the 
theorems…

Slide credit: CMU MLD Matt Gormley



Using a PAC bound

• Given e and d, yields sample complexity

#training data, 

• Given m and d, yields error bound

error, 
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Summary of PAC bounds for finite model classes

With probability ≥ 1-d, 

1)  For all h  H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) For all h  H

|errortrue(h) – errortrain(h)| ≤ e = 
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Haussler’s bound

Hoeffding’s bound

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound and Bias-Variance tradeoff

• Equivalently, with probability 

• Fixed |H|

Training size

m small

m large
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small large

large small

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound and Bias-Variance tradeoff

• Equivalently, with probability 

• Fixed m

Model class

|H| large (complex)

|H| small (simple)
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small large

large small

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound for decision trees with k 
leaves – Bias-Variance revisited

k = m 0 large (~ > ½)
k < m >0 small (~ <½)

With prob ≥ 1-d
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With , we get

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



What about continuous hypothesis 
spaces?

• Continuous model class (e.g. linear classifiers): 
– |H| = 

– Infinite gap???

• As with decision trees, complexity of model 
class only depends on maximum number of 
points that can be classified exactly (and not 
necessarily its size)!
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Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



What about continuous hypothesis 
spaces?
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Instead of ln|H|

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley



VC DIMENSION

16



17Slide credit: CMU MLD Nina Balcan
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Example: Shattering for Binary Classification

Slide credit: CMU MLD Matt Gormley



Piazza Poll 1
Does ℋ shatter 𝒮, where ℋ = set of circular decision boundaries and 
𝒮 = set of 2D points?

i.e. Does the number of splittings, |ℋ[𝒮]|, equal 2 𝒮 ?

i.e. Can a circular decision boundary perfectly separate any labelling of 𝒮?

A.

B.

C.
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Example: VC Dimension for Linear Separators
Consider ℋ = linear separators in 2D. To prove 𝑉𝐶(ℋ) = 𝑑:

1. ∃ 𝒮 ∈ 𝒳 s.t. 𝒮 = 𝑑 and ℋ shatters 𝒮

2. !∃ 𝒮 ∈ 𝒳 s.t. 𝒮 = 𝑑 + 1 and ℋ shatters 𝒮

Slide credit: CMU MLD Matt Gormley
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Example: VC Dimension for Linear Separators
Consider ℋ = linear separators in 2D. To prove 𝑉𝐶(ℋ) = 𝑑:

1. ∃ 𝒮 ∈ 𝒳 s.t. 𝒮 = 𝑑 and ℋ shatters 𝒮

2. !∃ 𝒮 ∈ 𝒳 s.t. 𝒮 = 𝑑 + 1 and ℋ shatters 𝒮

But…

Isn’t there a dataset of size d=3 that can’t be shattered?

Slide credit: CMU MLD Matt Gormley



∃ vs. ∀

VCDim

– Proving VC Dimension requires us to show that there exists (∃) a 
dataset of size d that can be shattered and that there does not 
exist (∄) a dataset of size d+1 that can be shattered

Shattering

– Proving that a particular dataset can be shattered requires us to 
show that for all (∀) labelings of the dataset, our hypothesis class 
contains a hypothesis that can correctly classify it

30
Slide credit: CMU MLD Matt Gormley
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley



SLT-style Corollaries
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Solve the inequality in Thm.1 for 
epsilon to obtain Corollary 1

We can obtain 
similar corollaries for 

each of the 
theorems…

Slide credit: CMU MLD Matt Gormley



SLT-style Corollaries
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SLT-style Corollaries
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SLT-style Corollaries
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Should these corollaries inform 
how we do model selection?

Slide credit: CMU MLD Matt Gormley



PAC Bounds and Model Selection
Is Corollary 4 useful? 



PAC Bounds
With probability ≥ 1-d,  for all h   H, 

|errortrue(h) – errortrain(h)| ≤ e(H)
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True error

Training error

High probability
Upper bound
on true risk

e(H) - large for complex models

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Using PAC Bounds to pick a hypothesis and model 
selection

• Empirical Risk Minimization (ERM):

• Structural Risk Minimization (SRM):

• Provide insights, but often too loose in practice: 
optimize 

where λ is chosen by cross-validation 40

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC Bounds and Regularization
Example: Linear separator in ℝ𝑀



Questions For Today

1. Given a classifier with zero training error, what 
can we say about generalization error?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about generalization error?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)

42Slide credit: CMU MLD Matt Gormley



PAC Learning Objectives

You should be able to…

• Identify the properties of a learning setting and assumptions 
required to ensure low generalization error

• Distinguish true error, train error, test error

• Define PAC and explain what it means to be approximately 
correct and what occurs with high probability

• Apply sample complexity bounds to real-world learning 
examples

• Distinguish between a large sample and a finite sample analysis

• Theoretically motivate regularization

43Slide credit: CMU MLD Matt Gormley


