

Introduction to Machine Learning

Introduction to ML Concepts, Regression, and Classification

Instructor: Pat Virtue

Course Staff

Teaching Assistants

Alex Singh

Annie Hu

George Brown

Haoran Fei

Michell Ma

Nidhi Jain

Vicky Zeng

Education Associate

Daniel Bird

Instructor

Pat Virtue

Course Information

Website: https://www.cs.cmu.edu/~10315

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication: piazza.com

E-mail: dpbird@andrew.cmu.edu

pvirtue@andrew.cmu.edu

Today

What is AI/ML?

A brief history of AI/ML

Some logistics

Introduction to important ML concepts that we'll use throughout the semester

Images: ai.berkeley.edu

Al Definition by John McCarthy

What is artificial intelligence

 It is the science and engineering of making intelligent machines, especially intelligent computer programs

What is intelligence

 Intelligence is the computational part of the ability to achieve goals in the world

AI Stack for CMU AI

"Al must understand the human needs and it must make smart design decisions based on that understanding"

https://ai.cs.cmu.edu/about

AI Stack for CMU AI

"Machine learning focuses on creating programs that learn from experience."

"It advances computing through exposure to new scenarios, testing and adaptation, while using pattern- and trend-detection to help the computer make better decisions in similar, subsequent situations."

https://ai.cs.cmu.edu/about

Artificial Intelligence vs Machine Learning?

A Brief History of Al

Images: ai.berkeley.edu

A Brief History of Al

https://books.google.com/ngrams

What went wrong?

Dog

- Barks
- Has Fur
- Has four legs

Buster

Knowledge-based Systems

Write programs that simulate how people do it.

Problems:

- Will never get better than a person
- Requires deep introspection
- Sometimes requires experts ("expert systems", "knowledge elicitation")
- Often, we don't know how we do things (e.g. ride bicycle)
 - Difference between knowing and knowing-how-we-know
- Sometimes we think we know, but we're wrong

A Brief History of Al

https://books.google.com/ngrams

Statistical Methods

Write programs that learn the task from examples

- + You don't need to know how to do it yourself
- + Performance (should) improve with more examples <----

But:

- Need lots of examples!
- When it finally works, you may not understand how

A Brief History of Al

A Brief History of Al

1940-1950: Early days

■ 1943: McCulloch & Pitts: Boolean circuit model of brain

1950: Turing's "Computing Machinery and Intelligence"

1950—70: Excitement: Look, Ma, no hands!

- 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted

1970—90: Knowledge-based approaches

- 1969—79: Early development of knowledge-based systems
- 1980—88: Expert systems industry booms
- 1988—93: Expert systems industry busts: "Al Winter"

1990—: Statistical approaches

- Resurgence of probability, focus on uncertainty
- General increase in technical depth
- Agents and learning systems... "AI Spring"?

2012—: Deep learning

Images: ai.berkeley.edu

■ 2012: ImageNet & AlexNet

Machine Learning and Statistics

Statistics is also about learning from data

Statistics has been around from much longer!

What's the difference?

Until the mid 1990s:

Statistics:

- A branch of mathematics
- Emphasized rigor, correctness, provable properties ("is it correct?")
- Was not very concerned with scaling
 - Not much awareness of computational complexity

Machine Learning:

- A branch of Computer Science / Al
- Focus on heuristics, making things work in practice ("does it work?")
- Not much awareness of statistical theory

Machine Learning and Statistics

From the mid 1990s:

The two fields have effectively merged

Carnegie Mellon has led the way!

ML is now often called "Statistical Machine Learning"

There is very little non-statistical ML today

The Machine Learning Framework

Formalize the task as a mapping from input to output

Task examples will usually be pairs: (input, correct_output)

Formalize performance as an error measure

or more generally, as an objective function (aka Loss function)

Examples:

- Medical Diagnosis
 - mapping input to one of several classes/categories (aka classification)
- Predict tomorrow's Temperature
 - mapping input to a number (aka regression)
- Chance of Survival: From patient data to p(survive >= 5 years)
 - mapping input to probability (aka logistic regression)
- Driving recommendation
 - mapping input into a plan (aka Planning)

Choices in ML Problem Formulation

Often, the same task can be formulated in more than one way:

Ex. 1: Loan applications

- creditworthiness/score (regression)
- probability of default (logistic regression)
- loan decision (classification)

Ex. 2: Chess

- Nature of available training examples/experience:
 - expert advice (painful to experts)
 - games against experts (less painful but limited, and not much control)
 - experts' games (almost unlimited, but only "found data" no control)
 - games against self (unlimited, flexible, but can you learn this way?)
- Choice of target function: board → move vs. board → score

Machine Learning

We cannot learn from data

We can learn from data + assumptions

Assumptions

What assumptions do we make with this data?

y=mx+b+N

Assumptions

What assumptions do we make with this data?

More robust examples: http://yann.lecun.com/exdb/lenet/index.html

Assumptions

Face dataset

Assume

Course Information

Website: https://www.cs.cmu.edu/~10315

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication: piazza.com

E-mail: dpbird@andrew.cmu.edu

pvirtue@andrew.cmu.edu

Course Information

- Course Levels and Course Scope
- Participation
- Video
- Waitlist
- Prerequisites
- Teamwork
- Mental health

Announcements

Recitation starting this Friday

- Recommended. Materials are fair game for exams
- One Section

Assignments:

- HW1 (online)
 - Released this week
 - Due next week

How to Approach a Machine Learning Problem

- 1. Consider your goal → definition of task **T**
- E.g. make good loan decisions, win chess competitions, ...
- 2. Consider the nature of available (or potential) experience E
 - How much data can you get? What would it cost (in money, time or effort)?
- 3. Choose type of output Y to learn
- (Numerical? Category? Probability? Plan?)
- 4. Choose the Performance measure P (error/loss function)
- 5. Choose a representation for the input X
- 6. Choose a set of possible solutions **H** (hypothesis space)
- set of functions h: X → Y
- (often, by choosing a representation for them)
- 7. Choose or design a learning algorithm
- for using examples (E) to converge on a member of H that optimizes P

Slide: CMU ML, Roni Rosenfeld, Tom Mitchel

Notation

Vocab: General ML Concepts

Data / examples / experience

- Input
- Output (labels)

Model

Parameters

Model complexity

Hypothesis function

Prediction

Error/loss, accuracy

Objective function

Global/local min/max

Training, validation, test set

Over (under) fitting

Classification

Regression

Supervised (unsupervised) learning

Vocab: Specific ML Concepts / Techniques

Linear model Sigmoid

Mean squared error ReLU

Gradient Descent Softmax

Stochastic Gradient Descent Cross entropy

Learning rate Neural network

Batch