
Announcements
Assignments

▪ HW9 (online)

▪ Due Thu 4/16, 11:59 pm

TA Applications:

▪ Please apply to TA with us! Link for MLD applications will be in piazza.

Participation points

▪ Starting now, we’re capping the denominator (57 polls) in the 
participation points calculation



Introduction to 
Machine Learning

Clustering

GMM and EM

Instructor: Pat Virtue

Slide credits: Aarti Singh, Eric Xing, Carlos Guestrin



K-means Optimization
Question: Which of these partitions is “better”?

3Slide credit: CMU MLD Matt Gormley



K-means Optimization

Slide credit: CMU MLD Matt Gormley



K-means Optimization
Alternating minimization

Slide credit: CMU MLD Matt Gormley



Piazza Poll 1
[True/False] The alternating minimization algorithm will find the global 
minimum of the k-means objective. 

𝑪, 𝒛 = argmin
𝑪, 𝒛
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(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable



(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable



• K-means 

– hard assignment: each object belongs to only one cluster

• Mixture modeling

– soft assignment: probability that an object belongs to a cluster

Generative approach

9

Partitioning Algorithms



Mixture of K Gaussian distributions:  (Multi-modal distribution)
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Gaussian Mixture Model



(One) bad case for K-means

• Clusters may overlap
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• Clusters may not be linearly separable



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)

m3

m1

m2

m3

• There are k components

• Component i has an associated 
mean vector mi

• Each component generates data 
from a Gaussian with mean mi and 
covariance matrix Si

Each data point is generated according 
to the following recipe: 

1) Pick a component at random: 
Choose component i with 
probability P(y=i)

2) Datapoint x ~ N(mi, Si)



(One) bad case for K-means

• Clusters may overlap

• Some clusters may be “wider” than others

• Clusters may not be linearly separable



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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p(x|y=i) ~ N(mi, Si)

Decision boundary when probabilities are equal:
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Depend on m1, m2, .. , mK, S1, S2, .. , SK, P(y=1),…, P(Y=k)



Gaussian mixture model

16

m1m1

m2

m3

Mixture
proportion, pi

Mixture
component

Parameters:

• How to estimate parameters? Max Likelihood
But don’t know labels Y

Learning General GMM



Learning General GMM

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i=1 P(yj=i)p(xj|yj=i)
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P(yj=i) = P(y=i)  Mixture component i is chosen with prob P(y = i)

How do we find the mi,Si s and P(y=i)s which give max. marginal 
likelihood?

* Set   log Prob (….) = 0 and solve for μi‘s. Non-linear not-analytically solvable
 μi

* Use gradient descent: Doable, but often slow



MLE Optimization
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MLE Optimization
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GMM vs. k-means

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i=1 P(yj=i)p(xj|yj=i)

argmax j P(xj) = argmax j p(xj|yj=C(j))

= argmax

= argmin

K

K

Same as 
k-means!



Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in 
the context of unsupervised learning (hidden labels) first

• No need to choose step size as in Gradient methods.

• EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference

M-step: apply standard MLE/MAP method to estimate parameters

{pi, μi, Σi}
k
i=1

• We will see that this procedure monotonically improves the 
likelihood (or leaves it unchanged). Thus it always converges 
to a local optimum of the likelihood.

k



EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like μ given our data’s class membership distributions (weights)

Iterate.



EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like μ given our data’s class membership distributions (weights)
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In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.

Exactly same as MLE with 
weighted data



EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a 
Gaussian at xj

Iterate.  On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1
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(t) … Sk
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pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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EM Convergence



EM for general GMMs: Example

m1

m2

m3
S1

S2 S3

P(y =  |xj,m1,m2,m3,S1,S2,S3,p1,p2,p3)



After 1st iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)
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p(x|y=i) ~ N(mi, Si)

p(x) = S p(x|y=i) P(y=i)
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What you need to know…

• Hierarchical clustering algorithms
– Single-linkage
– Complete-linkage
– Centroid-linkage
– Average-linkage

• Partition based clustering algorithms
– K-means

• Coordinate descent
• Seeding
• Choosing K

– Mixture models
EM algorithm 

39



General EM algorithm

Marginal likelihood – x is observed, z is missing:

log

How to maximize marginal likelihood using EM?



Lower-bound on marginal likelihood

P(z) f(z)

Jensen’s inequality: log z P(z) f(z)  ≥  z P(z) log f(z)

log: concave function

log(ax+(1-a)y)   ≥   a log(x) + (1-a) log(y)

x yax+(1-a)y

log

Variational
approach



Lower-bound on marginal likelihood

Jensen’s inequality: log z P(z) f(z)  ≥  z P(z) log f(z)

≥

P(z) f(z)

log

=:



M-step: Fix Q, maximize F over 

EM as Coordinate Ascent

E-step: Fix , maximize F over Q

log

)Q,(FmaxargQ t

Q
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)Q,(Fmaxarg 1t1t +



+ =



M-step: Fix Q, maximize F over 

Convergence of EM

E-step: Fix , maximize F over Q

log

)Q,(FmaxargQ t

Q

1t =+

)Q,(Fmaxarg 1t1t +



+ =

M-step maximizes lower bound F on marginal likelihood => doesn’t 
decrease the marginal likelihood

E-step maximizes lower bound F on marginal likelihood => doesn’t 
decrease the marginal likelihood

Since marginal likelihood is bounded, convergence follows!



Convergence of EM

Marginal 
Likelihood function

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

F(θ, Qt+1)



EM & Local Maxima

Typical likelihood function

Different sequence of EM lower bound 
F-functions depending on initialization

Use multiple, randomized initializations in practice



M-step: Fix Q, maximize F over 

EM as Coordinate Ascent

E-step: Fix , maximize F over Q

log
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E step

E-step: Fix , maximize F over Q

1

KL divergence between two distributions

log

log

log



E step

E-step: Fix , maximize F over Q

KL>=0, above expression is maximized if KL divergence = 0 

KL(Q,P) = 0 iff Q = P

Therefore, 
E step: 

+ log

log

log



E step

Re-aligns F with marginal likelihood !!

log

log + log

Compute probability of missing data z given current choice of 

➔

E-step: Fix , maximize F over Q

log



M step

Fixed (Independent of )

M-step: Fix Q, maximize F over 

log

log

Expected log likelihood wrt Q
=

Log likelihood if z 
was known



M step

Fixed (Independent of )

M-step: Fix Q, maximize F over 

log

log =

Use expected counts instead of counts when computing MLE:

If learning requires Count(x,z), Use EQ(t+1)[Count(x,z)]

Expected log likelihood wrt Q(t+1)



M-step: Fix Q, maximize F over 

EM as Coordinate Ascent

E-step: Fix , maximize F over Q

log
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E.g., P y = i x j,mt( )
Compute probability of missing data given current choice of 

Compute estimate of  by maximizing marginal likelihood using Q(t+1)(z|xj)



Summary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds 
MLE of parameters when the original (hard) problem can be broken up 
into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data and current 

parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

1. E-step: 

2. M-step: 

• In the M-step we optimize a lower bound on the likelihood. In the E-step 
we close the gap, making bound=likelihood.

• EM performs coordinate ascent on F, can get stuck in local minima.

• BUT Extremely popular in practice.
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