Announcements

Assignments

= HWOI (online)
= Due Thu 4/16, 11:59 pm

TA Applications:
" Please apply to TA with us! Link for MLD applications will be in piazza.

Participation points

= Starting now, we’re capping the denominator (57 polls) in the
participation points calculation

Introduction to
Machine Learning

Clustering
GMM and EM

Instructor: Pat Virtue

Slide credits: Aarti Singh, Eric Xing, Carlos Guestrin

K-means Optimization

Question: Which of these partitions is “better”?

NN

A

Slide credit: CMU MLD Matt Gormley :

K-means Optimization

; M
T npu+:)»(Z'f) Q(N\ A Xmélp
P — 20 T W M
Y JPRR
C = arg man Z min] X "C)HZ
C = JEUNK
- . % “)?m 7 ”7*
= am MmN PN RSO
C) < F%C (= Zo(ff.,@ =2
A . . L
= argmin 2 [[X7 = C 0|
Cz &= ’
/)

Slide credit: CMU MLD Matt Gormley

K-means Optimization

Alternating minimization /’Q

» Z“'OJ%M"\ 2 I>(—C

L,I

lOB C = qrgmf\ 2 Il x" - C, ({1
= i _ afgrin |) x 2
]03 C) - SC\ Z y) ((”2

, [
CO Z('\ = foﬁ]:f\ IX”'Cklé (=2%|

(N y “.5 — Nj 2_ NX ¢, ”

Slide creZ CMU I\/ILD Matt Gormley

Piazza Poll 1

True/False] The alternating minimization algorithm will find the global
minimum of the k-means objective.

N
C,z = argmin ZHx(D — cZ(i)”z
C z =

&

(One) bad case for K-means

e Clusters may overlap
 Some clusters may be “wider” than others
* Clusters may not be linearly separable

(One) bad case for K-means

e Clusters may overlap
* Some clusters may be “wider” than others

 C(Clusters may not be linearly separable

Partitioning Algorithms

e K-means

— hard assignment: each object belongs to only one cluster

* Mixture modeling
— soft assignment: probability that an object belongs to a cluster

Generative approach

Gaussian Mixture Model
Mixture of K Gaussian distributions: (Multi-modal distribution)

p(x|y=i) ~ N(u, o°I)

p(x) =X p(x|y=i) P(y=i) < >®
v l

Mixture Mixture

component proportion @

(One) bad case for K-means

Clusters may overlap
Some clusters may be “wider” than others

General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x[y=i) ~ N(;, %)

p(x) =X p(x]y=i) Py=i) i,

v V

Mixture Mixture (

component proportion @

General GMWM

GMM — Gaussian Mixture Model (Multi-modal distribution)

e There are k components

e Component i has an associated
mean vector y;

e Each component generates data
from a Gaussian with mean g and
covariance matrix 2;

M

Each data point is generated according @
to the following recipe:

1) Pick a component at random:

Choose component i with
probability P(y=i)

2) Datapoint x ~ N(x, X))

(One) bad case for K-means

e Clusters may overlap
 Some clusters may be “wider” than others
* Clusters may not be linearly separable

General GMWM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x[y=i) ~ N(;, %)

Ho
Decision boundary when probabilities are equal: B
1
0g PY=11X)
P(y=11X%)
H3

_ log p(X|y= i_)P(y = i_)
p(X|y=)P(y=1))

— x@< +@Tx

“Quadratic Decision boundary” — second-order terms don’t cancel out

>Depend on 1, ty, ..y ty 27, 2, .., 24, P(y=1),..., P(Y=K)

Learning General GMM

k
1, ~ Do) = D plal) = DP(Y =)
1=1

Mixture Mixture
component proportion, p;

X1
Gaussian mixture model
)7y %

—

p(x|Y =) ~ N (u;, 3)

Parameters: {pi o g, Ei }fil

« How to estimate parameters? Max Likelihood
But don’t know labels Y

16

Learning General GMM

Maximize marginal likelihood:

argmax | [, P(x;) = argmax], Zliil P(y;=i,x))
K . .
= argmax| | 2ict P(y;=i)p(x;|y;=i)

P(y;=i) = P(y=i) Mixture componentiis chosen with prob P(y =)

argmaxHZ P(y= ')me)(p[;(xj_ﬂif Zi(Xj_ﬂi)}

j=1 i=1

How do we find the u;, 2; s and P(y=i)s which give max. marginal
likelihood?

*Set 0 logProb(...)=0 andsolve for u‘s. Non-linear not-analytically solvable
O Y,

* Use gradient descent: Doable, but often slow

MLE Optimization

MLE Optimization

GMM vs. k-means

Maximize marginal likelihood:

argmax | [, P(x;) = argmax], Zliil P(y;=i,x))
K . .
= argmax| | 2ict P(y;=i)p(x;|y;=i)

What happens if we assume Hard assignment?
P(y; =1i) = 1ifi = C(j)
= 0 otherwise

Same as
argmax I [, P(x) = argmax I T, p(x;|y;=C(j)) k-means!

TL
_ —1 2
= argmax j_];[1 EXD(EHIJ — HC(J‘)“)

T
—_ 1 R) 2 — '
=argmin > _ llzj — pe(pll©) = arg Tl(ﬂ F(p, C)

7=1

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels) first

* No need to choose step size as in Gradient methods.

* EMis an lterative algorithm with two linked steps:
E-step: fill-in hidden data (Y) using inference
M-step: apply standard MLE/MAP method to estimate parameters

{pil IJ'i; zi}ki=1

 We will see that this procedure monotonically improves the
likelihood (or leaves it unchanged). Thus it always converges
to a local optimum of the likelihood.

EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like p given our data’s class membership distributions (weights)

Ilterate.

EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

1 , In K-means "E-step”
P(y = i‘X,—, ul...uk)oc eXp(—Z—GZHXj _“iH)P(y =i) we do hard assignment

EM does soft assignment
M-step

Compute Max. like p given our data’s class membership distributions (weights)

ZP(y = i‘xj)xj
= = Exactly same as MLE with
Py =i weighted data
Sr(-ix)

H;

Ilterate.

EM for general GMMs

Iterate. On iteration t let our estimates be p is shorthand for

A= {0 w0, X0 S0 30 50 p 0 p estimate of Pfy=i) on
e =", 1, Hi ™) &1 & ks P17 P2 Pt t’th iteration

E-step
Compute “expected” classes of all datapoints for each class

Just evaluate a

P(y= I‘X ZT)OC p_(t)p(x_‘lu_(t) 2-(t)) Gaussian at x;
J? [1 G B Al

M-step
Compute MLEs given our data’s class membership distributions (weights)

) P(y = i‘xj) A)Xj Z,: P(y = i‘xj A)(Xj - ui(t”))(xj - “i(m))T

7 (t+1)

(t+1) _

n jzjlp(y:ixj’/lt) | Zj:P(y=i‘Xj17w)
ZP(y:i‘Xj,ﬁt)

(t+1) j

P =

m ——m= #data points

EM Convergence

EM for general GMMs: Example

P(y =@ | in “11 HZI H31211221231 p]_l p21 p3)

e

After 1 iteration

After 2" jteration

After 3" jteration

After 4t jiteration

After 5t jteration

After 6t" iteration

After 20" iteration

General GMM

GMM — Gaussian Mixture Model (Multi-modal distribution)

p(x) = IZ p(x[y=i) P(y=i)

\1: ‘1’ H
Mixture Mixture
component proportion (

p(x[y=i) ~ N(z, X))

What you need to know...

* Hierarchical clustering algorithms
— Single-linkage
— Complete-linkage
— Centroid-linkage
— Average-linkage

* Partition based clustering algorithms

— K-means
* Coordinate descent
e Seeding
e Choosing K

— Mixture models
EM algorithm

39

General EM algorithm

Marginal likelihood — x is observed, z is missing:

log P(D;0) = log [] P(x;]6) D = {Xj}}n:l
j=1
m 6 - model parameter(s)
= > logP(x;|0)
j=1
= Z |OQZP(X],Z | 0)
J=1 Z

How to maximize marginal likelihood using EM?

Lower-bound on marginal likelihood

Ms

log P(D;0) = 0g Z P(x;,2 | 6)

=1
o ey Pzx; 1 0) Variational
= 3; 09 Z‘Q(| 33|Q(z|xj)' approach

| Y
P(2) f(z)

Jensen’s inequality: log >, P(z) f(z) > 2., P(z) log f(z)

log: concave function

/ log(ax+(1-a)y) = alog(x) + (1-a) log(y)

/ X ax+(l-a)y vy

Lower-bound on marginal likelihood

Ms

log P(D;0) = gZP(x z|6)

]:

L 1y (%% 0)
= j;l QZ‘Q(| jl)lQ(Z|Xj)'

| Y
P(2) f(z)

Jensen’s inequality: log >, P(z) f(z) > 2., P(z) log f(z)

P(z,x; | 0)
Q(z | x;)

2 > > Q(z]x;)log

=1

= F(0,Q)

EM as Coordinate Ascent
log P(D;0) > F(0,Q)

E-step: Fix 0, maximize F over Q

Q"™ =arg mgx F(6',Q)

M-step: Fix Q, maximize F over 0

0" =arg max F(6, Q")

Convergence of EM

log P(D;0) > F(6,Q)

E-step: Fix 0, maximize F over Q
Q"™ =arg max F(6',Q)

E-step maximizes lower bound F on marginal likelihood => doesn't
decrease the marginal likelihood

M-step: Fix Q, maximize F over 0

0" =arg max F(6, Q")

M-step maximizes lower bound F on marginal likelihood => doesn't
decrease the marginal likelihood

Since marginal likelihood is bounded, convergence follows!

Convergence of EM

Marginal ' »

Likelihood function \
P(D;0) , F(6, Qt*?)

Qt—l—l ot

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

EM & Local Maxima

Typical likelihood function ‘\

Different sequence of EM lower bound
F-functions depending on initialization

Use multiple, randomized initializations in practice

EM as Coordinate Ascent
log P(D;0) > F(0,Q)

E-step: Fix 0, maximize F over Q

Q"™ =arg mgx F(6',Q)

M-step: Fix Q, maximize F over 0

0" =arg max F(6, Q")

E step
log P(D;6) > F(6,Q)

E-step: Fix 0, maximize F over Q

P(z,x; | 0(t))

log P(D;0'") > F(o®,Q) = i > " Q(z | x;) log

Q(z | x;)
S P(z | x;,0) P(x;60)
) |
j;ng(Z | x;) log Q(z | %)
m P g(t) m
— 3 QM |0t o D z;@m’ o5 P(x,[00)
j=1 2 X
| '
_KL(Q(Z|Xj)aP(Z\X;j,@(t))) log P(D; e(t))

KL divergence between two distributions

E step
log P(D;6) > F(6,Q)

E-step: Fix 0, maximize F over Q

P(z,x; | 0M)

log P D-e(t) > 5 9(75)7 — S Y
(D07 = (6T, Q) j;lzZ:Q(zlxj) o8 Q(z | x;)

- Z:1 —K L(Q(zlx;), P(z]x;,0")) +log P(D: o)
]:

KL>=0, above expression is maximized if KL divergence =0
KL(Q,P)=0iffQ=P

Therefore,
Estep: QUL (z| X;) = P(z| x;,0())

E step
log P(D;6) > F(6,Q)

E-step: Fix 0, maximize F over Q

(t)

g P(D:6') > F(0D.Q) = 3. ~KL(Qalx;). P(alx;.0")) +log P(D:6")

j=1
> QU |x)) = P(z]x;,6")
Compute probability of missing data z given current choice of 6

Re-aligns F with marginal likelihood !

Fo® QU+Dy — log P(D;6%)

M step
log P(D;6) > F(6,Q)

M-step: Fix Q, maximize F over 0

log P(D;0) > F(0 Q(t+1) ZZQ(t+1) z | x;)log

=1 =z

P(z,x; | 0)

QU (z | x;)

= 3370z | x,)log Plz,x, | 6) +ZH QU (z | x,))

=1 =z

I Fuxed (Independen‘l' of 0)

—
2| X loa P, eJQ““m

Z

\ J

|
Expected log likelihood wrt Q

Log likelihood if z
was known

M step
log P(D;6) > F(6,Q)

M-step: Fix Q, maximize F over 0

log P(D;0) > F(0, QD)= 3 zl log P(z,x; | 0)QUTY)(z | x;)
+Y HQ" M (z | x;))

j=1 | J
Fixed (Independ'en‘r of 0)

00+ —argmax - 3~ log P(z,x; | 0)QUT(z | x;)
L2 g=1
\ J

|
Expected log likelihood wrt Q1)

Use expected counts instead of counts when computing MLE:

If learning requires Count(x,z), Use Eg,,)[Count(x,z)]

EM as Coordinate Ascent
log P(D;0) > F(0,Q)

E-step: Fix 0, maximize F over Q
Q"' =arg max F(0',Q)
QU |x;) = Plz|x;,60) Eg.P(y=ilv.m)
Compute probability of missing data given current choice of 6
M-step: Fix Q, maximize F over 0

0" =arg max F(6, Q")

o(t+1) arg max S Y log P(z,x; |)QUTV (2 | x;)
7z =1

Compute estimate of 6 by maximizing marginal likelihood using Q"!(z|x;)

Summary: EM Algorithm

A way of maximizing likelihood function for hidden variable models. Finds
MLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

1. E-step: Q" =arg max F(6',Q)
2. M-step: ot = arg mglx F(6, Qt+1)

In the M-step we optimize a lower bound on the likelihood. In the E-step
we close the gap, making bound=likelihood.

EM performs coordinate ascent on F, can get stuck in local minima.

BUT Extremely popular in practice.

