
Announcements
Assignments:

▪ HW4

▪ Due date Mon, 2/24, 11:59 pm

▪ HW5

▪ Out tomorrow

▪ Due date Thu, 2/27, 11:59 pm

Midterm Conflicts

▪ See Piazza post

▪ Due 11:59pm on Wednesday the 19th of February

Plan

Last time

▪ Decision Boundaries

▪ Gaussian Generative Models

▪ Neural Networks

Today

▪ Neural Networks

▪ Universal Approximation

▪ Optimization / Backpropagation

▪ (Convolutional Neural Networks)

Introduction to
Machine Learning

Neural Networks

Instructor: Pat Virtue

Single Neuron

Single neuron system
▪ Perception (if 𝑔 is step function)

▪ Logistic regression (if 𝑔 is sigmoid)

Computed Value
𝑧1∑ 𝑔

𝑥1

𝑥2

𝑤1

𝑤2

True Label
𝑦

ℎ𝒘 𝒙 = 𝑧1

ℎ𝒘 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

Optimizing
How do we find the “best” set of weights?

ℎ𝒘 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖

Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

▪ Hard threshold: 𝑔 𝑧 = ቊ
1 𝑧 ≥ 0
0 𝑧 < 0

𝑑𝑔

𝑑𝑧
= ቊ

0 𝑧 ≥ 0
0 𝑧 < 0

▪ Sigmoid: 𝑔 𝑧 =
1

1+𝑒−𝑧
𝑑𝑔

𝑑𝑧
= 𝑔 𝑧 1 − 𝑔 𝑧

▪ (Softmax)

▪ ReLU: 𝑔 𝑧 = 𝑚𝑎𝑥(0, 𝑧)
𝑑𝑔

𝑑𝑧
= ቊ

1 𝑧 ≥ 0
0 𝑧 < 0

Loss Functions

Regression

▪ MSE (SSE): ℓ 𝒚, ෝ𝒚 = 𝒚 − ෝ𝒚 2
2 = ∑𝑛 𝑦𝑛 −ෞ𝑦𝑛

2

Classification

▪ Cross entropy: ℓ 𝒚, ෝ𝒚 = −∑𝑛 𝑦𝑛 log ො𝑦𝑛

Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Slide from UC Berkeley AI

Neural Network Equations

∑𝑥1 𝑔
𝑧11

𝑥2
𝑧12

𝑥3
𝑧13

𝑤111

𝑤121

𝑤131

𝑧21

∑ 𝑔

𝑤112

𝑧22

∑ 𝑔
w133

𝑤113

𝑤123

𝑧23

∑ 𝑔

𝑤212

𝑧32

𝑤232

∑ 𝑔
𝑤221

𝑤211

𝑧31

𝑤221

𝑧41
∑ 𝑔

𝑤311

𝑤321

ℎ𝑤 𝒙 = 𝑧4,1

𝑧4,1 = 𝑔 ∑𝑖𝑤3,𝑖,1 𝑧3,𝑖

𝑧3,1 = 𝑔 ∑𝑖𝑤2,𝑖,1 𝑧2,𝑖

𝑧𝑑,1 = 𝑔 ∑𝑖𝑤𝑑−1,𝑖,1 𝑧𝑑−1,𝑖

𝑧1,1 = 𝑥1

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖

Optimizing
How do we find the “best” set of weights?

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖

Neural Network Equations

∑𝑥1 𝑔
𝑧11

𝑥2
𝑧12

𝑥3
𝑧13

𝑤111

𝑤121

𝑤131

𝑧21

∑ 𝑔

𝑤112

𝑧22

∑ 𝑔
w133

𝑤113

𝑤123

𝑧23

∑ 𝑔

𝑤212

𝑧32

𝑤232

∑ 𝑔
𝑤221

𝑤211

𝑧31

𝑤221

𝑧41
∑ 𝑔

𝑤311

𝑤321

How would you represent this specific network in PyTorch?

Neural Networks Properties
Practical considerations

▪ Large number of neurons

▪ Danger for overfitting

▪ Modelling assumptions vs data assumptions trade-off

▪ Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

▪ A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

▪ A two-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

Network to Approximate a 1-D Function

Network to Approximate a 1-D Function
Design a network to approximate this function using:

Linear, Sigmoid, Step, or ReLU

Network to Approximate a 1-D Function
Design a network to approximate this function using:

Linear, Sigmoid, Step, or ReLU

Network to Approximate a 1-D Function

Network to Approximate Binary Classification
Approximate function 𝑓 𝑥1, 𝑥2 = 𝑥1 ∧ 𝑥2

Network to Approximate Binary Classification
Approximate function 𝑓 𝑥1, 𝑥2 = 𝑥1⊕ 𝑥2

Network to Approximate Binary Classification
Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification
Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network Optimization

Reminder: Calculus Chain Rule (scalar version)

𝑦 = 𝑓 𝑧
𝑧 = 𝑔 𝑥

𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑧

𝑑𝑧

𝑑𝑥

Network Optimization

𝐽 𝐰 = 𝑧3
𝑧3 = 𝑓3(𝑤3, 𝑧2)

𝑧2 = 𝑓2 𝑤2, 𝑧1
𝑧1 = 𝑓1 𝑤1, 𝑥

Backpropagation (so-far)
Compute derivatives per layer, utilizing previous derivatives

Objective: 𝐽 𝒘

Arbitrary layer: 𝑦 = 𝑓 𝑥,𝑤

Need:

▪
𝜕𝐽

𝜕𝑥
=

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑥

▪
𝜕𝐽

𝜕𝑤
=

𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑤

