Announcements

Assignments

- HW8 (written + programming)
 - Due Thu 4/9, 11:59 pm

Introduction to Machine Learning

Recommender Systems

Instructor: Pat Virtue

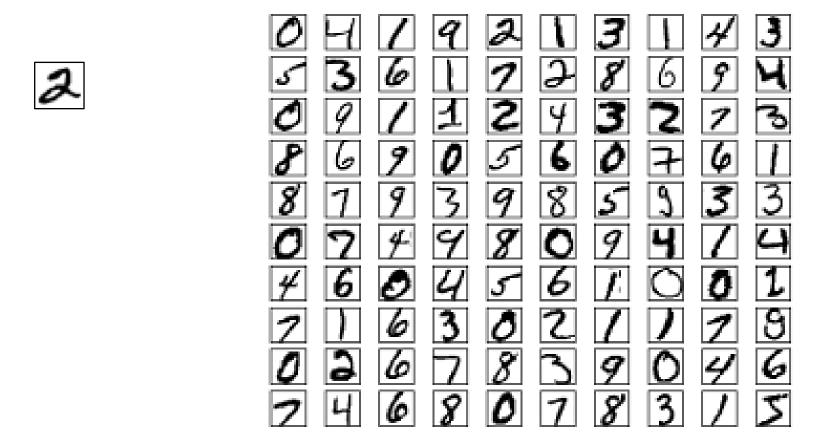
Background: Low Dimensional Embeddings

PCA: What did we do?

Background: Low Dimensional Embeddings

Why might low dimensional embeddings be useful?

Example: MNIST digit classification with nearest neighbor



Background: Low Dimensional Embeddings

Why might low dimensional embeddings be useful?

Example: MNIST digit classification with nearest neighbor

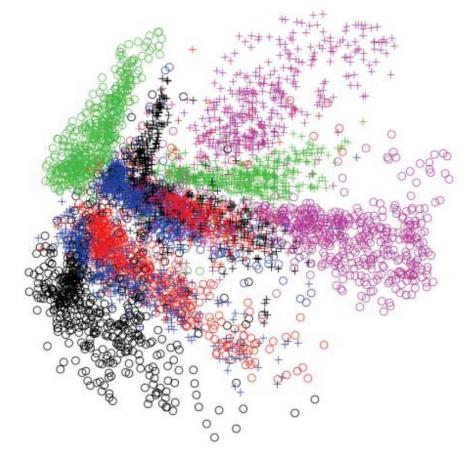


Image: Hinton & Salakhutdinov. Science 313.5786 (2006): 504-507.

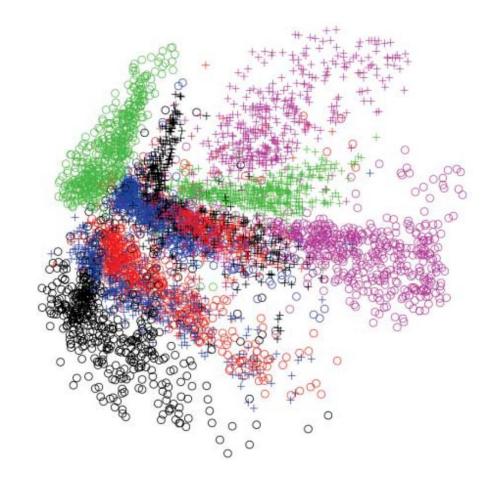
Background: Measure of Similarity

We've been using Euclidean distance

 $d(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|_2$

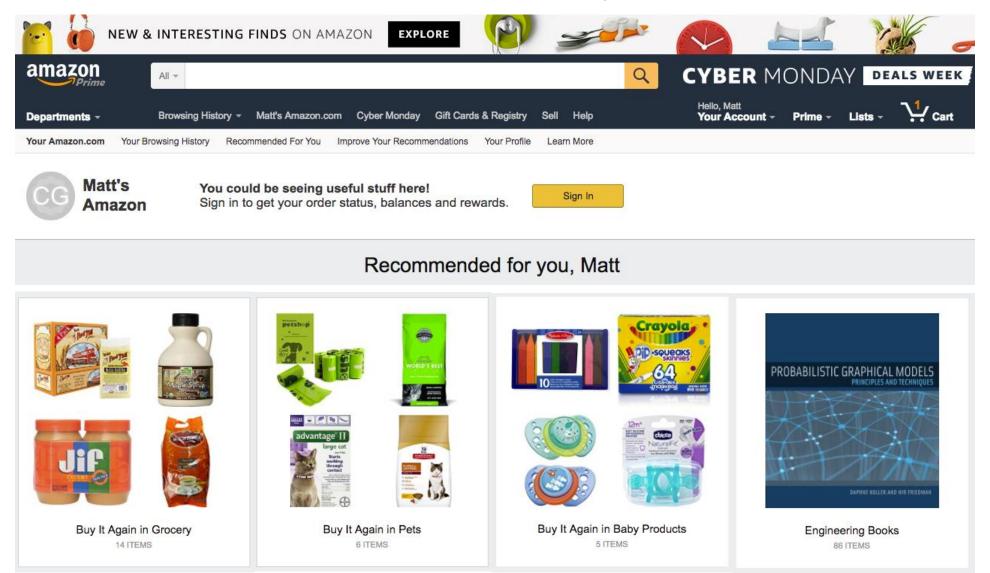
Cosine similarity

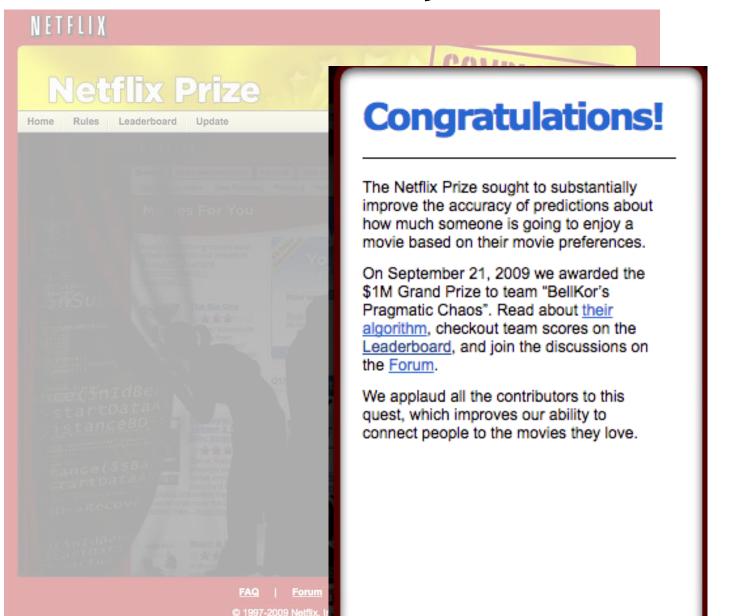
- To vectors are similar if the angle between them is small
- $d(x,z) = x^T z$

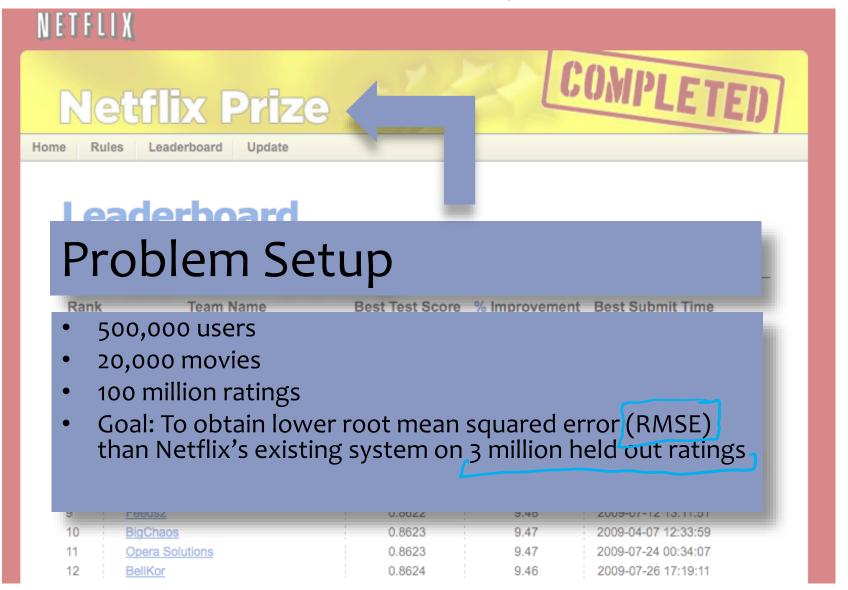


A Common Challenge:

- Assume you're a company selling **items** of some sort: movies, songs, products, etc.
- Company collects millions of ratings from users of their items
- To maximize profit / user happiness, you want to recommend items that users are likely to want







Setup:

– Items:

movies, songs, products, etc. (often many thousands)

– Users:

watchers, listeners, purchasers, etc. (often many millions)

Feedback:
 5-star ratings, not-clicking 'next', purchases, etc.

Key Assumptions:

- Can represent ratings numerically as a user/item matrix
- Users only rate a small number of items (the matrix is sparse)

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3Po	3	5	2

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

Different Approaches

Item-based (Content filtering)

- Features about each item
- Given an item, other "close" items have similar values
- e.g. Pandora.com, music genome project

User-based

- Features about each user
- Given a user, other "close" users have similar preferences
- Market segmentation

Learning user-item relationship

- Can be done without features on either user or item
- Collaborative filtering techniques

COLLABORATIVE FILTERING

Collaborative Filtering

Everyday Examples of Collaborative Filtering...

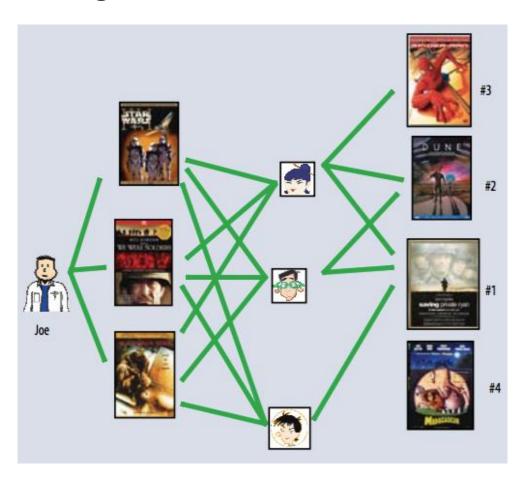
- Bestseller lists
- Top 40 music lists
- The "recent returns" shelf at the library
- Unmarked but well-used paths thru the woods
- The printer room at work
- "Read any good books lately?"

— ...

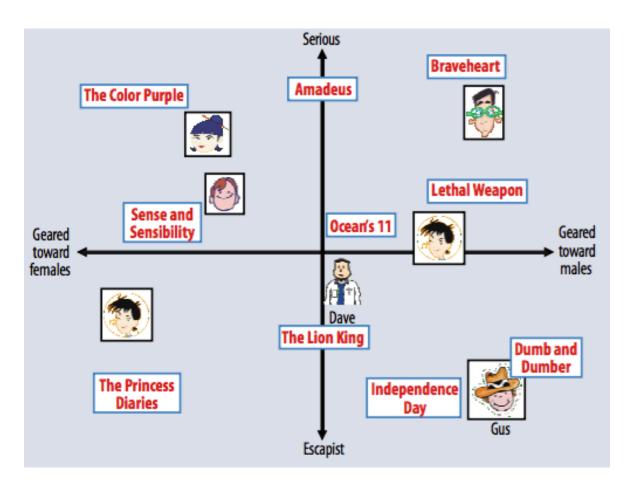
- Common insight: personal tastes are correlated
 - If Alita and BB-8 both like X and Alita likes Y then BB-8 is more likely to like Y
 - especially (perhaps) if BB-8 knows Alita

Two Types of Collaborative Filtering

1. Neighborhood Methods

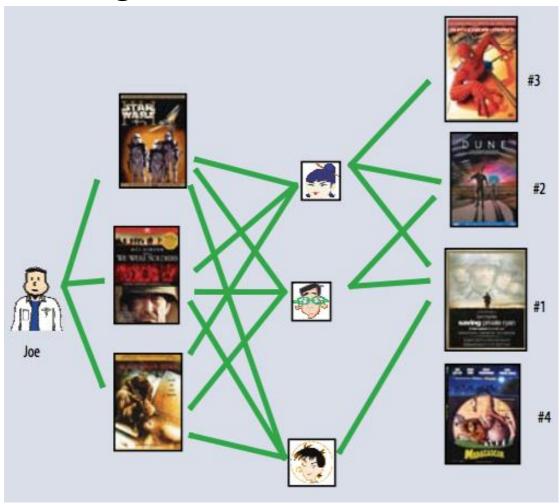


2. Latent Factor Methods



Two Types of Collaborative Filtering

1. Neighborhood Methods



In the figure, assume that a green line indicates the movie was **watched**

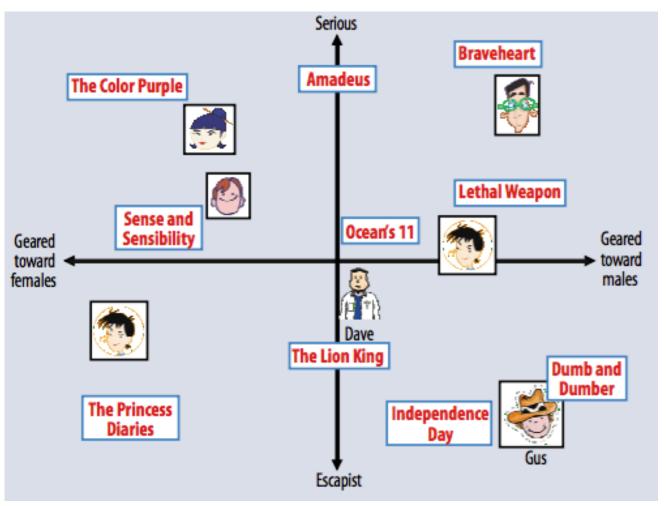
Algorithm:

- Find neighbors based on similarity of movie preferences
- 2. Recommend movies that those neighbors watched

Two Types of Collaborative Filtering

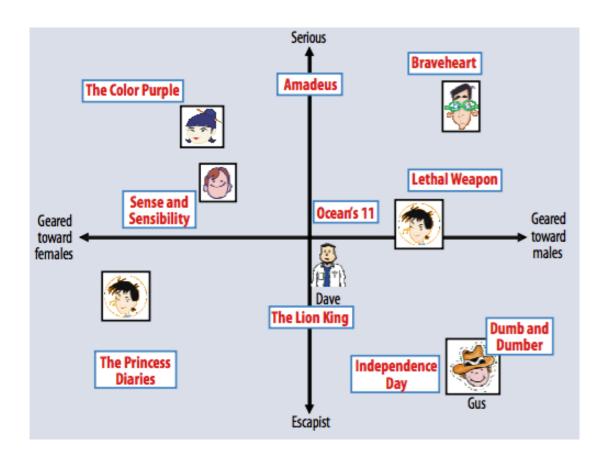
2. Latent Factor Methods

- Assume that both movies and users live in some low-dimensional space describing their properties
- Recommend a movie based on its proximity to the user in the latent space
- Example Algorithm:
 Matrix Factorization



Recommender System: Matrix Factorization

Learning to map items and users to the same lower dimensional space



Recommender System: Matrix Factorization

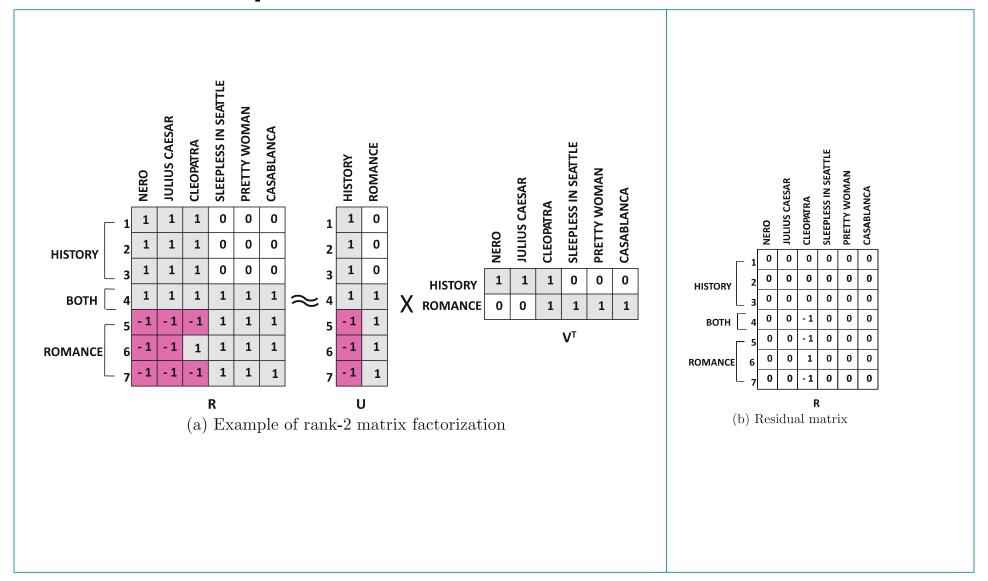
Optimization

Recommender System: Matrix Factorization

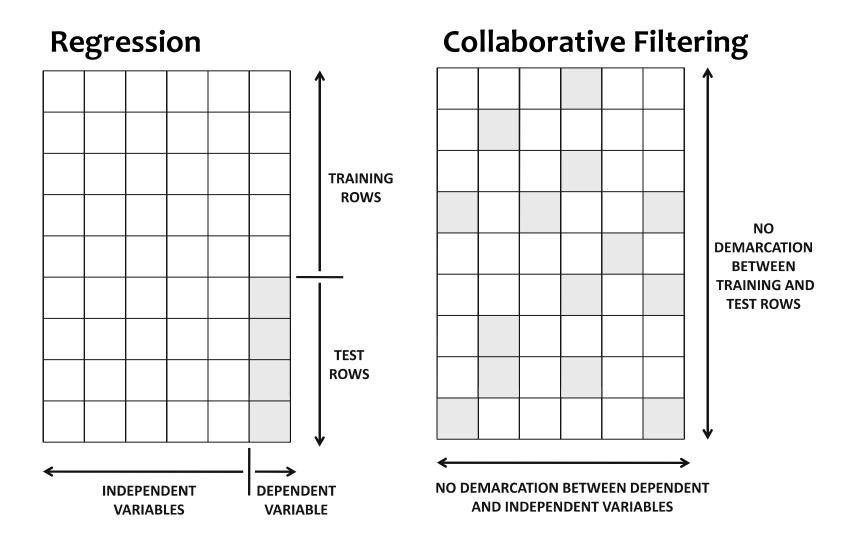
Sparse labels 🕾

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3P0	3	5	2

Example: MF for Netflix Problem



Regression vs. Collaborative Filtering



We can use SVD, but as you'll see it has issues

	Doctor Strange	Star Trek: Beyond	Zootopia
Alita	1		5
BB-8	3	4	
C-3Po	3	5	2

Alita		
BB-8		
C-3Po		

Objective function using only the labels we have

Piazza Poll 1

Is the following optimization a quadratic optimization?

$$\min_{\boldsymbol{U},\boldsymbol{V}} \sum_{i,j \in \mathcal{S}} \left(R_{ij} - \boldsymbol{u}^{(i)^T} \boldsymbol{v}^{(j)} \right)^2$$

A.

B.

C.

Method of alternating minimization

$$\min_{\boldsymbol{U},\boldsymbol{V}} J(\boldsymbol{U},\boldsymbol{V}) \qquad J(\boldsymbol{U},\boldsymbol{V}) = \sum_{i,j \in \mathcal{S}} \left(R_{ij} - \boldsymbol{u}^{(i)^T} \boldsymbol{v}^{(j)} \right)^2$$

Method of alternating minimization

$$\min_{\boldsymbol{U},\boldsymbol{V}} J(\boldsymbol{U},\boldsymbol{V}) \qquad J(\boldsymbol{U},\boldsymbol{V}) = \sum_{i,j \in \mathcal{S}} \left(R_{ij} - \boldsymbol{u}^{(i)^T} \boldsymbol{v}^{(j)} \right)^2$$

Add regularization to avoid overfitting

$$\min_{\boldsymbol{U},\boldsymbol{V}} J(\boldsymbol{U},\boldsymbol{V}) \qquad J(\boldsymbol{U},\boldsymbol{V}) = \sum_{i,j\in\mathcal{S}} \left(R_{ij} - \boldsymbol{u}^{(i)^T} \boldsymbol{v}^{(j)}\right)^2$$

Summary

Recommender systems solve many real-world (*large-scale) problems

Collaborative filtering by Matrix Factorization (MF) is an **efficient** and **effective** approach

(SVD for MF is a bit broken)

MF is just another example of a **common recipe**:

- define a model
- 2. define an objective function
- 3. optimize with SGD

Optimization

- Need alternating minimization
- Add regularization to avoid overfitting