Announcements

Assignments

- HW10 (programming + "written")
 - Due Thu 4/30, 11:59 pm

Introduction to Machine Learning

Learning Theory

Instructor: Pat Virtue

Model for Supervised Learning

Find the best $h(x) \to \hat{y}$ by searching in the space of hypothesis functions $h \in \mathcal{H}$.

Optimal classifier:

$$h^*(x) = \underset{y}{\operatorname{argmax}} P(Y = y \mid X = x)$$

But why?

Optimal Decision Boundaries

Decision boundary

• The set of points in the domain of the input (x) where the predicted classification changes

Two class decision boundary

So far, we have decided to let the decision boundary be all x such that:

$$p(Y = 0 | X = x) = p(Y = 1 | X = x)$$

- What assumptions are we making here?
 - This assumes that the cost of predicting it wrong is the same for both classes

Find the best $h(x) \to \hat{y}$ by searching in the space of hypothesis functions $h \in \mathcal{H}$.

Optimal classifier:

$$h^*(x) = \underset{y}{\operatorname{argmax}} P(Y = y \mid X = x)$$

But why?

Goal: find a prediction function $h^*: \mathcal{X} \to \mathcal{Y}$ that minimizes the expected loss for randomly drawn test data (X,Y)

$$h^* = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY}[L(Y, h(X))]$$

 $L(y, \hat{y})$ is the loss or cost of predicting \hat{y} when the true value is y.

Loss Functions

$$h^* = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY}[L(Y, h(X))]$$

Loss function:

 $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Classification:

Two-class, 0,1 loss

Two-class, arbitrary loss

False positives and false negatives:

Loss Functions

$$h^* = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY}[L(Y, h(X))]$$

Loss function:

 $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Classification:

Two-class, 0,1 loss

Two-class, arbitrary loss

Regression:

Expected Value

Quick review

Binary Classification

Model X and Y as random variables

For a given x, h(x) = label Y which is more likely

$$h(x) = \arg \max_{Y=y} P(Y=y|X=x)$$

$$h^*(x) = \underset{y \in \{0,1\}}{\operatorname{argmax}} P(Y = y \mid X = x)$$
$$h^* = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY} [L(Y, h(X))]$$

Start with arbitrary two-class loss $L(y, \hat{y})$

Expected loss is also called risk:

$$R(h) = \mathbb{E}_{XY}[L(Y, h(X))]$$

$$h^* = \underset{h}{\operatorname{argmin}} R(h)$$

$$= \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY}[L(Y, h(X))]$$

{Whiteboard derivation}

$$h^*(x) = \underset{y \in \{0,1\}}{\operatorname{argmax}} P(Y = y \mid X = x)$$

$$h^* = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY} [L(Y, h(X))]$$

Start with arbitrary two-class loss $L(y, \hat{y})$

$$h^*(x) = \begin{cases} 1 & \text{if} \qquad P(Y = 0 \mid x)L(0,1) + P(Y = 1 \mid x)L(1,1) \\ \leq P(Y = 0 \mid x)L(0,0) + P(Y = 1 \mid x)L(1,0) \\ 0 & \text{otherwise} \end{cases}$$

Two-class, 0, 1 loss
$$h^*(x) = \begin{cases} 1 & \text{if } P(Y = 0 \mid x) \\ \leq P(Y = 1 \mid x) \end{cases}$$

$$0.5$$

$$0 & \text{otherwise}$$

$$h^{*}(x) = \underset{y \in \{0,1\}}{\operatorname{argmax}} P(Y = y \mid X = x)$$
$$h^{*} = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY} [L(Y, h(X))]$$

Start with arbitrary two-class loss $L(y, \hat{y})$

$$h^*(x) = \begin{cases} 1 & \text{if} \qquad P(Y = 0 \mid x) L(0,1) + P(Y = 1 \mid x) L(1,1) \\ \leq P(Y = 0 \mid x) L(0,0) + P(Y = 1 \mid x) L(1,0) \\ 0 & \text{otherwise} \end{cases}$$

Two-class, weighted loss

$$h^*(x) = \begin{cases} 1 & \text{if} & P(Y = 0 \mid x) L(0,1) \\ & \leq P(Y = 1 \mid x) L(1,0) \end{cases} P(Y = 0 \mid X) L(0,1)$$

$$0 & \text{otherwise}$$

P(Y = 0|X) L(0,1)

What is the risk of the optimal classifer?

$$R(h^*) = \mathbb{E}_{XY}[L(Y, h^*(X))]$$

$$h^*(x) = \begin{cases} 1 & \text{if} & P(Y = 0 \mid x) \\ & \leq P(Y = 1 \mid x) \\ 0 & \text{otherwise} \end{cases}$$

Risk in Regression

Squared error loss
$$L(y, h(x)) = (h(x) - y)^2$$

 $h^* = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY}[L(Y, h(X))]$

Optimal Hypothesis Function

Goal: find a prediction function $h^*: \mathcal{X} \to \mathcal{Y}$ that minimizes the risk, the expected loss for randomly drawn test data (X,Y)

$$h^* = \underset{h}{\operatorname{argmin}} R(h) = \underset{h}{\operatorname{argmin}} \mathbb{E}_{XY}[L(Y, h(X))]$$

Learning from Training Data

But we want our hypothesis function to generalize well?

- How do we characterize and quantify this trade-off?
- {Back to the whiteboard}