Announcements

Assignments

= HW10 (programming + “written”)
= Due Thu 4/30, 11:59 pm



Introduction to
Machine Learning

Learning Theory

Instructor: Pat Virtue



1.

Questions For Today

Given a classifier with zero training error,
what can we say about true error%aka.
eneralization error)?
Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)



Model for Supervised Learning
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Optimal Classification Function

Find the best h(x) — y by searching in the space of hypothesis
functions h € H.

e N
Optimal classifier: [

i@(x) = argmax,P(Y =y | X =x) & —
y

But why?

Goal: find a prediction function h*: X’ = Y that minimizes the expected
loss for randomly drawn test data (X,Y)

K= argrrlnin Eﬁ[L(Y,h(X))] < — Q@Q =L Loss

L(y,y) is the loss or cost of predicting ¥ when the true value is .



Loss Functions

h* = argmin Eyy [L(Y, h(X))]
h

Loss function:
L:YxY->NR
Classification:
= Two-class, 0,1 loss <—

= Two-class, arbitrary loss

Regression:



Optimal Classification Function

Expected loss is also called risk:

R(h) = Exy[L(Y,h(O)]
h* = argmin R(h)
h

= argfrlnin Eyy [L(Y, h(X))]
For 0,1 loss classification, risk is also error: | 6= ¥
RID=E L W) e— — Ly 9= ‘B{
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Two Types of Error

1. True Error (aka. expected risk)

2. Train Error (aka. empirical risk) * “Pkno,,

h) = x@c*
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where S = {x(l) , x(M) IV is the training data set, and x ~

——— S denotes that x is sampled from the empirical distribution.



PAC /SLT Model

. Generate instances from unknown distribution p*

x() ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*

y = *(x), Vi (2)

. Learning algorithm chooses hypothesis h € H with low(est)
training error, R(h) h‘gurﬂ,\,\m IL(I\\

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that [abeled
the training data:

y = (xV), Wi (1)
The expected risk minimizer has lowest true error:
Question:
* — ; True or False:
—7 h” = argmin R(h) h* and c* are

- heH
always equal.

The empirical risk minimizer has lowest training error:

~

h = argmin R(h) (3)
heH



Piazza Poll 1

True or False: h* and c* are always equal.

Slide credit: CMU MLD Matt Gormley




PAC Learnin -

Can we bound R(h) in terms of ﬁ(h)?
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PAC Learning

Definition: sample complexity & rve WA, of Haimng "W‘"p‘% N

St dhe DAC cinerion 35 sl Gor € and & ’ffl’}
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PAC Learning

The PAC criterion is that our learner produces a high accuracy
learner with high probability:

P(|R(h) - R(h)| <€) 21 -6 (1)

Suppose we have a learner that produces a hypothesis h € H

given a sample of N training examples. The algorithm is called con-

sistent if for every e and 9, there exists a positive number of training
examples N such that for any distribution p*, we have that:

P(|R(h) — R(h)| > €) < 6 (2)

The sample complexity is the minimum value of N for which this
statement holds. If IV is finite for some learning algorithm, then H
is said to be learnable. If N is a polynomial function of 1 and 3 for
some learning algorithm, then H is said to be PAC learnable.



PAC Learning

Four types of problems

Two Cases C/*
o Qea\}zaly\e_ < C\t € H

«  Agrosic: CEH or el
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Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).
We’ll start with the
Four Cases we care about... finite case...
Realizable D Agnosti
\ I 2 Ii?
—> Finite |H|

— Infinite | H|




PAC Learning

Theorem 1: Sample Complexity (Realizable, Finite |H|)
N = —%(/03 ]H) F \Vj ,/5» )oJDCu@) f’xc\v‘/‘fb\ﬁﬂ
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PAC Learning

Proof of Theorem 1

{To the whiteboard...}



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to 1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > 2 [log(|H|) +log(3)] la-
Flnl beled examples are sufficient so that with

te |H‘ probability (1—4¢) all h € H with R(h) =0
have R(h) <.

Infinite ||




|H|

Piazza Poll 2

n

\O

/

Question:

Suppose H = class of
conjunctions over x in {0,1}M
l\_____\

Example hypothese5°

—3h(x) =%, (1) %, XA A K

5

~—7h(x) = x (1 xz) X, (1-X5)

IfM_1o €=0.1,0 = 0.01, how

many examples suffice
according to Theorem 12

Answer: W

A. 10*(2*In(10)+In(100 )) = 92
B. 10*(3*In(10)+In(100)) = 116
C. 10*(10*In(2)+In(100 )) = 116
0*(10*In(3)+In(100)) =156 €

N

—> Thm. 1

beled examples

sufficie nt SO that w1th

probability (1 —9) aIIhE’HW|thR

have R(h) <



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).

Four Cases we care about...

Thm. 1 N > I [log(|H|) +log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—¢) all h € H with R(h) =0
have R(h) <e.

Realizable ., Agnostic
7 Y

Thm. 2 N > %/[log(ﬁﬂ) -+ log(@)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < .

Infinite ||




1O
3

10 le 3 Finite |H|

Infinite ||

1.  Boundis inversely linear in
epsilon (e.g. halving the error
requires double the examples)

2. Boundis only logarithmic in
|H| (e.g. quadrupling the

hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
|H| (i.e. same as Realizable
case)

Realizable

% Agnostic

Thm. 1 N > I [log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1—6) all h € # with R(k) = 0
have R(h) <.

Thm. 2 N > 5 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |R(h) — R(h)| < e.




Using a PAC bound
|Hle 2 < 0

* Given € and 9o, yields sample complexity

1
#itraining data, 1, > In |H| +In 3

| F— ¢ |

* Given m and 9, vields error bound
In|H| + In 5
error, € >
— m

23



Summary of PAC bounds for finite model classes

With probability > 1-9,
1) Forall h € H s.t. error,,,;,(h) =0,

errory.(h)<g= In|H|+In 5 Haussler’s bound
- m

—> 2) Forallh eH

LIerrortrue(h) — errory,i,(h)| €= J
)

2
In|H|+In5%

2m

Hoeffding’s bound




PAC bound and Bias-Variance tradeoff

P (Ierrortrue(h) _ errortrain(h)l > 6) < Q‘H‘€_2m€2§ 0

e Equivalently, with probability > 1 —

R(K) ’20\\ In|H| +In3

erroryrue(h) < errory,qin(h) + \

2m
+ Fixed |H] | u l N\ _
Modercass Tan 9ize &
m small small large 5
m large large small

bias VACance s



PAC bound and Bias-Variance tradeoff

P (Ierrortrue(h) _ errortrain(h)l > 6) < Q‘H‘€_2m€2§ 0

* Equivalently, with probability >1—-6

errorirye(h) < errory,.qin(h) + \ n |H2|7;|; n %

* Fixed m l l U
Model class \k‘
|H| large (complex) small large —
|H| small (simple) large small \ (Gerple,




Number of decision trees of depth k

Recursive solution: m > 1 <|n [H| + In %)

€2
Given n binary attributes
H, = Number of binary decision trees of depth k
Ho = 2
H, = (#choices of root attribute)
*(# possible left subtrees)
*(# possible right subtrees) =n*H, ; *H,,

Write L,

L, =1
L, =log,n+2L _,=log, n+2(log, n+2L,,)

=log, n + 2log, n + 2%log, n + ... +2¥(log, n + 2L,)
So L, =‘(3k-1)(1+|-0g2 n) +1 27




PAC bound for decision trees of depth k

m > '2”—2 ((2@— 1)(1 + logyn) 4+ 1 + IOQQZ)
2 i/

e Bad!!l
— Number of points is exponential in depth k!

e But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points

28



Number of decision trees with k leaves

m > 1 (In |H| + Inz)
2e? d
H, = Number of binary decision trees with k leaves
H, =2
H, = (#choices of root attribute) *
[(# left subtrees wth 1 |leaf)™*(# right subtrees wth k-1 leaves)
+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)
+ ...
+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)]

k—1

Hy=n) H;H, ;=n1C, (C,., : Catalan Number)
1=1

Loose bound (using Sterling’s approximation):

/

A FaXelm SSe e el

29



Number of decision trees
1 2
e With k leaves mZ55 <'n ]+ E>

logy Hy, < (k—1)logyn + 2k — 1 linear in k
number of points m is linear in #leaves

* With depth k

log, H, = (21)(1+log, n) +1  exponential in k

number of points m is exponential in depth

30



PAC bound for decision trees with k
leaves — Bias-Variance revisited

2]
With prob > 1-0 erroryye(h) < errory.qin(h) + J In@—|— ns

2m

With H, < n*=122¢~1, we get /

(k—1)Inn+ (2k — 1) In2)+ In 2

errorirue(h) < errory,qin(h)+ 2m

| |

k=m 0 large (~ > %)
k<m >0 small (~ <%%) 31




What did we learn from decision trees?

 Moral of the story:

Complexity of learning not measured in terms of size
of model space, but in maximum number of points
that allows consistent classification

32



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithmis the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to 1).
Four Cases we care about...

Realizable

Agnostic

Thm. 1 N > I [log(|H|) +log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—46) all h € Hwith R(h) =0
have R(h) <e.

Thm. 2 N > 5 [log(|H]) + log(3)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < .

Infinite ||




