Announcements

Coronavirus – COVID-19

- Take care of yourself and others around you
- Follow CMU and government guidelines
- We're "here" to help in any capacity that we can
- Use tools like zoom to communicate with each other too!

Zoom

- Let us know if you have issues
- Etiquette: Turn on video when talking or your turn in OH

Feedback: See Piazza post

Announcements

Assignments

- HW6 (written + programming)
 - Due Thu 3/26, 11:59 pm

"Participation" Points

- Polls open until 10 am (EDT) day after lecture
- "Calamity" option announced in recorded lecture
 - Don't select this calamity option or you'll lose credit for one poll (-1) rather than gaining credit for one poll (+1).
- Participation percent calculated as usual

Introduction to Machine Learning

Cross-Validation
Nonparametric Regression

Instructor: Pat Virtue

Validation

Why do we need validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

How do we split training and validation?

Trade-offs

- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

	Total number of examples ▶	training validation
Run 1		
Run 2		
Run K		Slide credit: CMU MLD Aarti Singl

Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions Equivalently, train on N-1 samples and validate on only one sample per run for N runs

	Total number of examples	☐ training	validation
Run 1			
Run 2			
	:		
Run K	•	SI	ide credit: CMU MLD Aarti Singh

Cross-validation

Random subsampling

Randomly subsample a fixed fraction αN (0< α <1) of the dataset for validation.

Compute validation error with remaining data as training data.

Repeat K times

Practical Issues in Cross-validation

How to decide the values for K and α ?

- Large K
 - + Validation error can approximate test error well
 - Observed validation error will be unstable (few validation pts)
 - The computational time will be very large as well (many experiments)
- Small K
 - + The # experiments and, therefore, computation time are reduced
 - + Observed validation error will be stable (many validation pts)
 - Validation error cannot approximate test error well

Common choice: K = 10, α = 0.1 \odot

Piazza Poll 1

Say you are choosing amongst 10 values of lambda, and you want to do K=10 fold cross-validation.

How many times do I have to train my model?

- A. 0
- B. 1
- C. 10
- D. 20
- E. 100
- F. 10^{10}

Reminder: Parametric models

Assume some model (Gaussian, Bernoulli, Multinomial, logistic, network of logistic units, Linear, Quadratic) with fixed number of parameters

■ Linear/Logistic Regression, Naïve Bayes, Discriminant Analysis, Neural Networks

Estimate parameters $(\mu, \sigma^2, \theta, w, \beta)$ using MLE/MAP and plug in

Pro – need fewer data points to learn parameters

Con – Strong distributional assumptions, not satisfied in practice

Reminder: Nonparametric models

Nonparametric: number of parameters scales with number of training data

- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models

Example

Nearest Neighbor (k-Nearest Neighbor) Classifier

Piazza Poll 2

Are decision trees parametric or non-parametric?

A.

B.

C.

Piazza Poll 2

Are decision trees parametric or non-parametric?

It depends:)

- If no limits on depth or reuse of attributes, then non-parametric
 - Model complexity will grow with data
- If pruned/limited to fix size
 - Parametric
- If attributes only used once
 - Parametric; model complexity is limited by number of features

Trade-offs

- Non-parametric methods have very powerful representation capabilities
- But
 - Easily overfit
 - Can take up memory proportional to training size too

Decision Trees

Dyadic decision trees (split on mid-points of features)

How to assign label to each leaf

Classification – Majority vote

Regression – Constant/Linear/Poly fit

Decision Trees

Nearest Neighbor

Nearest Neighbor

Kernel Regression

Kernel Regression

RBF kernel and corresponding hypothesis function

Distance kernel (Gaussian / Radial Basis Function)

- Close to point should be that point
- Far should be zero
- Mini Gaussian window

$$k(x, x') = e^{\frac{-\|x - x'\|_{2}^{2}}{2\sigma^{2}}} = e^{-\gamma \|x - x'\|_{2}^{2}}$$

We control the variance

RBF kernel and corresponding hypothesis function

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - $\bullet \alpha_i = y_i, \alpha = y$?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - $\bullet \alpha_i = y_i, \alpha = y$?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - $\bullet \alpha_i = y_i, \alpha = y$?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

- Weighted sum of these little windows
 - $\hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - Need to account for points that are close together

RBF kernel and corresponding hypothesis function

- Weighted sum of these little windows
 - $\bullet \hat{y} = h(x) = \sum_{i} \alpha_{i} k(x, x^{(i)})$
 - What should α_i be?
 - Need to account for points that are close together

$$\alpha = (K)^{-1}y$$
 $\alpha = (K + \lambda I)^{-1}y$
where $K_{ij} = k(x^{(i)}, x^{(j)})$
and λ is small to help inversion

Kernelized Linear Regression

Reminder: Polynomial Linear Regression

Polynomial feature function

Least squares formulation

Least squares solution

Reminder: Polynomial Linear Regression

Polynomial feature function

$$x \to \phi(x) = [1, x, x^2, x^3]^T$$

 $\blacksquare X \to \Phi$

Least squares formulation

 $= \min_{w} \|y - \Phi w\|_2^2$

Least squares solution

Plus L2 regularization

Can rewrite as

Kernelized Linear Regression

L2 regularized linear regression (with feature function)

Can rewrite as

Prediction

$$\hat{y} = h(x) = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

Let

$$\boldsymbol{\alpha} = \left(\Phi\Phi^T + \lambda \mathbf{I}\right)^{-1} \mathbf{y}$$