Announcements

Assignments:

- HW4
 - Due tonight!
- HW5
 - Due date Thu, 2/27, 11:59 pm

Midterm

See Piazza post for details

Canvas updated

Participation points

Plan

Last time

- Neural Networks
 - Universal Approximation
 - Optimization / Backpropagation

Today

- Wrap-up Optimization / Backpropagation
- Course Survey
- Convolutional Neural Networks

Introduction to Machine Learning

Neural Networks

Instructor: Pat Virtue

Reminder: Calculus Chain Rule (scalar version)

$$y = f(z)$$

$$z = g(x)$$

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

Network Optimization

$$J(\mathbf{w}) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_3} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_3}$$

$$\frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Lots of repeated calculations

Backpropagation (so-far)

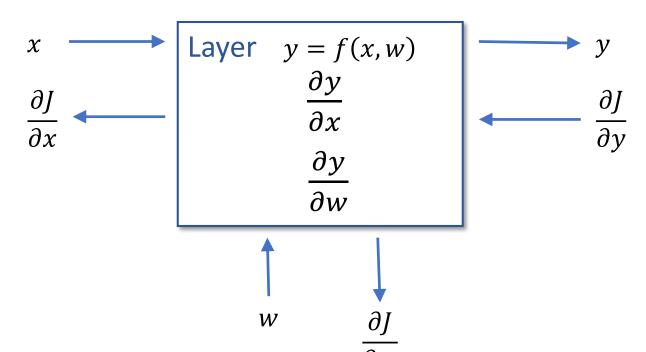
Compute derivatives per layer, utilizing previous derivatives

Objective: J(w)

Arbitrary layer: y = f(x, w)

Need:

$$\frac{\partial J}{\partial x} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial x}$$



Reminder: Matrix Calculus

Gradient, Jacobian, etc

Calculus Chain Rule

Scalar:

$$y = f(z)$$

$$z = g(x)$$

$$\frac{dy}{dz} = \frac{dy}{dz} \frac{dz}{dz}$$

Multivariate:

$$y = f(\mathbf{z})$$
$$\mathbf{z} = g(x)$$

$$\frac{dy}{dx} = \sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}$$

Multivariate:

$$\mathbf{y} = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{dy_{i}}{dx_{k}} = \sum_{j} \frac{\partial y_{i}}{\partial z_{j}} \frac{\partial z_{j}}{\partial x_{k}}$$

Piazza Poll 1:

$$y = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{\partial y}{\partial x} = \cdots$$

$$A. \quad \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$

B.
$$\frac{\partial y}{\partial z}^{T} \frac{\partial z}{\partial x}$$
C.
$$\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}^{T}$$

$$C. \quad \frac{\partial y}{\partial z} \frac{\partial z^{I}}{\partial x}$$

$$D. \frac{\partial y}{\partial z}^T \frac{\partial z}{\partial x}^T$$

E.
$$\left(\frac{\partial y}{\partial z}\frac{\partial z}{\partial x}\right)^T$$

F. None of the above

Piazza Poll 1:

$$y = f(\mathbf{z})$$

$$\mathbf{z} = g(\mathbf{x})$$

$$\frac{\partial y}{\partial x} = \cdots$$

$$A. \quad \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$

$$B. \quad \frac{\partial y}{\partial z}^T \frac{\partial z}{\partial x}$$

$$C. \quad \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}^T$$

$$D. \frac{\partial y}{\partial z}^T \frac{\partial z}{\partial x}^T$$

$$E. \quad \left(\frac{\partial y}{\partial z}\frac{\partial z}{\partial x}\right)^T$$

F. None of the above

Network Optimization

$$J(w) = z_4$$

$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!

Network Optimization

$$J(\mathbf{w}) = z_4$$

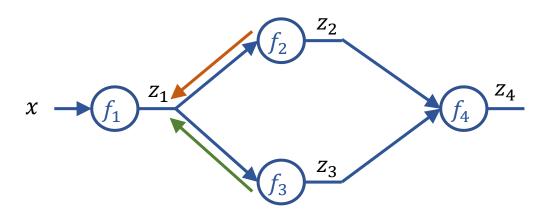
$$z_4 = f_4(w_D, w_E, z_2, z_3)$$

$$z_3 = f_3(w_C, z_1)$$

$$z_2 = f_2(w_B, z_1)$$

$$z_1 = f_1(w_A, x)$$

Need multivariate chain rule!



$$\frac{\partial J}{\partial w_E} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_E}$$

$$\frac{\partial J}{\partial w_D} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial w_D}$$

$$\frac{\partial J}{\partial z_3} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_3}$$
$$\frac{\partial J}{\partial z_2} = \frac{\partial J}{\partial z_4} \frac{\partial z_4}{\partial z_2}$$

$$\frac{\partial J}{\partial w_C} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial w_C}$$
$$\frac{\partial J}{\partial w_B} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial w_B}$$

$$\frac{\partial J}{\partial z_1} = \frac{\partial J}{\partial z_2} \frac{\partial z_2}{\partial z_1} + \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_1}$$

$$\frac{\partial J}{\partial w_A} = \frac{\partial J}{\partial z_1} \frac{\partial z_1}{\partial w_A}$$

Backpropagation (updated)

Compute derivatives per layer, utilizing previous derivatives

Objective: I(w)

Arbitrary layer: y = f(x, w)

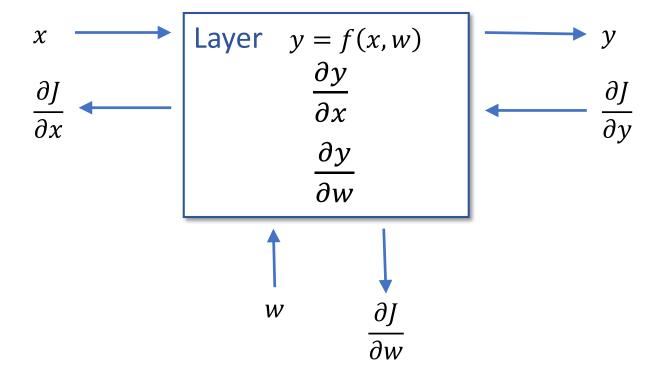
Init:

$$\blacksquare \frac{\partial J}{\partial x} = 0$$

$$\frac{\partial J}{\partial x} = 0$$

$$\frac{\partial J}{\partial w} = 0$$

Compute:

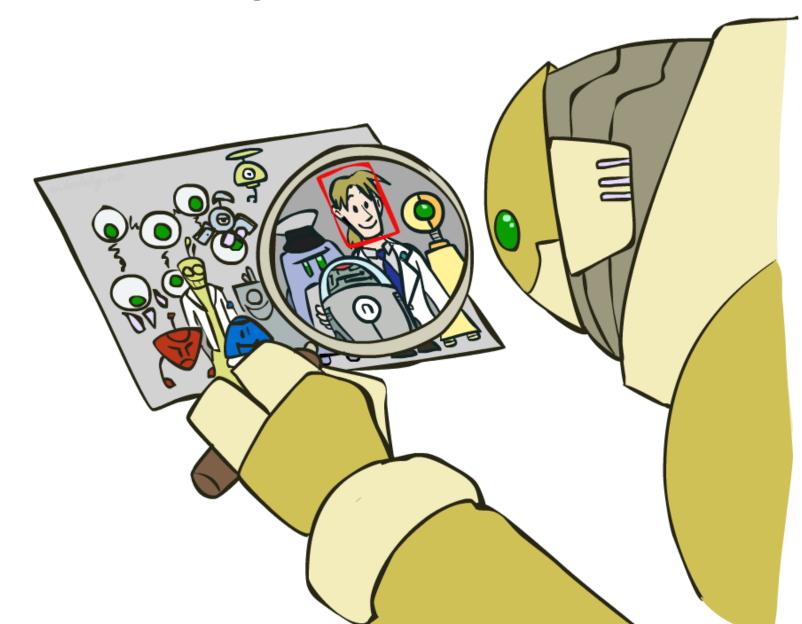


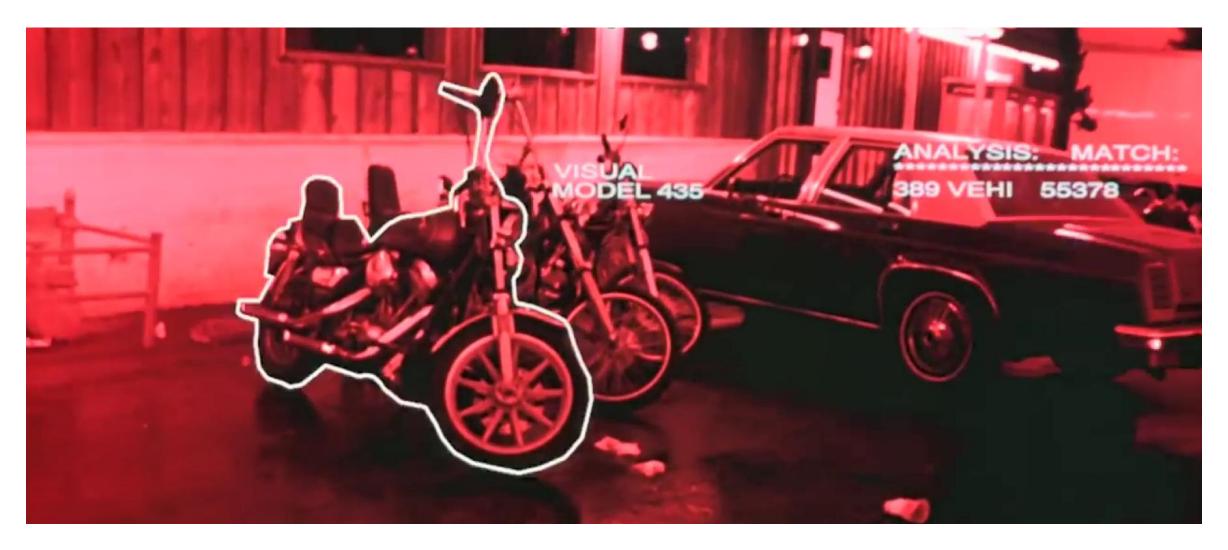
Course Survey

Introduction to Machine Learning

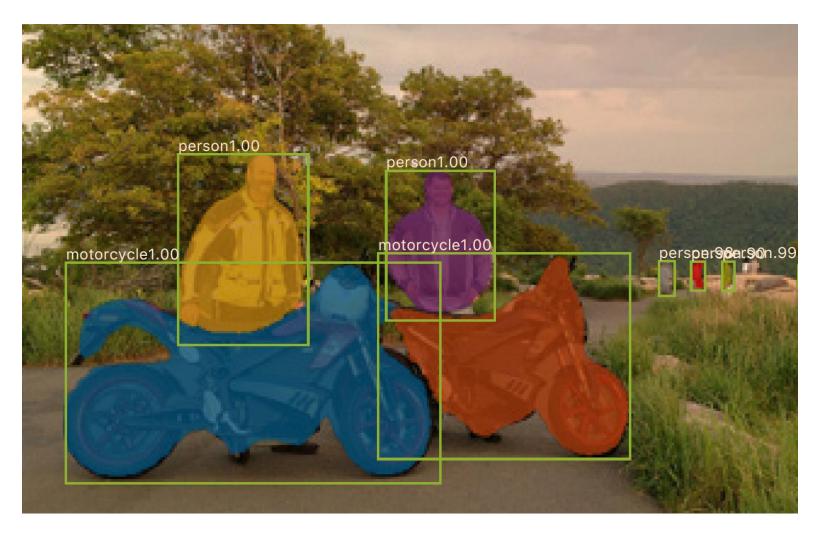
Convolutional Neural Networks

Instructor: Pat Virtue





Terminator 2, 1991



0.2 seconds per image

Mask R-CNN

He, Kaiming, et al. "Mask R-CNN." *Computer Vision (ICCV), 2017 IEEE International Conference on*. IEEE, 2017.

"My CPU is a neural net processor, a learning computer"

Terminator 2, 1991

Computer Vision: Autonomous Driving

Tesla, Inc: https://vimeo.com/192179726

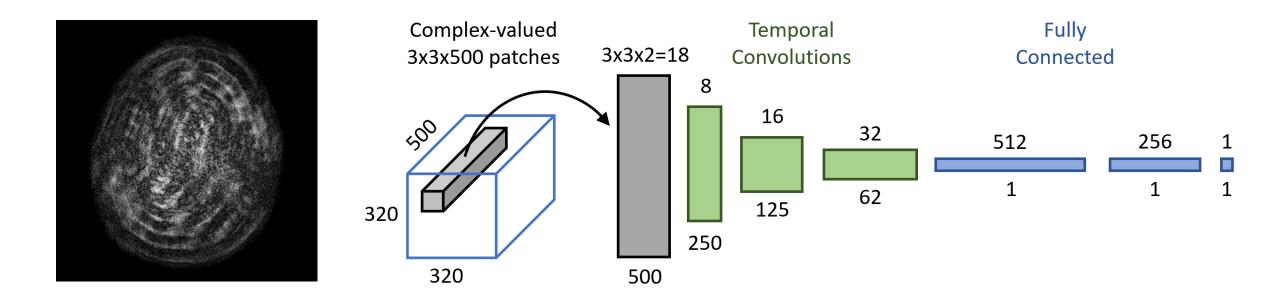
Computer Vision: Domain Transfer

CycleGAN

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV 2017.

Temporal Convolution

MR Fingerprinting



Patrick Virtue, Jonathan I Tamir, Mariya Doneva, Stella X Yu, and Michael Lustig. "Learning Contrast Synthesis from MR Fingerprinting", ISMRM 2018.

Outline

- 1. Measuring the current state of computer vision
- 2. Why convolutional neural networks
 - Old school computer vision
 - Image features and classification
- 3. Convolution "nuts and bolts"

Image Classification

What's the problem with just directly classifying raw pixels in high dimensional space?

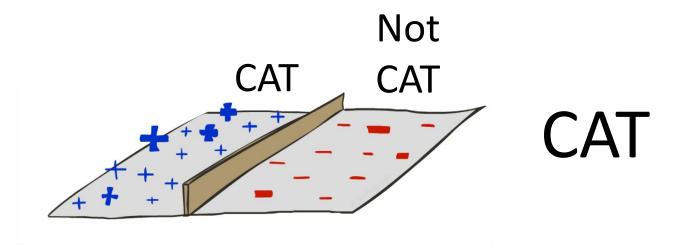
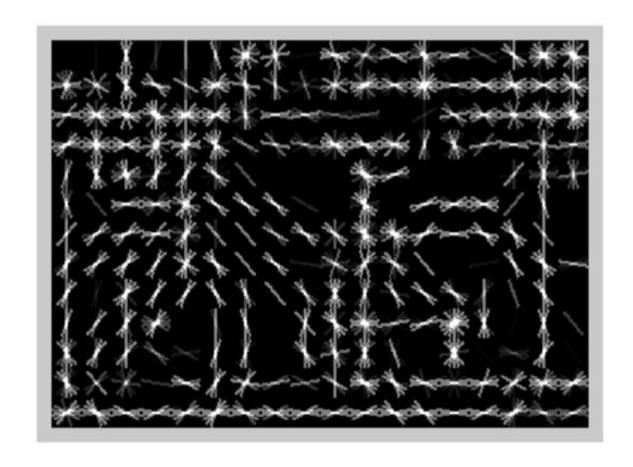


Image Classification



HoG Filter

HoG: Histogram of oriented gradients

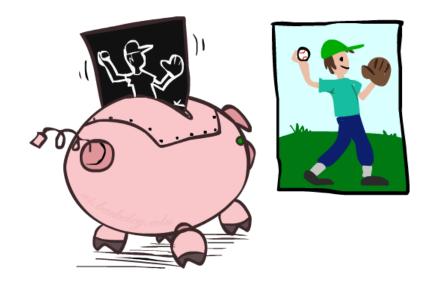
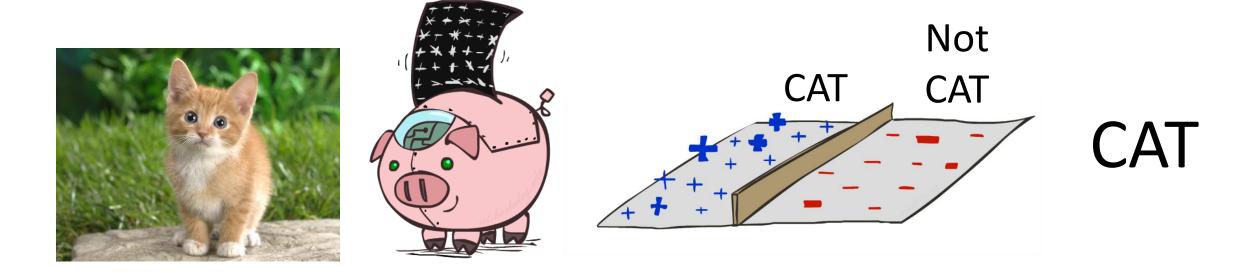
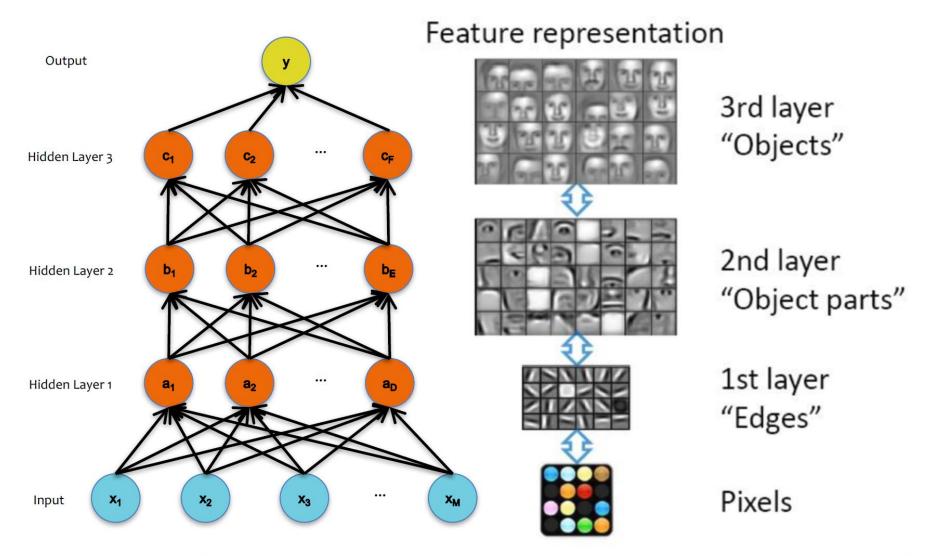


Image Classification

HOG features passed to a linear classifier (SVM)

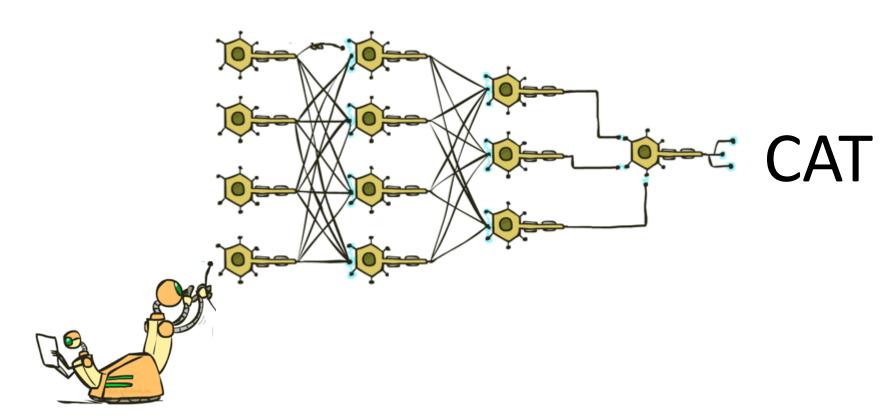


Classification: Learning Features



Classification: Deep Learning

Fully connected neural network?



Signal processing definition

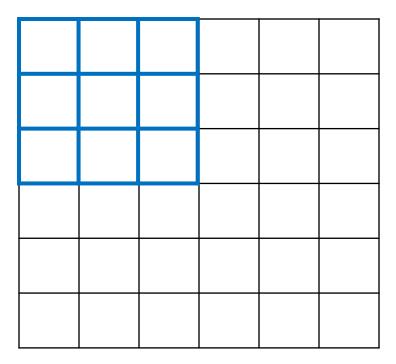
$$z[i,j] = \sum_{u=-\infty} \sum_{v=-\infty} x[i-u,j-v] \cdot w[u,v]$$

Relaxed definition

■ Drop infinity; don't flip kernel K-1 K-1

$$z[i,j] = \sum_{u=0}^{K-1} \sum_{v=0}^{K-1} x[i+u,j+v] \cdot w[u,v]$$

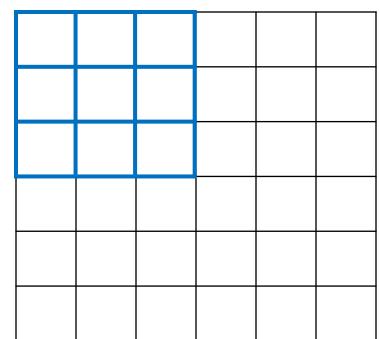
-1	0	1
-2	0	2
-1	0	1

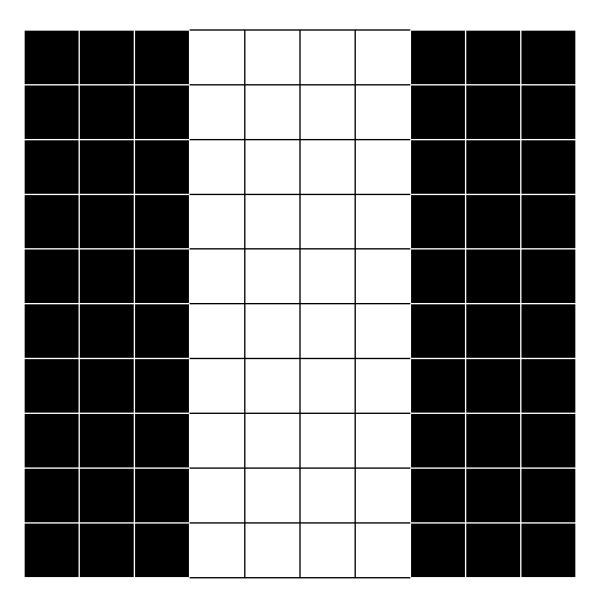


Relaxed definition

$$z[i,j] = \sum_{u=0}^{K-1} \sum_{v=0}^{K-1} x[i+u,j+v] \cdot w[u,v]$$

-1	0	1
-2	0	2
-1	0	1

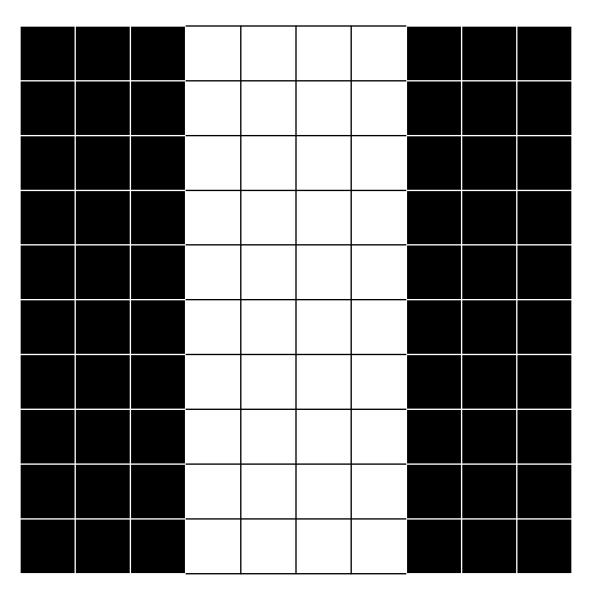




-1	0	1
-1	0	1
-1	0	1

0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0

-1	0	1
-1	0	1
-1	0	1



-1	0	1
-1	0	1
-1	0	1

Convolution: Padding

0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0

0	2	2	0	0	-2	-2	0
0	3	3	0	0	-3	-3	0
0	3	3	0	0	-3	-3	0
0	3	3	0	0	-3	-3	0
0	3	3	0	0	-3	-3	0
0	3	3	0	0	-3	-3	0
0	3	3	0	0	-3	-3	0
0	2	2	0	0	-2	-2	0

Piazza Poll 2: Which kernel goes with which output image?

Input

K1

-1	0	1
-2	0	2
-1	0	1

K2

-1	-2	-1
0	0	0
1	2	1

K3

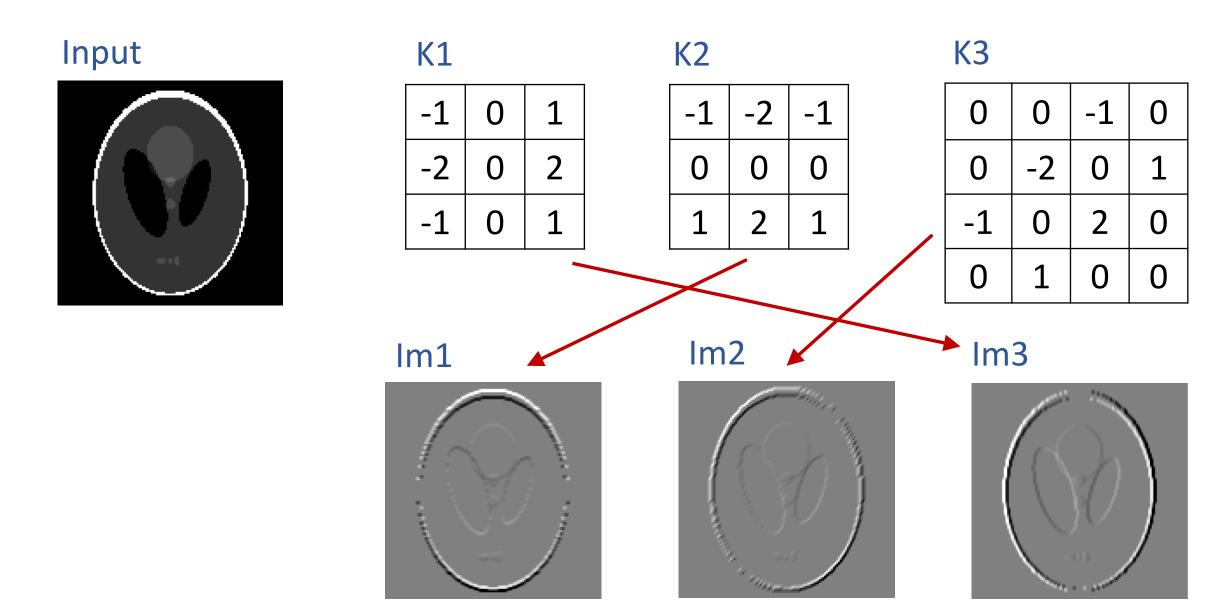
0	0	-1	0
0	-2	0	1
-1	0	2	0
0	1	0	0

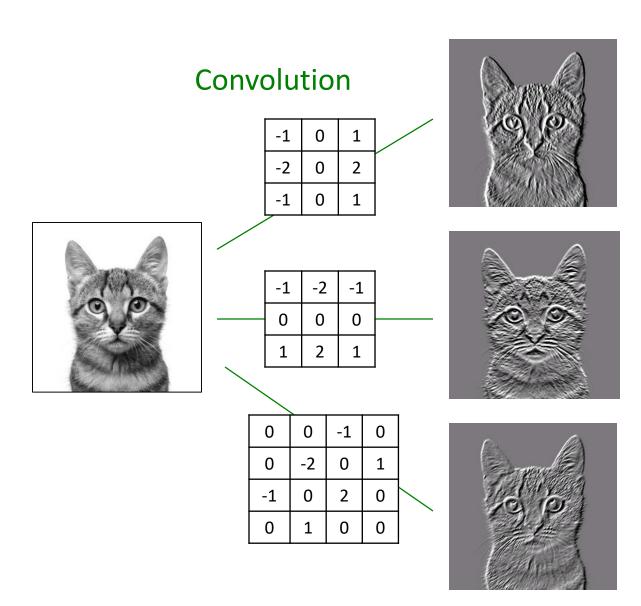
lm1

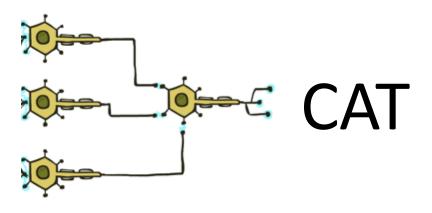
Im2

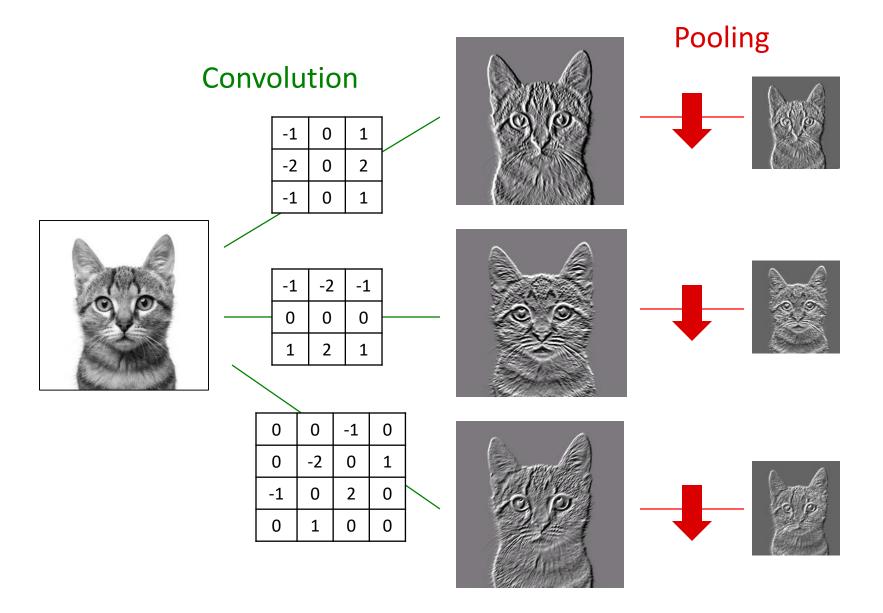
lm3

Piazza Poll 2: Which kernel goes with which output image?









Convolution: Stride=2

0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0

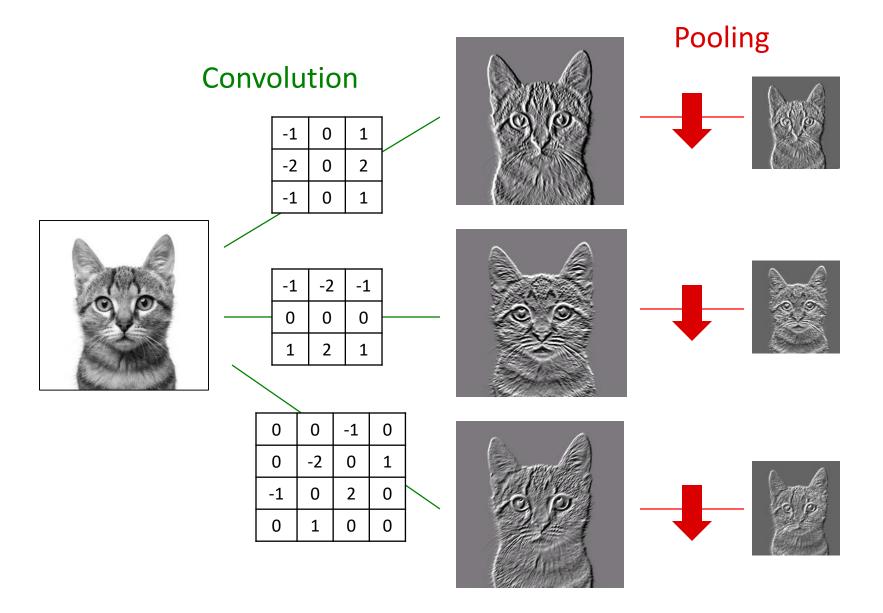
.25	.25
.25	.25

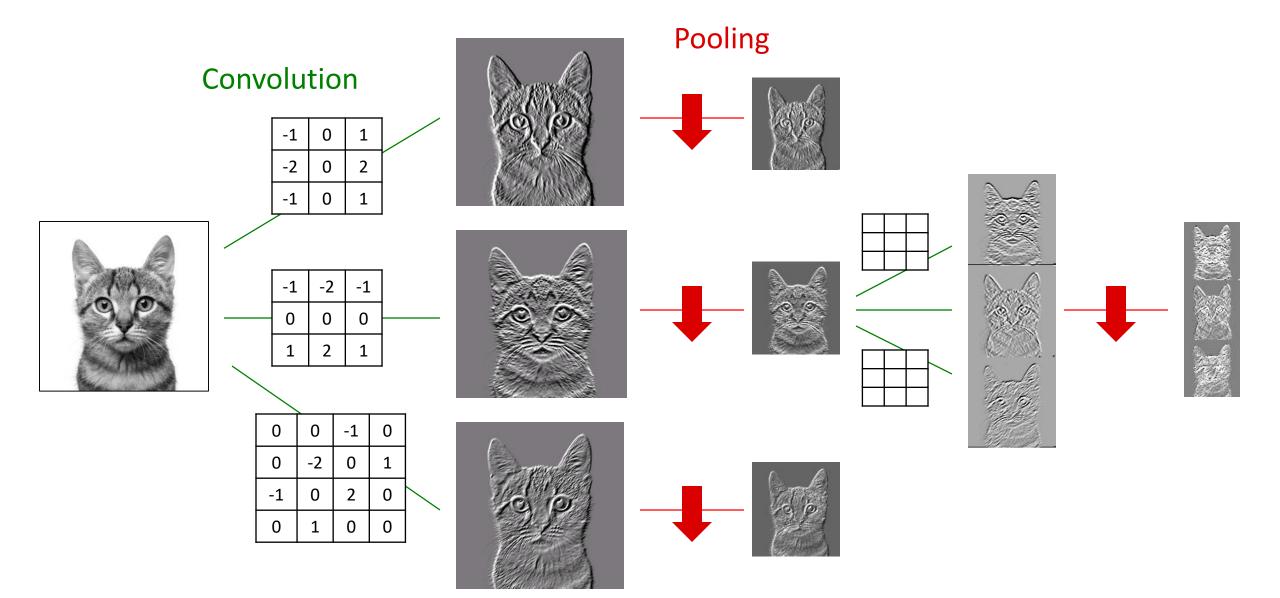
Stride: Max Pooling

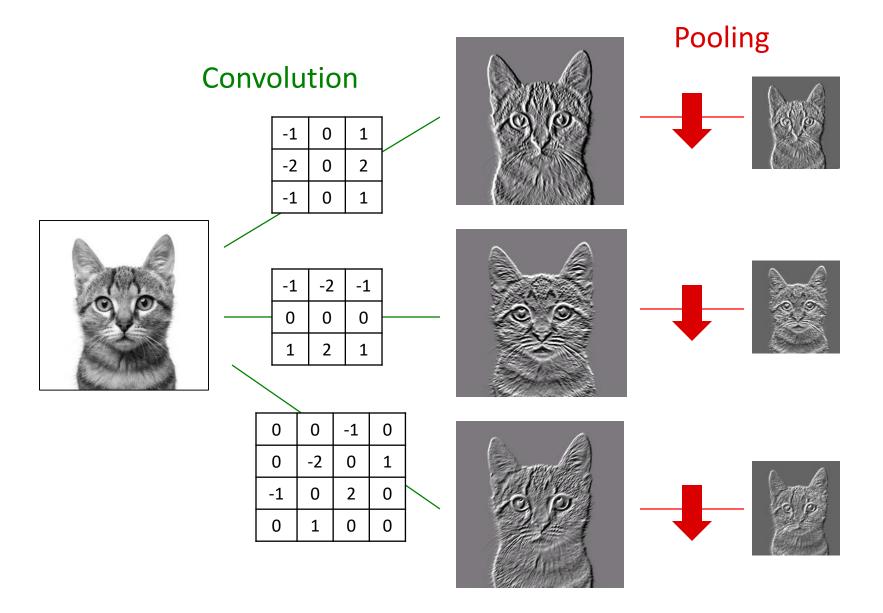
1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

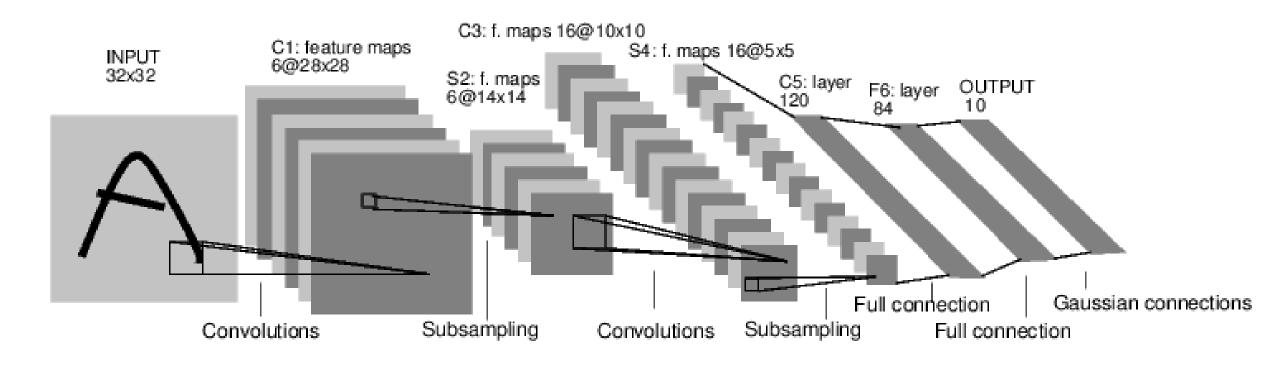






Lenet5 – Lecun, et al, 1998

Convnets for digit recognition



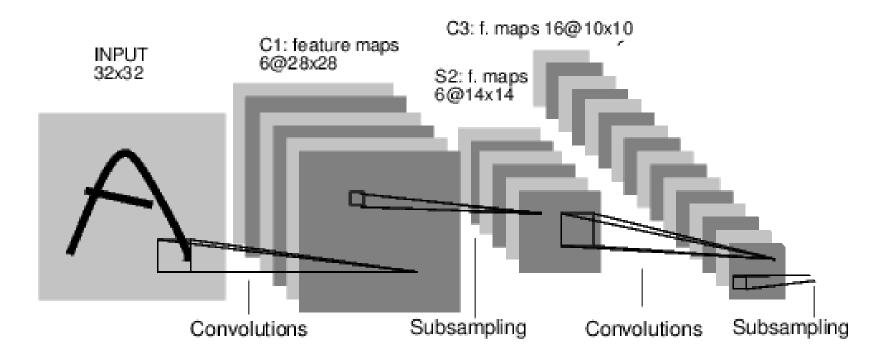
LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

How big many convolutional weights between S2 and C3?

■ S2: 6 channels @14x14

Conv: 5x5, pad=0, stride=1

■ C3: 16 channels @ 10x10



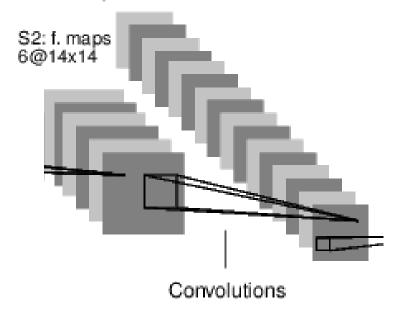
How big many convolutional weights between S2 and C3?

■ S2: 6 channels @14x14

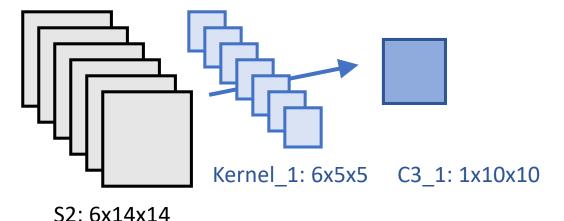
Conv: 5x5, pad=0, stride=1

C3: 16 channels @ 10x10

C3: f. maps 16@10x10



One image in C3 is actually the result of a 3D convolution



How big many convolutional weights between S2 and C3?

S2: 6 channels @14x14

Conv: 5x5, pad=0, stride=1

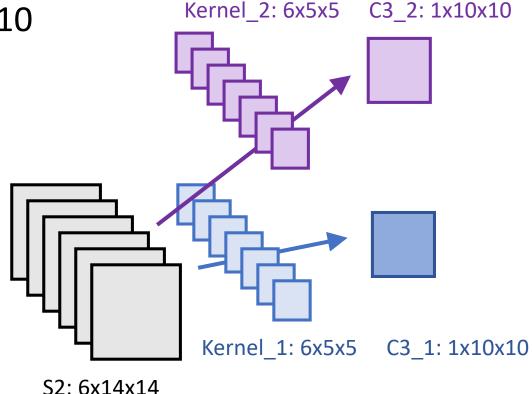
■ C3: 16 channels @ 10x10

C3: f. maps 16@ 10x10

S2: f. maps 6@14x14

Convolutions

Each image in C3 convolved S2 convolved with a different 3D kernel



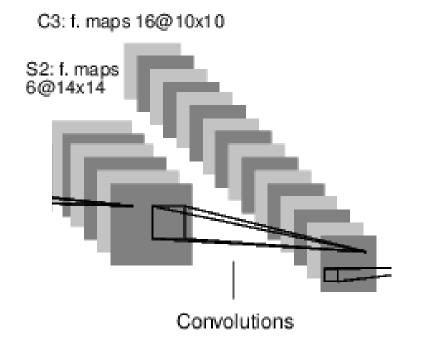
How big many convolutional weights between S2 and C3?

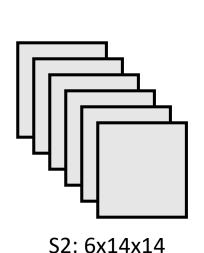
S2: 6 channels @14x14

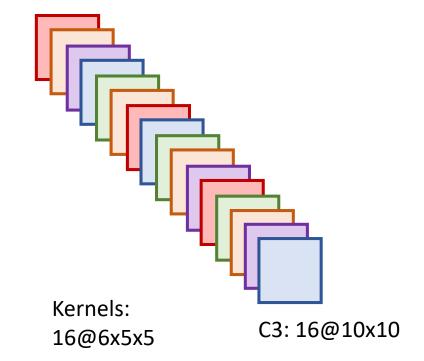
Conv: 5x5, pad=0, stride=1

■ C3: 16 channels @ 10x10

The 16 images in C3 are the result of doing 16 3D convolutions of S2 with 16 different 6x5x5 kernels. Assuming no bias term, this is 16x6x5x5 weights!

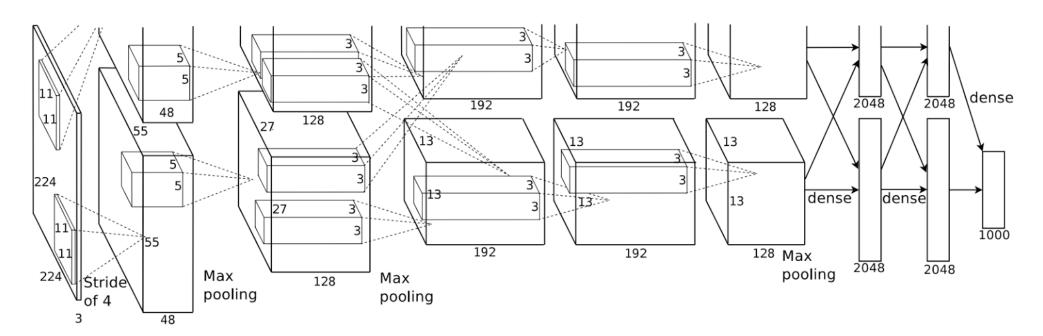






Alexnet – Lecun, et al, 2012

- Convnets for image classification
- More data & more compute power



Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." NIPS, 2012.