
Announcements
Assignments

▪ HW10 (programming + “written”)

▪ Due Thu 4/30, 11:59 pm



Introduction to 
Machine Learning

Learning Theory

Instructor: Pat Virtue



Model for Supervised Learning

Slide credit: CMU MLD Nina Balcan



Optimal Classification Function
Find the best ℎ 𝑥 → ො𝑦 by searching in the space of hypothesis 
functions ℎ ∈ ℋ.

Optimal classifier:
ℎ∗ 𝑥 = argmax

𝑦
𝑃 𝑌 = 𝑦 𝑋 = 𝑥

But why?



Optimal Decision Boundaries
Decision boundary

▪ The set of points in the domain of the input (𝑥) where the predicted 
classification changes

Two class decision boundary

▪ So far, we have decided to let the decision boundary be all 𝑥 such 
that:

𝑝 𝑌 = 0 𝑋 = 𝑥) = 𝑝 𝑌 = 1 𝑋 = 𝑥)

▪ What assumptions are we making here?

▪ This assumes that the cost of predicting it wrong is the same for 
both classes



Optimal Classification Function

Find the best ℎ 𝑥 → ො𝑦 by searching in the space of hypothesis 
functions ℎ ∈ ℋ.

Optimal classifier:
ℎ∗ 𝑥 = argmax

𝑦
𝑃 𝑌 = 𝑦 𝑋 = 𝑥

But why?

Goal: find a prediction function ℎ∗: 𝒳 → 𝒴 that minimizes the expected 
loss for randomly drawn test data (𝑋, 𝑌)

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

𝐿(𝑦, ො𝑦) is the loss or cost of predicting ො𝑦 when the true value is 𝑦. 



Loss Functions

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

Loss function:

𝐿:𝒴 × 𝒴 → ℝ

Classification:

▪ Two-class, 0,1 loss

▪ Two-class, arbitrary loss

False positives and false negatives:



Loss Functions

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

Loss function:

𝐿:𝒴 × 𝒴 → ℝ

Classification:

▪ Two-class, 0,1 loss

▪ Two-class, arbitrary loss

Regression:



Expected Value

Quick review



Model X and Y as random variables

For a given 𝑥, ℎ(𝑥) = label Y which is more likely
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Optimal Classification Function

ℎ∗ 𝑥 = argmax
𝑦 ∈ 0,1

𝑃 𝑌 = 𝑦 𝑋 = 𝑥

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

Start with arbitrary two-class loss 𝐿(𝑦, ො𝑦)
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Optimal Classification Function

Expected loss is also called risk:

𝑅 ℎ = 𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

ℎ∗ = argmin
ℎ

𝑅(ℎ)

= argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

{Whiteboard derivation}



Optimal Classification Function

ℎ∗ 𝑥 = argmax
𝑦 ∈ 0,1

𝑃 𝑌 = 𝑦 𝑋 = 𝑥

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

Start with arbitrary two-class loss 𝐿(𝑦, ො𝑦)

ℎ∗ 𝑥 = ቐ
1 if 𝑃 𝑌 = 0 𝑥 𝐿 0,1 + 𝑃 𝑌 = 1 𝑥 𝐿 1,1

≤ 𝑃 𝑌 = 0 𝑥 𝐿 0,0 + 𝑃 𝑌 = 1 𝑥 𝐿 1,0
0 otherwise

Two-class, 0, 1 loss

ℎ∗ 𝑥 = ቐ
1 if 𝑃 𝑌 = 0 𝑥

≤ 𝑃 𝑌 = 1 𝑥
0 otherwise 0
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Optimal Classification Function

ℎ∗ 𝑥 = argmax
𝑦 ∈ 0,1

𝑃 𝑌 = 𝑦 𝑋 = 𝑥

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋

Start with arbitrary two-class loss 𝐿(𝑦, ො𝑦)

ℎ∗ 𝑥 = ቐ
1 if 𝑃 𝑌 = 0 𝑥 𝐿 0,1 + 𝑃 𝑌 = 1 𝑥 𝐿 1,1

≤ 𝑃 𝑌 = 0 𝑥 𝐿 0,0 + 𝑃 𝑌 = 1 𝑥 𝐿 1,0
0 otherwise

Two-class, weighted loss

ℎ∗ 𝑥 = ቐ
1 if 𝑃 𝑌 = 0 𝑥 𝐿(0,1)

≤ 𝑃 𝑌 = 1 𝑥 𝐿(1,0)
0 otherwise 0 ℎ(𝑥)

𝐿(1,0)

𝐿(0,1)0



Optimal Classification Function

What is the risk of the optimal classifer?

𝑅 ℎ∗ = 𝔼𝑋𝑌 𝐿 𝑌, ℎ∗ 𝑋
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ℎ∗ 𝑥 = ቐ
1 if 𝑃 𝑌 = 0 𝑥

≤ 𝑃 𝑌 = 1 𝑥
0 otherwise



Risk in Regression

Squared error loss 𝐿 𝑦, ℎ(𝑥) = ℎ 𝑥 − 𝑦 2

ℎ∗ = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋



Optimal Hypothesis Function

Goal: find a prediction function ℎ∗: 𝒳 → 𝒴 that minimizes the risk, the 
expected loss for randomly drawn test data (𝑋, 𝑌)

ℎ∗ = argmin
ℎ

𝑅(ℎ) = argmin
ℎ

𝔼𝑋𝑌 𝐿 𝑌, ℎ 𝑋



Learning from Training Data

But we want our hypothesis function to generalize well?

▪ How do we characterize and quantify this trade-off?

▪ {Back to the whiteboard}


