
Announcements
Assignments

▪ HW9 (online)

▪ Due Thu 4/16, 11:59 pm

TA Applications:

▪ Please apply to TA with us! Link for MLD applications will be in piazza.

Participation points

▪ Starting now, we’re capping the denominator (57 polls) in the
participation points calculation

Introduction to
Machine Learning

Clustering

GMM and EM

Instructor: Pat Virtue

Slide credits: Aarti Singh, Eric Xing, Carlos Guestrin

K-means Optimization
Question: Which of these partitions is “better”?

3Slide credit: CMU MLD Matt Gormley

K-means Optimization

Slide credit: CMU MLD Matt Gormley

K-means Optimization
Alternating minimization

Slide credit: CMU MLD Matt Gormley

Piazza Poll 1
[True/False] The alternating minimization algorithm will find the global
minimum of the k-means objective.

𝑪, 𝒛 = argmin
𝑪, 𝒛

෍

𝑖=1

𝑁

𝒙(𝑖) − 𝒄𝑧(𝑖) 2

2

A.

B.

C.

(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable

(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable

• K-means

– hard assignment: each object belongs to only one cluster

• Mixture modeling

– soft assignment: probability that an object belongs to a cluster

Generative approach

9

Partitioning Algorithms

Mixture of K Gaussian distributions: (Multi-modal distribution)

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, s
2I)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component

Mixture
component

Gaussian Mixture Model

(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m1

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m3

m1

m2

m3

• There are k components

• Component i has an associated
mean vector mi

• Each component generates data
from a Gaussian with mean mi and
covariance matrix Si

Each data point is generated according
to the following recipe:

1) Pick a component at random:
Choose component i with
probability P(y=i)

2) Datapoint x ~ N(mi, Si)

(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

Decision boundary when probabilities are equal:

)x|jy(P

)x|iy(P
log

=

=

xwWxx TT +=

“Quadratic Decision boundary” – second-order terms don’t cancel out

)jy(P)jy|x(p

)iy(P)iy|x(p
log

==

==
=

Depend on m1, m2, .. , mK, S1, S2, .. , SK, P(y=1),…, P(Y=k)

Gaussian mixture model

16

m1m1

m2

m3

Mixture
proportion, pi

Mixture
component

Parameters:

• How to estimate parameters? Max Likelihood
But don’t know labels Y

Learning General GMM

Learning General GMM

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i=1 P(yj=i)p(xj|yj=i)

K

K


= =









−−−


==

m

j

k

i

iji

T

ij

i

xxiyP
1 1

)()(
2

1
exp

)det(

1
)(maxarg mm

P(yj=i) = P(y=i) Mixture component i is chosen with prob P(y = i)

How do we find the mi,Si s and P(y=i)s which give max. marginal
likelihood?

* Set  log Prob (….) = 0 and solve for μi‘s. Non-linear not-analytically solvable
 μi

* Use gradient descent: Doable, but often slow

MLE Optimization

18

MLE Optimization

19

GMM vs. k-means

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i=1 P(yj=i)p(xj|yj=i)

argmax j P(xj) = argmax j p(xj|yj=C(j))

= argmax

= argmin

K

K

Same as
k-means!

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels) first

• No need to choose step size as in Gradient methods.

• EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference

M-step: apply standard MLE/MAP method to estimate parameters

{pi, μi, Σi}
k
i=1

• We will see that this procedure monotonically improves the
likelihood (or leaves it unchanged). Thus it always converges
to a local optimum of the likelihood.

k

EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like μ given our data’s class membership distributions (weights)

Iterate.

EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like μ given our data’s class membership distributions (weights)

() ()iyPx
2

1
exp...,xiyP

2

ij2k1j =







m−

s
−mm=



mi =

P y = i x j()
j=1

m

 x j

P y = i x j()
j=1

m



In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.

Exactly same as MLE with
weighted data

EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a
Gaussian at xj

Iterate. On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }

pi
(t) is shorthand for

estimate of P(y=i) on
t’th iteration

() ())()()(
,p,P

t

i

t

ij

t

itj xpxiy S= ml

()

()

()



=

=

=
+

j

tj

j

j

tj

t

i
xiy

xxiy

l

l

,P

 ,P

μ
1 ()

() ()() ()()

() ,xiyP

xx ,xiyP

j

tj

T1t

ij

1t

ij

j

tj

1t

i





l=

m−m−l=

=S

++

+

()

m

xiy

p
j

tj

t

i

 =

=
+

l,P
)1(

m = #data points

EM Convergence

EM for general GMMs: Example

m1

m2

m3
S1

S2 S3

P(y = |xj,m1,m2,m3,S1,S2,S3,p1,p2,p3)

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component

What you need to know…

• Hierarchical clustering algorithms
– Single-linkage
– Complete-linkage
– Centroid-linkage
– Average-linkage

• Partition based clustering algorithms
– K-means

• Coordinate descent
• Seeding
• Choosing K

– Mixture models
EM algorithm

39

General EM algorithm

Marginal likelihood – x is observed, z is missing:

log

How to maximize marginal likelihood using EM?

Lower-bound on marginal likelihood

P(z) f(z)

Jensen’s inequality: log z P(z) f(z) ≥ z P(z) log f(z)

log: concave function

log(ax+(1-a)y) ≥ a log(x) + (1-a) log(y)

x yax+(1-a)y

log

Variational
approach

Lower-bound on marginal likelihood

Jensen’s inequality: log z P(z) f(z) ≥ z P(z) log f(z)

≥

P(z) f(z)

log

=:

M-step: Fix Q, maximize F over 

EM as Coordinate Ascent

E-step: Fix , maximize F over Q

log

)Q,(FmaxargQ t

Q

1t =+

)Q,(Fmaxarg 1t1t +



+ =

M-step: Fix Q, maximize F over 

Convergence of EM

E-step: Fix , maximize F over Q

log

)Q,(FmaxargQ t

Q

1t =+

)Q,(Fmaxarg 1t1t +



+ =

M-step maximizes lower bound F on marginal likelihood => doesn’t
decrease the marginal likelihood

E-step maximizes lower bound F on marginal likelihood => doesn’t
decrease the marginal likelihood

Since marginal likelihood is bounded, convergence follows!

Convergence of EM

Marginal
Likelihood function

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

F(θ, Qt+1)

EM & Local Maxima

Typical likelihood function

Different sequence of EM lower bound
F-functions depending on initialization

Use multiple, randomized initializations in practice

M-step: Fix Q, maximize F over 

EM as Coordinate Ascent

E-step: Fix , maximize F over Q

log

)Q,(FmaxargQ t

Q

1t =+

)Q,(Fmaxarg 1t1t +



+ =

E step

E-step: Fix , maximize F over Q

1

KL divergence between two distributions

log

log

log

E step

E-step: Fix , maximize F over Q

KL>=0, above expression is maximized if KL divergence = 0

KL(Q,P) = 0 iff Q = P

Therefore,
E step:

+ log

log

log

E step

Re-aligns F with marginal likelihood !!

log

log + log

Compute probability of missing data z given current choice of 

➔

E-step: Fix , maximize F over Q

log

M step

Fixed (Independent of )

M-step: Fix Q, maximize F over 

log

log

Expected log likelihood wrt Q
=

Log likelihood if z
was known

M step

Fixed (Independent of )

M-step: Fix Q, maximize F over 

log

log =

Use expected counts instead of counts when computing MLE:

If learning requires Count(x,z), Use EQ(t+1)[Count(x,z)]

Expected log likelihood wrt Q(t+1)

M-step: Fix Q, maximize F over 

EM as Coordinate Ascent

E-step: Fix , maximize F over Q

log

)Q,(FmaxargQ t

Q

1t =+

)Q,(Fmaxarg 1t1t +



+ =

E.g., P y = i x j,mt()
Compute probability of missing data given current choice of 

Compute estimate of  by maximizing marginal likelihood using Q(t+1)(z|xj)

Summary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds
MLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data and current

parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

1. E-step:

2. M-step:

• In the M-step we optimize a lower bound on the likelihood. In the E-step
we close the gap, making bound=likelihood.

• EM performs coordinate ascent on F, can get stuck in local minima.

• BUT Extremely popular in practice.

)Q,(FmaxargQ t

Q

1t =+

)Q,(Fmaxarg 1t1t +



+ =

