Announcements

Assignments

- HW8 (written + programming)
 - Due Thu 4/9, 11:59 pm

Introduction to Machine Learning

Recommender Systems

Instructor: Pat Virtue

Background: Low Dimensional Embeddings

Background: Low Dimensional Embeddings

Why might low dimensional embeddings be useful?

Example: MNIST digit classification with nearest neighbor $\mathcal{N}_{\mathcal{N}}$

$$||\vec{x} - \vec{x}^{(i)}||_{z}$$

$$\hat{y} = y^{(i)}$$

Background: Low Dimensional Embeddings

Why might low dimensional embeddings be useful?

Example: MNIST digit classification with nearest neighbor

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.

Background: Measure of Similarity

We've been using Euclidean distance

$$d(x,z) = ||x-z||_2$$

Cosine similarity

- To vectors are similar if the angle between them is small
- $d(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} = \mathbf{x} \cdot \mathbf{z}$ $= \|\mathbf{x}\| \|\mathbf{z}\| \cos \theta$

Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.

A Common Challenge:

- Assume you're a company selling **items** of some sort: movies, songs, products, etc.
- Company collects millions of ratings from users of their items
- To maximize profit / user happiness, you want to recommend items that users are likely to want

NETFLIX

Setup:

 Items: movies, songs, products, etc. (often many thousands)

Users:
 watchers, listeners, purchasers, etc.
 (often many millions)

Feedback:
 5-star ratings, not-clicking 'next', purchases, etc.

Key Assumptions:

- Can represent ratings numerically as a user/item matrix
- Users only rate a small number of items (the matrix is sparse)

	Doctor Strange	Star Trek: Beyond	Zootopia	
Alita	1	7.	5	
BB-8	3	4	of	
C-3P0	3	5	2	

Different Approaches

Item-based (Content filtering)

Features about each item

- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

User-based

- Features about each user
- Given a user, other "close" users have similar preferences
- Market segmentation

Learning user-item relationship

- Can be done without features on either user or item
- Collaborative filtering techniques

COLLABORATIVE FILTERING

Collaborative Filtering

- Everyday Examples of Collaborative Filtering...
 - Bestseller lists
 - Top 40 music lists
 - The "recent returns" shelf at the library
 - Unmarked but well-used paths thru the woods
 - The printer room at work
 - "Read any good books lately?"
 - **–** ...
- Common insight: personal tastes are correlated
 - If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y
 - especially (perhaps) if BB-8 knows Alita

Two Types of Collaborative Filtering

1. Neighborhood Methods

2. Latent Factor Methods

Two Types of Collaborative Filtering

In the figure, assume that a green line indicates the movie was **watched**

Algorithm:

- Find neighbors based on similarity of movie preferences
- **2. Recommend** movies that those neighbors watched

Two Types of Collaborative Filtering

2. Latent Factor Methods

- Assume that both movies and users live in some low-dimensional space describing their properties
- Recommend a movie based on its proximity to the user in the latent space
- Example Algorithm:
 Matrix Factorization

Recommender System: Matrix Factorization

Learning to map items and users to the same lower dimensional space

Recommender System: Matrix Factorization

Recommender System: Matrix Factorization

Sparse labels 😊

Example: MF for Netflix Problem

Regression vs. Collaborative Filtering

Matrix Factorization: SVD

We can use SVD, but as you'll see it has issues

svo(R)
$$\rightarrow$$
 U, S, V
 $\widetilde{R} = \widehat{U}_k \widetilde{V}_k^T$
 $\widetilde{R} = \widehat{U}_k \widetilde{V}_k^T$
 $M = \widehat{V}_k \widetilde{V}_k^T$

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1	?	5
BB-8	3	4	7.
C-3Po	3	5	2

Alita	-1	0	l
BB-8	0	0,5	0
C-3Po	0		-0,5

Matrix Factorization: SGD

Objective function using only the labels we have

min
$$||R-UV^T||_F^2$$

 $|U,V|$
 $||X|| = ||X|| = ||X||$

Piazza Poll 1

Is the following optimization a quadratic optimization?

$$\min_{\boldsymbol{U},\boldsymbol{V}} \sum_{i,j \in \mathcal{S}} \left(R_{ij} - \underline{\boldsymbol{u}}^{(i)^T} \underline{\boldsymbol{v}}^{(j)} \right)^2$$

A. Yes
B. Calamity
C.) No

Matrix Factorization: SGD

Method of alternating minimization

$$\min_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}), \quad J(\mathbf{U},\mathbf{V}) = \sum_{i,j \in \mathcal{S}} \left(R_{ij} - \mathbf{u}^{(i)^T} \mathbf{v}^{(j)} \right)^2$$

$$\lim_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}), \quad \mathcal{J}(\mathbf{U},\mathbf{V}) \qquad \mathcal{J}(\mathbf{U},\mathbf{V}) \qquad \mathcal{J}(\mathbf{U},\mathbf{V})$$

$$\lim_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}), \quad \mathcal{J}(\mathbf{U},\mathbf{V}) \qquad \mathcal{J}(\mathbf{U}$$

Matrix Factorization: §GD

Method of alternating minimization

$$\min_{\boldsymbol{U},\boldsymbol{V}} J(\boldsymbol{U},\boldsymbol{V}) \quad J(\boldsymbol{U},\boldsymbol{V}) = \sum_{i,j \in \mathcal{S}} \left(R_{ij} - \boldsymbol{u}^{(i)^T} \boldsymbol{v}^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

$$\sum_{i,j} \left(U, V \right) = \left(R_{i,j} - u^{(i)^T} V^{(j)} \right)^2$$

Matrix Factorization: SGD

Add regularization to avoid overfitting

$$\min_{\boldsymbol{U},\boldsymbol{V}} J(\boldsymbol{U},\boldsymbol{V}) \qquad J(\boldsymbol{U},\boldsymbol{V}) = \sum_{i,j\in\mathcal{S}} \left(R_{ij} - \boldsymbol{u}^{(i)^T} \boldsymbol{v}^{(j)} \right)^2 + \lambda \|\boldsymbol{v}^i\|_2^7 + \lambda \|\boldsymbol{u}^i\|_2^7$$

Summary

Recommender systems solve many real-world (*large-scale) problems

Collaborative filtering by Matrix Factorization (MF) is an **efficient** and **effective** approach

(SVD for MF is a bit broken)

MF is just another example of a **common recipe**:

- define a model
- 2. define an objective function
- 3. optimize with SGD

Optimization

- Need alternating minimization
- Add regularization to avoid overfitting