
Announcements
Assignments

▪ HW10 (programming + “written”)

▪ Due Thu 4/30, 11:59 pm



Introduction to 
Machine Learning

Learning Theory

Instructor: Pat Virtue



Questions For Today

1. Given a classifier with zero training error, 
what can we say about true error (aka. 
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about true error (aka. 
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)

3Slide credit: CMU MLD Matt Gormley



Model for Supervised Learning

Slide credit: CMU MLD Nina Balcan



Optimal Classification Function

Find the best ℎ 𝑥 → ො𝑦 by searching in the space of hypothesis 
functions ℎ ∈ ℋ.

Optimal classifier:
ℎ∗ 𝑥 = argmax

𝑦
𝑃 𝑌 = 𝑦 𝑋 = 𝑥

But why?

Goal: find a prediction function ℎ∗: 𝒳 → 𝒴 that minimizes the expected 
loss for randomly drawn test data (𝑋, 𝑌)

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

𝐿(𝑦, ො𝑦) is the loss or cost of predicting ො𝑦 when the true value is 𝑦. 



Loss Functions

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

Loss function:

𝐿:𝒴 × 𝒴 → ℝ

Classification:

▪ Two-class, 0,1 loss

▪ Two-class, arbitrary loss

Regression:



Optimal Classification Function

Expected loss is also called risk:

𝑅 ℎ = 𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

ℎ∗ = argmin
ℎ

𝑅(ℎ)

= argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

For 0,1 loss classification, risk is also error:



Two Types of Error

8

2. Train Error (aka. empirical risk)

1. True Error (aka. expected risk)
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PAC / SLT Model

9Slide credit: CMU MLD Matt Gormley



Three Hypotheses of Interest
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Question: 
True or False: 
h* and c* are 
always equal. 

Slide credit: CMU MLD Matt Gormley



Piazza Poll 1
True or False: h* and c* are always equal. 

A.

B.

C.

Slide credit: CMU MLD Matt Gormley



PAC Learning

Can we bound 𝑅(ℎ) in terms of ෠𝑅(ℎ)?

Definition: PAC Criterion:

Slide credit: CMU MLD Matt Gormley



PAC Learning
Definition: sample complexity

Definition: consistent hypothesis

Slide credit: CMU MLD Matt Gormley



PAC Learning

14Slide credit: CMU MLD Matt Gormley



PAC Learning
Four types of problems

Slide credit: CMU MLD Matt Gormley



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…
We’ll start with the 

finite case…

Slide credit: CMU MLD Matt Gormley



PAC Learning
Theorem 1: Sample Complexity (Realizable, Finite |ℋ|)

Slide credit: CMU MLD Matt Gormley



PAC Learning
Proof of Theorem 1

{To the whiteboard…}

Slide credit: CMU MLD Matt Gormley



Sample Complexity Results

19

Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley



Piazza Poll 2
Question:
Suppose H = class of 
conjunctions over x in {0,1}M

Example hypotheses:
h(x) = x1 (1-x3) x5

h(x) = x1 (1-x2) x4 (1-x5)

If M = 10, 𝜀 = 0.1, δ = 0.01, how 
many examples suffice 
according to Theorem 1?

Answer:
A. 10*(2*ln(10)+ln(100 )) ≈ 92
B. 10*(3*ln(10)+ln(100)) ≈ 116
C. 10*(10*ln(2)+ln(100 )) ≈ 116
D. 10*(10*ln(3)+ln(100)) ≈ 156
E. 100*(2*ln(10)+ln(10 )) ≈ 691
F. 100*(3*ln(10)+ln(10)) ≈ 922
G. 100*(10*ln(2)+ln(10 )) ≈ 924
H. 100*(10*ln(3)+ln(10)) ≈ 1329
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

1. Bound is inversely linear in 
epsilon (e.g. halving the error 
requires double the examples)

2. Bound is only logarithmic in 
|H| (e.g. quadrupling the 
hypothesis space only requires 
double the examples)

1. Bound is inversely quadratic in 
epsilon (e.g. halving the error 
requires 4x the examples)

2. Bound is only logarithmic in 
|H| (i.e. same as Realizable 
case) 

Slide credit: CMU MLD Matt Gormley



Using a PAC bound

• Given e and d, yields sample complexity

#training data, 

• Given m and d, yields error bound

error, 
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Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Summary of PAC bounds for finite model classes

With probability ≥ 1-d, 

1)  For all h  H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) For all h  H

|errortrue(h) – errortrain(h)| ≤ e = 
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Haussler’s bound

Hoeffding’s bound

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound and Bias-Variance tradeoff

• Equivalently, with probability 

• Fixed |H|

Model class

m small

m large
25

small large

large small

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound and Bias-Variance tradeoff

• Equivalently, with probability 

• Fixed m

Model class

|H| large (complex)

|H| small (simple)
26

small large

large small

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Number of decision trees of depth k

Recursive solution: 

Given n binary attributes

Hk = Number of binary decision trees of depth k

2

(#choices of root attribute) 

*(# possible left subtrees) 

*(# possible right subtrees)     = n * Hk-1 * Hk-1

Write Lk = log2 Hk

L0 = 1

Lk = log2 n + 2Lk-1 = log2 n + 2(log2 n + 2Lk-2) 

= log2 n + 2log2 n + 22log2 n + … +2k-1(log2 n + 2L0) 

So Lk = (2k-1)(1+log2 n) +1 27

Hk = 

H0 = 

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound for decision trees of depth k

• Bad!!!

– Number of points is exponential in depth k!

• But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
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Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Number of decision trees with k leaves

Hk = Number of binary decision trees with k leaves

H1 =2

Hk = (#choices of root attribute) *

[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves) 

+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves) 

+ …

+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)] 

= nk-1 Ck-1 (Ck-1 : Catalan Number)

Loose bound (using Sterling’s approximation):
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Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Number of decision trees

• With k leaves

linear in k

number of points m is linear in #leaves

• With depth k 

exponential in k

number of points m is exponential in depth
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log2 Hk = (2k-1)(1+log2 n) +1

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



PAC bound for decision trees with k 
leaves – Bias-Variance revisited

k = m 0 large (~ > ½)
k < m >0 small (~ <½)

With prob ≥ 1-d
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With , we get

Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



What did we learn from decision trees?

• Moral of the story:

Complexity of learning not measured in terms of size 
of model space, but in maximum number of points
that allows consistent classification
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Slide credit: CMU MLD Aarti Singh and Carlos Guestrin



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

Slide credit: CMU MLD Matt Gormley


