Announcements

Assignments

- HW9 (online)
 - Due Thu 4/16, 11:59 pm

Dimensionality Reduction

MNIST digit autoencoder

Piazza Poll 1

Are autoencoders an example of unsupervised learning?

A.

B.

C.

Recommender Systems

Matrix Factorization

Piazza Poll 2

Are recommender systems an example of unsupervised learning?

A.

В.

C

Plan

Last week

- Dimensionality reduction
 - PCA
 - Autoencoders
- Recommender systems

This week

Clustering

Next week

Learning Theory

Introduction to Machine Learning

Clustering

Instructor: Pat Virtue

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

Useful for:

- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).

Slide credit: CMU MLD Nina Balcan

Applications (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.

• Cluster protein sequences by function or genes according to expression profile.

• Cluster users of social networks by interest (community detection).

Facebook network

Slide credit: CMU MLD Nina Balcan

Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

And many many more applications....

Slide credit: CMU MLD Nina Balcan

Clustering Applications

Jigsaw puzzles!

Clustering Algorithms

- Hierarchical algorithms
 - Bottom-up: Agglomerative Clustering
 - Top-down: Divisive
- Partition algorithms
 - K means clustering
 - Mixture-Model based clustering

Hierarchical Clustering

Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy - less accurate but simple to implement

Starts with all the data in a single cluster, and repeat:

Split each cluster into two using a partition algorithm
 Until each object is a separate cluster.

More accurate but complex to implement

Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
 - Nearest Neighbor: similarity between their closest members.

- Complete-Linkage
 - Furthest Neighbor: similarity between their furthest members.

- Centroid
 - Similarity between the centers of gravity

- Average-Linkage
 - Average similarity of all cross-cluster pairs.

Dendrograms

Another Example

Single vs. Complete Linkage

Shape of clusters

Single-linkage

allows anisotropic and

non-convex shapes

Complete-linkage

assumes isotopic, convex

shapes

Partitioning Algorithms

Partitioning method: Construct a partition of N objects into a set of K clusters

• Given: a set of objects and the number *K*

- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

K-Means

Algorithm

Input – Data, $x^{(i)}$, Desired number of clusters, KInitialize – the K cluster centers (randomly if necessary)
Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the K cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

Termination -

If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

Optimization recipe

Question: Which of these partitions is "better"?

Computational complexity

$$C, z = \underset{C, z}{\operatorname{argmin}} \sum_{i=1}^{N} ||x^{(i)} - c_{z^{(i)}}||_{2}^{2}$$

Alternating minimization

Alternating minimization

Alternating minimization

Where have we seen this before?

Recommender Systems

$$\min_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}) \qquad J(\mathbf{U},\mathbf{V}) = \sum_{i,j\in\mathcal{S}} \left(R_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

$$\lim_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}) \qquad \qquad \mathcal{I} \leftarrow \mathcal{U}^{\tau} - \mathcal{C} \nabla_{\mathbf{U}} \mathcal{I}$$

$$\lim_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}) \qquad \qquad \mathcal{I} \leftarrow \mathcal{U}^{\tau} - \mathcal{C} \nabla_{\mathbf{U}} \mathcal{I}$$

$$\lim_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}) \qquad \qquad \mathcal{I} \leftarrow \mathcal{V} - \mathcal{C} \nabla_{\mathbf{V}} \mathcal{I}$$

$$\lim_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}) \qquad \qquad \mathcal{I} \leftarrow \mathcal{V} - \mathcal{C} \nabla_{\mathbf{V}} \mathcal{I}$$

Alternating minimization

Two different approaches

$$\min_{\alpha,\beta} J(\alpha,\beta)$$

Alternating minimization

Two different approaches

$$\min_{\theta_1,\theta_2} J(\theta_1,\theta_2)$$

Computational Complexity

- At each iteration,
 - Computing cluster centers: Each object gets added once to some cluster: O(N)
 - Computing distance between each of the N objects and the K cluster centers is O(KN)

• Assume these two steps are each done once for l iterations: O(lKN)

• Results are quite sensitive to seed selection.

• Results are quite sensitive to seed selection.

• Results are quite sensitive to seed selection.

K-means always converges, but it may converge at a local optimum that is different from the global optimum, and in fact could be arbitrarily worse in terms of its objective.

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - k-means ++ algorithm of Arthur and Vassilvitskii
 key idea: choose centers that are far apart
 (probability of picking a point as cluster center

 distance from nearest center picked so far)

Other Issues

- Shape of clusters
 - Assumes isotropic, equal variance, convex clusters
- Sensitive to Outliers
 - use K-medoids

K-medoids

Use actual training point as cluster center (medoid) rather than mean

- More robust to outliers pulling the mean away
- Better interpretability, can "visualize" the medoid
- More work to compute medoid than mean

Other Issues

- Number of clusters K
 - Objective function

$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

Look for "Knee" in objective function

— Can you pick K by minimizing the objective over K?

K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

• K-means algorithm: (coordinate descent on F)

(1) Fix μ , optimize C Expected cluster assignment

(2) Fix C, optimize μ Maximum likelihood for center

Next lecture, we will see a generalization of this approach:

EM algorithm