Announcements

Assignments

= HW10 (programming + “written”)
= Due Thu 4/30, 11:59 pm

Final Exam

= Stay tuned to Piazza for details

= Date: Mon 5/11, 5:30 — 8:30 pm

" Format: “online assignment” in Gradescope
= Scope: Content before this week

" Practice exam: Out later this week

" Recitation this Friday: Review session



Introduction to
Machine Learning

Learning Theory

Instructor: Pat Virtue



1.

Questions For Today

Given a classifier with zero training error,
what can we say about true error%aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)



PAC Learning

The PAC criterion is that our learner produces a high accuracy
learner with high probability:

P(|R(h) - R(h)| <€) 21 -6 (1)

Suppose we have a learner that produces a hypothesis h € H

given a sample of N training examples. The algorithm is called con-

sistent if for every e and 9, there exists a positive number of training
examples N such that for any distribution p*, we have that:

P(|R(h) — R(h)| > €) < 6 (2)

The sample complexity is the minimum value of N for which this
statement holds. If IV is finite for some learning algorithm, then H
is said to be learnable. If N is a polynomial function of 1 and 3 for
some learning algorithm, then H is said to be PAC learnable.



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > I [log(|H|) +log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—46) all h € Hwith R(h) =0
have R(h) <e.

Thm. 2 N > 5 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < .

Infinite ||




SLT-style Corollaries

Thm. 1 N > 2 |log(|H|) + log(3)] le-
beled examples are sufficient so that with
probability (1—6) all k € # with R(h) = 0
have R(h) < €

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |7%{|). For some § > 0, with probabil-
ity at least (1 — §), for any h in H consistent with the training data

(i.e. R(h) = 0),

We can obtain

1 similar corollaries for
each of the

0 ) ] theorems...

R(h) < % [1H(|H|) + (




Using a PAC bound
[Hlem™ <9

* Given € and o, yields sample complexity
In|H| + In 5

€

#training data, 1, >

* Given m and 9, vields error bound
In|H| + In 5

m

error, € >




Summary of PAC bounds for finite model classes

With probability > 1-9,
1) Forall h € H s.t. error,,,;,(h) =0,

errory.(h)<e= In|H|+In 5 Haussler’s bound
m

2) Forallh eH
|error,, .(h) —error,..(h)]| <e= J

2
In|H|+In5%

2m

Hoeffding’s bound




PAC bound and Bias-Variance tradeoff

P (Ierrortrue(h) _ errortrain(h)l > 6) < Q‘H‘€_2m€2§ 0

* Equivalently, with probability >1—-6

2
In|H| 4+ In%

2m

erroryrue(h) < errory,qin(h) + \

* Fixed |H| l l

Training size

m small small large
m large large small




PAC bound and Bias-Variance tradeoff

P (Ierrortrue(h) _ errortrain(h)l > 6) < Q‘H‘€_2m€2§ 0

* Equivalently, with probability >1—-6

erroryrue(h) < errory,qin(h) + \

e Fixed m

Model class

2
In|H| 4+ In%

2m

| |

|H| large (complex)
|H| small (simple)

small large
large small
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PAC bound for decision trees with k
leaves — Bias-Variance revisited

2
In|H|+In%

2m

With prob > 1-0 eI’I’OI’t'Pue(h) < errortrain(h) + J

With H, < n*=122¢~1, we get

2
(k—=1)Inn+(2k—1)In2+1In%

errorirye(h) < errortrain(h)_l_\/

| |

k=m 0 large (~ > %)
k<m >0 small (~ <) 1

2m




What about continuous hypothesis
spaces?

2
In|H|+In%

2m

errort'r'ue(h) < errortfra,in(h) + \

e Continuous model class (e.g. linear classifiers):
SLIEE:
— Infinite gap???

e As with decision trees, complexity of model
class only depends on maximum number of

points that can be classified exactly (and not
necessarily its size)!
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What about continuous hypothesis
spaces?

2
In|H|+In%

2m

erroryrye(h) < error,.qin(h) + \

VC(H) (In ot 1)+ In S

errort'rue(h) < errortrain(h)_l_/S
\ 2m

v
Instead of In|H|
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > I [log(|H|) +log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—46) all h € Hwith R(h) =0
have R(h) <e.

Thm. 2 N > 5 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < .

Infinite ||




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).

Four Cases we care about...

Finite |H |

Infinite ||

Realizable

Agnostic

Thm. 1 N > I [log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1—6) all h € H with R(h) = 0
have R(h) <e.

Thm. 2 N > 5 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < .

Thm. 3 N=O(% [VC(H)log(2) +log(5)])
labeled examples are sufficient so that
with probability (1 — §) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) + log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |[R(h) — R(h)| < e.




VC DIMENSION



E.g., thresholds on the real line

E.g., infervals on the real line
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Shattering, VC-dimension

Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 2/5.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways: i.e., all possible ways of
classifying points in S are achievable using concepts in H.



Example: Shattering for Binary Classification



Piazza Poll 1

Does H shatter 5, where H = set of circular decision boundaries and

S =set of 2D points?

i.e. Does the number of splittings, |H[S]|, equal 21817

i.e. Can a circular decision boundary perfectly separate any labelling of §7?
A.

B.

C.




Shattering, VC-dimension

Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 2/5.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways: i.e., all possible ways of
classifying points in S are achievable using concepts in H.



Shattering, VC-dimension
Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 2/5I.

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways: i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o



Shattering, VC-dimension

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H|).



Example: VC Dimension for Linear Separators

Consider H = linear separators in 2D. To prove VC(H) = d:
1. 38§ € X s.t.|S| = d and H shatters §
2. 13§ € Xst.|S|=d+1and H shatters §



Example: VC Dimension for Linear Separators

Consider H = linear separators in 2D. To prove VC(H) = d:
1. 3§ € X s.t.|S| = d and H shatters §

2. 13§ € Xst.|S|=d+1and H shatters §

2. VS € X s.t.|S| =d+ 1H cannot shatter §



Example: VC Dimension for Linear Separators

Consider H = linear separators in 2D. To prove VC(H) = d:
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2. 13§ € Xst.|S|=d+1and H shatters §
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Example: VC Dimension for Linear Separators

Consider H = linear separators in 2D. To prove VC(H) = d:
1. 3§ € X s.t.|S| = d and H shatters §
2. 13§ € Xst.|S|=d+1and H shatters §

But...
Isn’t there a dataset of size d=3 that can’t be shattered?



4 vs.V

VCDIim

— Proving VC Dimension requires us to show that there exists (3) a
dataset of size d that can be shattered and that there does not
exist (#A) a dataset of size d+1 that can be shattered

Shattering

— Proving that a particular dataset can be shattered requires us to
show that for all (V) labelings of the dataset, our hypothesis class
contains a hypothesis that can correctly classify it

30



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Thresholds on the real line - | 4+

VCdim(H) =1

O+
@)

E.g., H= Intervals on the real line

VCdim(H) = 2 O

@,

+ =~ +
/ /




Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
. H+ - Y - T
| | | |

: A sample of size 2k shatters
>
VCdim(H) = 2k (treat each pair of points as a
separate case of infervals)

VCdim(H) < 2k + 1

+ -

+

O
<

O
(¥
O
@,
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).

Four Cases we care about...

Finite |H |

Infinite ||

Realizable

Agnostic

Thm. 1 N > I [log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1—6) all h € H with R(h) = 0
have R(h) <e.

Thm. 2 N > 5 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < .

Thm. 3 N=O(% [VC(H)log(2) +log(5)])
labeled examples are sufficient so that
with probability (1 — §) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) + log(3)])
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |[R(h) — R(h)| < e.




SLT-style Corollaries

Thm. 1 N > 2 |log(|H|) + log(3)] le-
beled examples are sufficient so that with
probability (1—6) all k € # with R(h) = 0
have R(h) < €

Solve the inequality in Thm.1 for
epsilon to obtain Corollary 1

N

Corollary 1 (Realizable, Finite |7%{|). For some § > 0, with probabil-
ity at least (1 — §), for any h in H consistent with the training data

(i.e. R(h) = 0),

We can obtain

1 similar corollaries for
each of the

0 ) ] theorems...

R(h) < % [1H(|H|) + (




SLT-style Corollaries

Corollary 1 (Realizable, Finite |#|). For some d > 0, with probabil-
ity at least (1 — §), for any h in ‘H consistent with the training data

(i.e. R(h) = 0),

R(h) < % lln(\’z'{\) +1n (;)]

Corollary 2 (Agnostic, Finite |%{|). Forsome ¢ > 0, with probability
at least (1 — §), for all hypotheses h in H,

R(h) < R(h) + \/2';7 lln(ml) + In (3)]




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |7{|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% [vc(%) In (VC](\;{)) +1n (%)D (1)

Corollary 4 (Agnostic, Infinite |7{|). Forsome § > 0, with probabil-
ity at least (1 — 6), for all hypotheses A in H,

wr <o so (i1 e n(D)]) @




SLT-style Corollaries

Corollary 3 (Realizable, Infinite |7{|). For some § > 0, with proba-
bility at least (1 — 4), for any hypothesis & in H consistent with the
data (i.e. with R(h) = 0),

R(h) < O (% [vc(%) In (VC](\;{)) +1n (%)D (1)

Corollary 4 (Agnostic, Infinite |7{|). Forsome § > 0, with probabil-
ity at least (1 — 6), for all hypotheses A in H,

wr <o so (i1 e n(D)]) @

% Should these corollaries inform
how we do model selection?




PAC Bounds and Model Selection
Is Corollary 4 useful? R(h) < R(h) + 0O (\/Ji{ [vc(H) 4+ 1n (%)D




PAC Bounds

With probability > 1-0, forallh € H,

|error,, .(h) —error,._..(h)| < g(H)

train

High probability
Upper bound
on true risk

True error

. . ._._____-""-’
Training error g(H) - large for complex models

F "
Boct overfitting Complexity .

Model

underfitting



Using PAC Bounds to pick a hypothesis and model
selection

 Empirical Risk Minimization (ERM):

h = argmin erroriyin(h)
he H

e Structural Risk Minimization (SRM):

/k'\ — arg rkn>1rll {errortrain (}zk) T G(Hk)}

* Provide insights, but often too loose in practice:
optimize

AN AN

k = arg 1;{11>1]§1 {erroripain(hix) + Ae(Hg)}

where A is chosen by cross-validation
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PAC Bounds and Regularization

Example: Linear separator in RM R(h) < R(h) + O (\/1 [VC(H) 1o (%)D

N



1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)
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PAC Learning Objectives

You should be able to...

* ldentify the properties of a learning setting and assumptions
required to ensure low generalization error

* Distinguish true error, train error, test error

* Define PAC and explain what it means to be approximately
correct and what occurs with high probability

* Apply sample complexity bounds to real-world learning
examples

* Distinguish between a large sample and a finite sample analysis
* Theoretically motivate regularization



