Coronavirus – COVID-19

- Take care of yourself and others around you
- Follow CMU and government guidelines
- We're "here" to help in any capacity that we can
- Use tools like zoom to communicate with each other too!

Assignments

- HW6 (online)
 - Due Thu 3/26, 10 pm

Final Exam

Format TBD

Office Hours

- Zoom + OHQueue
- See piazza for details

Recitation

- Zoom session during normal recitation time slot
- See piazza for details

Zoom

- Let us know if you have issues
- Recommend turning on video when talking (mute when not talking)

Lecture

- Recorded ahead of time and posted on Canvas
- Encouraged to watch during lecture time slot
- Zoom session during lecture time slot to answer any questions (optional)

"Participation" Points

- Polls open until 10 pm (EDT) day of lecture
- "Calamity" option announced in recorded lecture
 - Don't select this calamity option or you'll lose credit for one poll (-1) rather than gaining credit for one poll (+1).
- Participation percent calculated as usual

Introduction to Machine Learning

Decision Trees

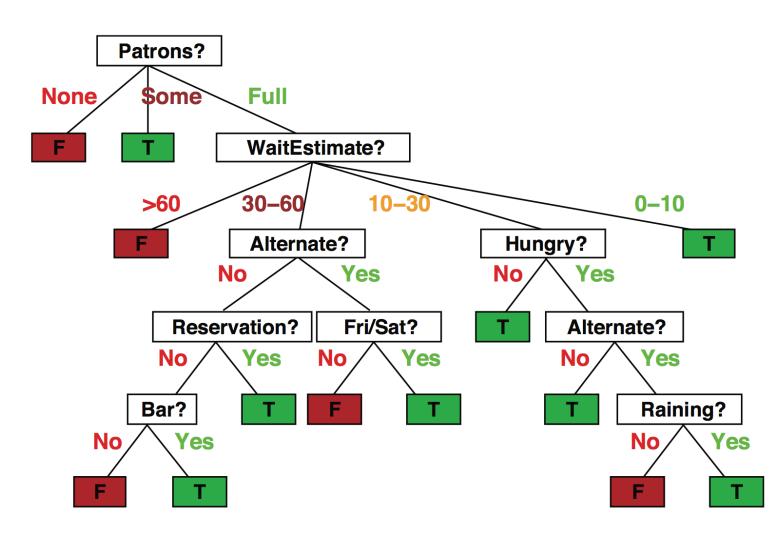
Instructor: Pat Virtue

Decision trees

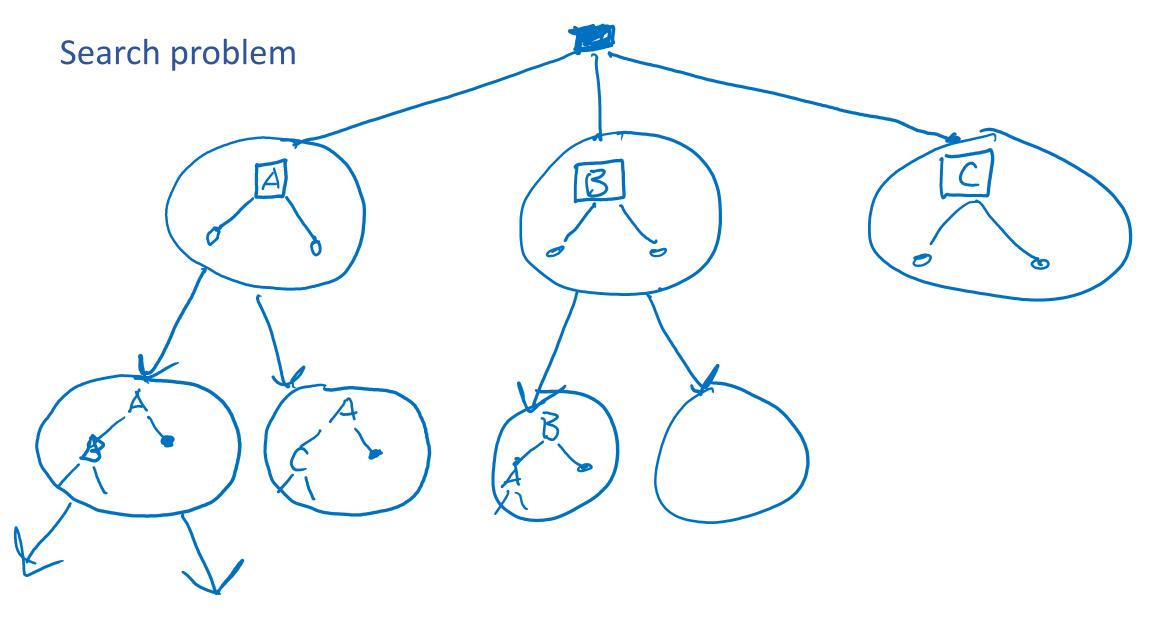
Popular representation for classifiers

Even among humans!

I've just arrived at a restaurant: should I stay (and wait for a table) or go elsewhere?



Build a decision tree



Building a decision tree

```
Function BuildTree(n,A) // n: samples, A: set of attributes
   If empty(A) or all n(L) are the same
        status = leaf
                                                                n(L): Labels for samples in this set
        class = most common class in n(L)
   else
        status = internal
                                                                  Decision: Which attribute?
        a \leftarrow bestAttribute(n,A) \blacktriangleleft
        LeftNode = BuildTree(n(a=1), A \setminus {a}) \leftarrow
                                                                  Recursive calls to create left
        RightNode = BuildTree(n(a=0), A \ \{a\})
                                                                  and right subtrees, n(a=1) is
     end
                                                                  the set of samples in n for
                                                                  which the attribute a is 1
end
```

Identifying 'bestAttribute'

There are many possible ways to select the best attribute for a given set.

- We started with using error rate to select the best attribute
- We will discuss one possible way which is based on information theory.

Previous Lecture Poll 4

Which attribute {A, B} would error rate select for the next split?

- 1) A
- 2) B
- 3) A or B (tie)
- 4) I don't know

Dataset:

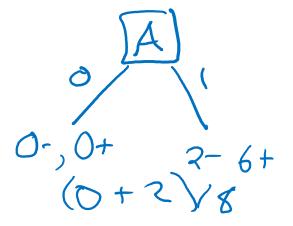
Output Y, Attributes A and B

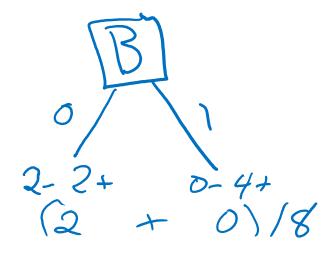
Υ	А	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Previous Lecture Poll 4

Which attribute {A, B} would error rate select for the next split?

- 1) A
- 2) B
- 3) A or B (tie)
- 4) I don't know





Dataset:

Output Y, Attributes A and B

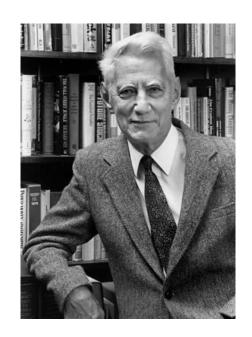
Y	А	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Entropy

- Quantifies the amount of uncertainty associated with a specific probability distribution
- The higher the entropy, the less confident we are in the outcome
- Definition

$$H(X) = \sum_{x} p(X = x) \log_2 \frac{1}{p(X = x)}$$

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$



Claude Shannon (1916 – 2001), most of the work was done in Bell labs

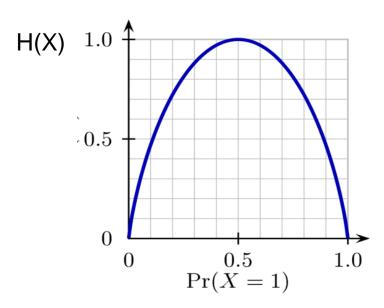
Entropy

Definition

$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

■ So, if P(X=1) = 1 then

■ If P(X=1) = .5 then



Entropy

Definition

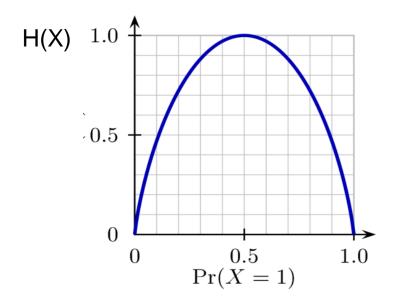
$$H(X) = -\sum_{x} p(X = x) \log_2 p(X = x)$$

■ So, if P(X=1) = 1 then

$$H(X) = -p(x=1)\log_2 p(X=1) - p(x=0)\log_2 p(X=0)$$

= -1\log 1 - 0\log 0 = 0

■ If P(X=1) = .5 then $H(X) = -p(x=1)\log_2 p(X=1) - p(x=0)\log_2 p(X=0)$ $= -.5\log_2 .5 - .5\log_2 .5 = -\log_2 .5 = 1$



Mutual Information

Let X be a random variable with $X \in \mathcal{X}$. Let Y be a random variable with $Y \in \mathcal{Y}$.

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information:
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

- For a decision tree, we can use mutual information of the output class Y and some attribute X on which to split as a splitting criterion
- Given a dataset D of training examples, we can estimate the required probabilities as...

$$P(Y = y) = N_{Y=y}/N$$

$$P(X = x) = N_{X=x}/N$$

$$P(Y = y|X = x) = N_{Y=y,X=x}/N_{X=x}$$

where $N_{Y=y}$ is the number of examples for which Y=y and so on.

Mutual Information

Let X be a random variable with $X \in \mathcal{X}$. Let Y be a random variable with $Y \in \mathcal{Y}$.

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information:
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

- Entropy measures the expected # of bits to code one random draw from X.
- For a decision tree, we want to reduce the entropy of the random variable we are trying to predict!

Conditional entropy is the expected value of specific conditional entropy $E_{P(X=x)}[H(Y \mid X=x)]$

Informally, we say that **mutual information** is a measure of the following: If we know X, how much does this reduce our uncertainty about Y?

Piazza Poll 1

Which attribute {A, B} would **mutual information** select for the next split?

- 1) A
- 2) B
- 3) A or B (tie)
- 4) I don't know

Dataset:

Output Y, Attributes A and B

Y	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Decision Tree Learning Example

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information:
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

Decision Tree Learning Example

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information:
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

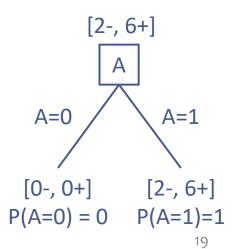
$$H(Y) = -\left[\frac{2}{8}\log_2\frac{2}{8} + \frac{6}{8}\log_2\frac{6}{8}\right]$$

$$H(Y \mid A = 0) = undefined$$

 $H(Y \mid A = 1) = -\left[\frac{2}{8}\log_2\frac{2}{8} + \frac{6}{8}\log_2\frac{6}{8}\right] = H(Y)$

$$H(Y | A) = P(A = 0)H(Y | A = 0) + P(A = 1)H(Y | A = 1)$$

= 0 + $H(Y | A = 1)$
= $H(Y)$
 $I(Y; A) = H(Y) - H(Y | A) = 0$



Decision Tree Learning Example

Entropy:
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Υ	Α	В
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

Conditional Entropy:
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information:
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

$$H(Y) = -\left[\frac{2}{8}\log_2\frac{2}{8} + \frac{6}{8}\log_2\frac{6}{8}\right]$$

$$H(Y \mid B = 0) = -\left[\frac{2}{4}\log_2\frac{2}{4} + \frac{2}{4}\log_2\frac{2}{4}\right]$$

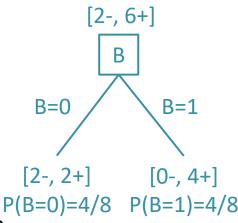
$$H(Y \mid B = 1) = -[0\log_2 0 + 1\log_2 1] = 0$$

$$H(Y \mid B) = P(B = 0)H(Y \mid B = 0) + P(B = 1)H(Y \mid B = 1)$$

= $\frac{4}{8}H(Y \mid B = 0) + \frac{4}{8} \cdot 0$

$$I(Y;B) = H(Y) - H(Y | B) > 0$$

$$I(Y; B)$$
 ends up being greater than $I(Y; A) = 0$, so we split on B



Slide credit: CMU MLD Matt Gormley

How to learn a decision tree

Top-down induction [ID3]

Main loop:

- 1. $X \leftarrow$ the "best" decision feature—for next node
- 2. Assign X as decision feature—for node
- 3. For each value of X, create new descendant of node (Discrete features)
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes (steps 1-5) after removing current feature
- 6. When all features exhausted, assign majority label to the leaf node

How to learn a decision tree

• Top-down induction [ID3, C4.5, C5, ...]

Main loop: C4.5

- 1. $X \leftarrow$ the "best" decision feature—for next node
- 2. Assign X as decision feature—for node
- 3. For "best" split of X, create new descendants of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- 6. Prune back tree to reduce overfitting
- 7. Assign majority label to the leaf node

Handling continuous features (C4.5)

Convert continuous features into discrete by setting a threshold.

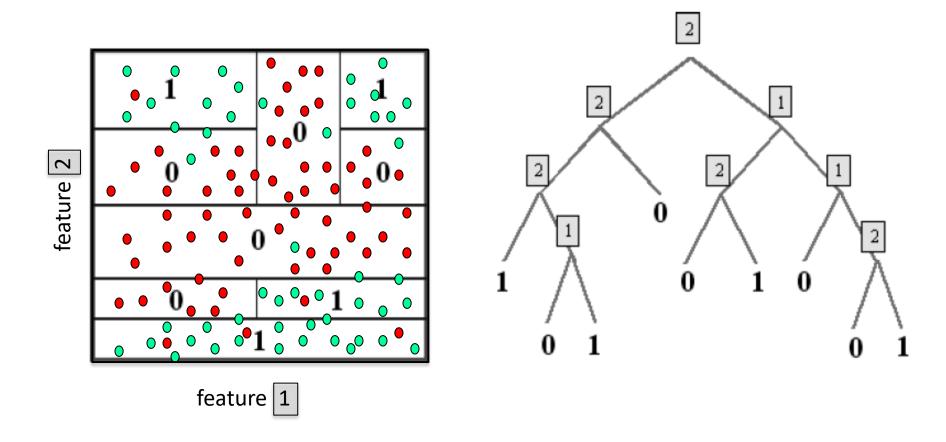
What threshold to pick?

Search for best one as per information gain. Infinitely many??

Don't need to search over more than \sim n (number of training data),e.g. say X_1 takes values $x_1^{(1)}$, $x_1^{(2)}$, ..., $x_1^{(n)}$ in the training set. Then possible thresholds are

$$[x_1^{(1)} + x_1^{(2)}]/2$$
, $[x_1^{(2)} + x_1^{(3)}]/2$, ..., $[x_1^{(n-1)} + x_1^{(n)}]/2$

Dyadic decision trees (split on mid-points of features)



When to Stop?

- Many strategies for picking simpler trees:
 - Pre-pruning
 - Fixed depth (e.g. ID3)
 - Fixed number of leaves
 - Post-pruning
 - Penalize complexity of tree

Penalize Complexity of Tree

Penalize complex models by introducing cost

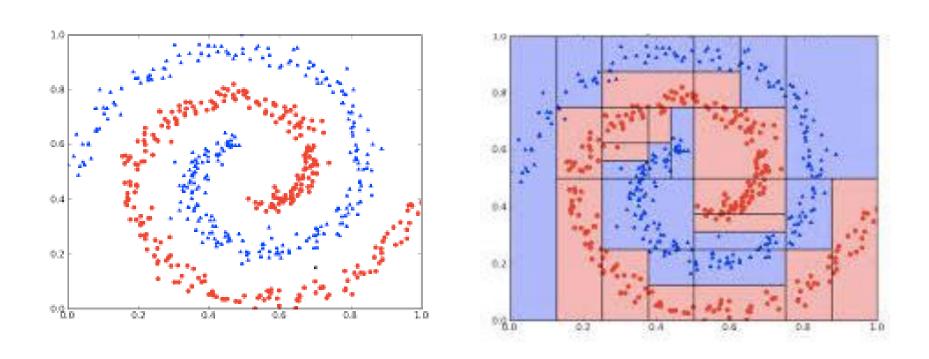
$$\widehat{f} = \arg\min_{T} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathsf{loss}(\widehat{f}_{T}(X_{i}), Y_{i}) + \mathsf{pen}(T) \right\}$$

$$\mathsf{log likelihood} \qquad \mathsf{cost}$$

$$loss(\widehat{f}_T(X_i), Y_i) = (\widehat{f}_T(X_i) - Y_i)^2$$
 regression
= $\mathbf{1}_{\widehat{f}_T(X_i) \neq Y_i}$ classification

 $\mathsf{pen}(T) \propto |T|$ penalize trees with more leaves CART – optimization can be solved by dynamic programming

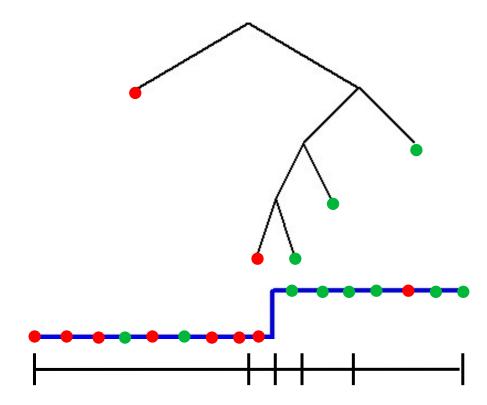
Example of 2-feature decision tree classifier



How to assign label to each leaf

Classification – Majority vote

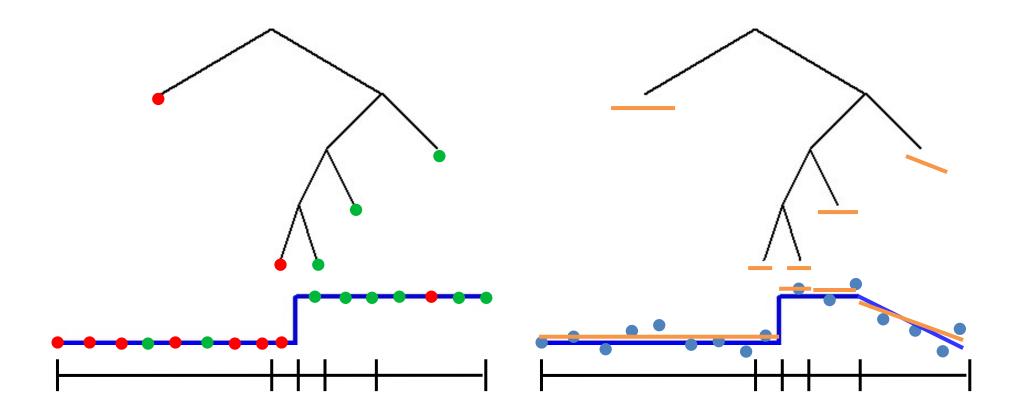
Regression – ?



How to assign label to each leaf

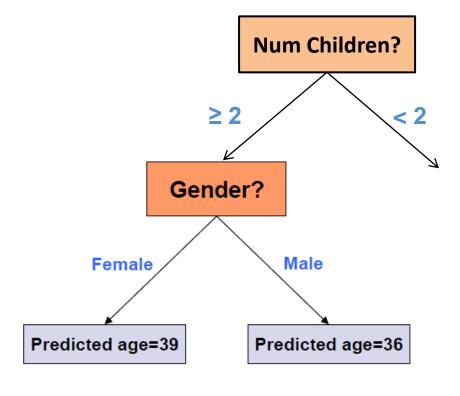
Classification – Majority vote

Regression – Constant/Linear/Poly fit



Regression trees

Gender	Rich?	Num. Children	# travel per yr.	Age
F	No	2	5	38
M	No	0	2	25
M	Yes	1	0	72
:	:	:	:	:



Average (fit a constant) using training data at the leaves

What you should know

- Decision trees are one of the most popular data mining tools
 - Simplicity of design
 - Interpretability
 - Ease of implementation
 - Good performance in practice (for small dimensions)
- Mutual Information (entropy) to select attributes (ID3, C4.5,...)
- Decision trees will overfit!!!
 - Must use tricks to find "simple trees", e.g.,
 - Pre-Pruning: Fixed depth/Fixed number of leaves
 - Post-Pruning
 - Complexity penalized model selection
- Can be used for classification, regression and density estimation too