Announcements

Assignments

= HWOI (online)
= Due Thu 4/16, 11:59 pm



Dimensionality Reduction

MNIST digit autoencoder
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Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.



Piazza Poll 1

Are autoencoders an example of unsupervised learning?

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.



Recommender Systems

Matrix Factorization
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Figures from Koren et al. (2009)



Piazza Poll 2

Are recommender systems an example of unsupervised learning?
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Plan

Last week

= Dimensionality reduction
= PCA
= Autoencoders

= Recommender systems

This week
= (Clustering

Next week
" Learning Theory



Introduction to
Machine Learning

Clustering

Instructor: Pat Virtue



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar datapoints.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.
e Understanding hidden structure in data.
e Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space
(e.g., for visualization purposes).



Applications (Clustering comes up everywhere...)

Cluster news articles or web pages or search results by topic.
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e Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide credit: CMU MLD Nina Balcan
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Applications (Clustering comes up everywhere...)

Cluster customers according to purchase history.

=

Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

e And many many more applications....



Clustering Applications

Jigsaw puzzles!




Clustering Algorithms

* Hierarchical algorithms

* Bottom-up: Agglomerative Clustering
e Top-down: Divisive

e Partition algorithms

* K means clustering

* Mixture-Model based clustering
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Hierarchical Clustering

* Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:
— Joins the most similar pair of clusters,

— Update the similarity of the new cluster to others
until there is only one cluster.

Greedy - less accurate but simple to implement

* Top-Down divisive
Starts with all the data in a single cluster, and repeat:
— Split each cluster into two using a partition algorithm

Until each object is a separate cluster.

More accurate but complex to implement
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Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence
updated) between two clusters

 Single-Linkage ° l; “:
— Nearest Neighbor: similarity between ':‘.'@)Q:

their closest members.

Complete-Linkage
— Furthest Neighbor: similarity between
their furthest members.

Centroid
— Similarity between the centers of gravity

Average-Linkage
— Average similarity of all cross-cluster pairs.
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Dendrograms
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Another Example
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Single vs. Complete Linkage

Single-linkage

Complete-linkage

Shape of clusters

allows anisotropic and
non-convex shapes

assumes isotopic, convex
shapes
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Partitioning Algorithms

Partitioning method: Construct a partition of N objects into a set of K
clusters

Given: a set of objects and the number K

Find: a partition of K clusters that optimizes the chosen partitioning
criterion

— Globally optimal: exhaustively enumerate all partitions

— Effective heuristic method: K-means algorithm
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K-Means
Algorithm

Input — Data, x) Desired number of clusters, K

Initialize — the K cluster centers (randomly if necessary)

lterate —

1. Assign points to the nearest cluster centers

2. Re-estimate the K cluster centers (aka the centroid or mean), by
assuming the memberships found above are correct.

Termination —

If none of the objects changed membership in the last iteration, exit.
Otherwise go to 1.



K-means Clustering: Step 1
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K-means Clustering: Step 2
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K-means Clustering: Step 3

5 \
@ ® o
4 © o °

)
®

2 ® o o

¢ @

'Y ke

1 ok, ®

@ ¢ o

TS \ ® R




K-means Clustering: Step 4
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K-means Clustering: Step 5
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K-means Optimization

Optimization recipe



K-means Optimization

Question: Which of these partitions is “better”?

Slide credit: CMU MLD Matt Gormley 29



K-means Optimization



K-means Optimization

Computational complexity

N
C,z = argmin EHx(D — CZ(i)Hz
¢z 3



K-means Optimization

Alternating minimization



K-means Optimization

Alternating minimization



Alternating minimization

Where have we seen this before?
Recommender Systems
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Alternating minimization

Two different approaches
m%n J(a, B)
a,



Alternating minimization

Two different approaches

nip J(61,67)



Computational Complexity

e At each iteration,

— Computing cluster centers: Each object gets added once to some
cluster: O(N)

— Computing distance between each of the N objects and the K cluster
centers is O(KN)

* Assume these two steps are each done once for | iterations: O(IKN)
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Issues: Seed Choice

Results are quite sensitive to seed selection.
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Issues: Seed Choice

Results are quite sensitive to seed selection.

-
Q. ~.
- - ag
[ ] a = .
L] - -
.y -
- . -
- . .
&
.. ]
- I.‘
" o *
o " . ®

39



Issues: Seed Choice

Results are quite sensitive to seed selection.
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Issues: Seed Choice

K-means always converges, but it may converge at a local optimum
that is different from the global optimum, and in fact could be

arbitrarily worse in terms of its objective.

Slide credit: CMU MLD Nina Balcan



Issues: Seed Choice

* Results can vary based on random seed selection.

 Some seeds can result in poor convergence rate, or
convergence to sub-optimal clustering.

— Try out multiple starting points (very important!!!)
— k-means ++ algorithm of Arthur and Vassilvitskii
key idea: choose centers that are far apart

(probability of picking a point as cluster center X
distance from nearest center picked so far)
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Other Issues

e Shape of clusters
— Assumes isotropic, equal variance, convex clusters

 Sensitive to Outliers
— use K-medoids

3 i




K-medoids

Use actual training point as cluster center (medoid) rather than mean
" More robust to outliers pulling the mean away

= Better interpretability, can “visualize” the medoid

" More work to compute medoid than mean



Other Issues

* Number of clusters K
— Objective function

— Look for “Knee”
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— Can you pick K by minimizing the objective over K?
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K-means algorithm

@  Optimize potential function:
k

minmin F(u,C) = minmin E | E H,ui—:l:jHQ
TS S O S N
i=1j:C(j)=1

@ K-means algorithm: (coordinate descent on F)

(1) Fix p, optimize C Expected cluster assignment

(2) Fix C, optimize p Maximum likelihood for center

Next lecture, we will see a generalization of this approach:

EM algorithm



