Announcements

Assignments

= HW10 (programming + “written”)
= Due Thu 4/30, 11:59 pm



Introduction to
Machine Learning

Learning Theory

Instructor: Pat Virtue
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Optimal Classification Function

Find the best h(x) — ¥ by searching in the space of hypothesis
functions h € H.

Optimal classifier:
h*(x) = argmaxP(Y =y | X =x)
y
But why?



Optimal Decision Boundaries

Decision boundary

* The set of points in the domain of the input (x) where the predicted
classification changes

Two class decision boundary

= So far, we have decided to let the decision boundary be all x such
that:
p( =0|X=x) = p(Y =1]|X=x)

= What assumptions are we making here?

" This assumes that the cost of predicting it wrong is the same for
both classes



Optimal Classification Function

Find the best h(x) — ¥y by searching in the space of hypothesis
functions h € H.

Optimal classifier:

h*(x) = argmaxP(Y =y | X =x)
y

But why?

Goal: find a prediction function h*: X’ = Y that minimizes the expected
loss for randomly drawn test data (X,Y)

h* = argmin Eyy [L(Y, h(X))]
h

L(y,¥) is the loss or cost of predicting ¥ when the true value is y.



Loss Functions
h* = argmin IEXY[L(Y,h(X))]
h

Loss function:
L:YxY->NR
Classification:

= Two-class, 0,1 loss
= Two-class, arbitrary loss

False positives and false negatives:



Loss Functions
h* = argmin IEXY[L(Y,h(X))]
h

Loss function:
L:YxY->NR
Classification:

= Two-class, 0,1 loss
= Two-class, arbitrary loss

Regression:



Expected Value

Quick review



Binary Classification
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() document

Model X and Y as random variables

P(Y = |X) P(Y = «|X)
1

h(x)

For a given x, h(x) = label Y which is more likely

h(x) = argmax P(Y = y|X = z)
Y=y



Optimal Classification Function
h*(x) = argmaxP(Y =y | X =x)

y €{0,1}
h* = argmin ]EXY [L(Y) h(X))]
h

Start with arbitrary two-class loss L(y, V)

P(Y = «|X) P(Y = «|X)
1

h(x)




Optimal Classification Function

Expected loss is also called risk:
R(h)

{Whiteboard derivation}

h*

Exy[L(Y, h(O)]
argmin R(h)
h

argmin Eyy [L(Y, h(X))]
h



Optimal Classification Function

h*(x) = argmax P(Y =y | X = x)
y €{0,1}
h* = argmin ]EXY [L(Y) h(X))]
h

Start with arbitrary two-class loss L(y, V)

(1 if P(Y=01x)L(0,1)+P(Y=1]|x)L(1,1)
h*(x) = + < P(Y=01x)L(0,00+P(Y=11|x)L(1,0)
.0 otherwise

Two-class, 0, 1 loss P(Y = ¢|X) P(Y = «|X)
(1 if  P(Y=0]x) 1
h*(x) = - < P(Y=1]x) 05
0 otherwise

h(x)




Optimal Classification Function

h*(x) = argmax P(Y =y | X = x)
y €{0,1}
h* = argmin ]EXY [L(Y) h(X))]
h

Start with arbitrary two-class loss L(y, V)

h*(x) = <

(1 if P(Y=01x)L(0,1)+P(Y=1]|x)L(1,1)
< P(Y=0]x)L(0,0)+P(Y=1]x)L(1,0)

Two-class, weighted loss

(1
h*(x) = A

\

.0 otherwise
P(Y = 1|X) L(1,0)

if P(Y =0 | X)L(O:l) P(Y = 0|X) L(0,1)
< P(Y=11x)L(1,0)
0 otherwise 0 h(x)




Optimal Classification Function | . (1if  P(Y=0]x)
h*(x) = « < P(Y=1]x)
What is the risk of the optimal classifer? 0 otherwise
R(h*) = Exy|L(Y,h*(X))]
PV =+ |X) P(Y = +|X)

h(x)




Risk in Regression

Squared error loss L(y, h(x)) = (h(x) — y)*
h* = argmin Eyy [L(Y, h(X))]
h



Optimal Hypothesis Function

Goal: find a prediction function h™: X’ = Y that minimizes the risk, the
expected loss for randomly drawn test data (X,Y)

h* = argmin R(h) = argmin Eyy [L(Y, h(X ))]
h h



Learning from Training Data

But we want our hypothesis function to generalize well?
* How do we characterize and quantify this trade-off?

= {Back to the whiteboard}



